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Abstract 

Background 

Multimorbidity, the presence of two or more conditions in one person, is increasingly prevalent. Yet 

shared biological mechanisms of specific pairs of conditions often remain poorly understood.  We 

address this gap by integrating large-scale primary care and genetic data to elucidate potential 

causes of multimorbidity. 

Methods 

We defined chronic, common, and heritable conditions in individuals aged ≥65 years, using two large 

representative healthcare databases [CPRD (UK) N=2,425,014 and SIDIAP (Spain) N=1,053,640], and 

estimated heritability using the same definitions in UK Biobank (N=451,197). We used logistic 

regression models to estimate the co-occurrence of pairs of conditions in the primary care data. 

Linkage disequilibrium score regression was used to estimate genetic similarity between pairs of 

conditions. Meta-analyses were conducted across healthcare databases, and up to three sources of 

genetic data, for each condition pair. We classified pairs of conditions as across or within-domain 

based on the international classification of disease. 

Findings 

We identified N=72 chronic conditions, with 43·6% of 2546 pairs showing higher co-occurrence than 

expected and evidence of shared genetics. Notably, across-domain pairs like iron deficiency anaemia 

and peripheral arterial disease exhibited substantial shared genetics (genetic correlation 

𝑅𝑔=0·45[95% Confidence Intervals 0·27:0·64]). N=33 pairs displayed negative genetic correlations, 

such as skin cancer and rheumatoid arthritis (𝑅𝑔=-0·14[-0·21:-0·06]), indicating potential protective 

mechanisms. Discordance between genetic and primary care data was also observed, e.g., 

abdominal aortic aneurysm and bladder cancer co-occurred but were not genetically correlated 

(Odds-Ratio=2·23[2·09:2·37], 𝑅𝑔=0·04[-0·20:0·28]) and schizophrenia and fibromyalgia were less 

likely to co-occur but were positively genetically correlated (OR=0·84[0·75:0·94], 

𝑅𝑔=0·20[0·11:0·29]). 

Interpretation 

Most pairs of chronic conditions show evidence of shared genetics and co-occurrence in primary 

care, suggesting shared mechanisms. The identified shared mechanisms, negative correlations and 

discordance between genetic and observational data provide a foundation for future research on 

prevention and treatment of multimorbidity.   

Funding 

UK Medical Research Council [MR/W014548/1]. 
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Introduction  

Multimorbidity is the coexistence of two or more long-term conditions (LTCs) and is a growing 

problem globally, projected to affect two-thirds of 65-year-olds in the next decade. 1 Multimorbidity 

has been proposed as a clinical marker of accelerating ageing, resulting in increased frailty and 

mortality. Clinical management of multiple co-existing LTCs places a disproportionate economic and 

capacity burden on healthcare systems, particularly in the context of ageing populations. 2–6 Clinical 

research, including trials focusses on single conditions, and research to understand, prevent and 

treat multimorbidity is needed. The mechanisms driving the accumulation of LTCs and resulting in 

multimorbidity remain uncertain. 

The majority of previous multimorbidity research is observational, focusing on the concurrence of 

conditions as a raw or weighted count of selected conditions. Disease clustering approaches have 

revealed common combinations of LTCs, such as cardiovascular and metabolic, with variability in the 

conditions chosen and therefore the identified clusters. 7 Clustering-based approaches favour high-

prevalence LTCs, such as hypertension, while less prevalent LTCs remain understudied. 8,9 Alternative 

approaches have analysed disease pairs, using genetic correlations to identify potential shared 

genetics. However, most genetic studies have focused either on small sets of closely related 

conditions, 10 single large datasets such as the UK Biobank, or genetic correlations across multiple 

traits using broad disease definitions. 11  

Genetic data provide the opportunity to understand underlying mechanisms with less susceptibility 

to confounding, bias and reverse causality than observational studies. Summary-level genetic 

association data is available for many common conditions based on studies including 10,000s to 

100,000s cases. This genetic data enables the comparison of conditions across, as well as within, 

patients and datasets. For example, linkage disequilibrium (LD) score regression is an approach that 

can be used to compare genetic similarity between conditions from separate case-control studies of 

separate diseases, even when each study has no information on the other condition. 11,12 A 

systematic, multi-modal data investigation remains necessary to identify potential biological 

mechanisms and opportunities for the prevention and treatment of multimorbidity. 

In this study, we combine the advantages of healthcare datasets (representativeness and very large 

sample size) with the advantages of genetic studies (very large sample size, less confounding and 

reverse causality) to further understanding of multimorbidity. In contrast to most previous studies, 

we analyse specific pairs of LTCs, rather than counts or clusters of conditions, and meta-analyse data 

from more than one source. We provide a comprehensive assessment of the genetic and 

observational relationships between 72 LTCs common in people aged over 65 years - an analysis 

comprising 2,546 pairs. Our study identifies hundreds of pairs of conditions with shared genetic 

factors, many from across traditional disease domains; compares genetic evidence of the co-

occurrence of conditions with observational evidence from healthcare data; and provides a powerful 

resource for the study of multiple long-term conditions in multiple datasets.  
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Methods 

Design and populations 

Primary care healthcare data 

Observational data were obtained from two independent databases of electronic health records: 1) 

The UK Clinical Practice Research Datalink (CPRD), including data from >30 million National Health 

Service (NHS) patients from >700 primary care practices.13 2) The Spanish Information System for 

Research in Primary Care (SIDIAP), including data from 6 million patients from 328 practices.14 

Clinical records in both the UK and Spain undergo standardised coding to contribute to disease 

registers and healthcare planning. In SIDIAP the electronic codes are recorded using the 

International Classification of Disease, version 10 (ICD-10). In CPRD codes are a mixture of Read v2 

Codes, EMIS and SNOMED codes. 

Genetic 

Genetic data from 3 sources were included 1) UK Biobank (UKB),15 a large cohort study with 500,000 

individuals with baseline data linked to electronic health records; we used 450,197 individuals 

genetically similar to the 1000 Genomes European reference population (“EUR-like” - see 

Supplementary Information). 2) FinnGen, a large-scale genomics initiative linking diagnosis to 

genotype data in 377,277 participants (release 9).16 3) Published disease-specific Genome Wide 

Association Study (GWAS) meta-analyses summary statistics. For these disease-specific GWAS, we 

used the European Bioinformatics Institute (EBI) GWAS Catalog,17 disease-specific public 

repositories, and, if necessary, contacted authors of GWAS to obtain summary association statistics.  

Defining Long-Term Conditions 

LTCs were defined and selected for analysis based on chronicity, prevalence, and heritability as 

detailed below. Selected conditions were assigned to disease domains based on the ICD-10 chapters: 

https://icd.who.int/browse10/2019/en. 

Step 1: Selection of conditions – chronicity 

We included only LTC or with sequelae lasting more than 3 months to meet the definition of 

multimorbidity. The definition of disease chronicity was adapted from chronic conditions published 

by Calderón-Larrañaga et al.18 The LTC code lists were compared with CALIBER interoperable code 

lists,19 and adapted with clinician input to refine and remove acute diagnostic codes. This process 

generated 232 LTC code lists (Supplementary Figure 1). 

Step 2: Selection of conditions – prevalence 

Prevalence was estimated using CPRD and SIDIAP data for individuals aged 65 and older who were 

alive and registered on the 1st of January 2020. These databases are population-representative 

sources of primary care data, providing the most comprehensive set of long-term conditions, given 

many are not treated in hospital. The cutoff date minimises the impact of the COVID-19 pandemic in 

our analyses. We included conditions with a prevalence greater than 0.5%, supplemented by  

clinician and Patient and Public Involvement and Engagement (PPIE), resulting in 84 LTCs out of 232  

proceeding to step 3 (see PPIE section below). 

Step 3: Selection of conditions - Heritability  

We performed GWAS for 84 LTCs in UKB, using our defined clinical code lists and the REGENIE 

software (v3.1.3).20 See the Supplementary Information for details. Briefly, analyses were adjusted 

for age, sex, genotyping chip, and assessment centre. We restricted genetic variants to those with a 
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minor allele frequency (MAF) of >0·1%, and an imputation INFO score ≥0·3. SNP-based heritability 

was estimated using GWAS summary statistics and LD-score regression (LDSC).12 We used the 1000 

Genomes EUR reference population LD data throughout. 72 LTCs met criteria for analysis 

(Supplementary Figure 1). 

Co-occurrence of LTCs in primary care 

Logistic regression models tested the likelihood of two LTCs co-occurring in observational data, with 

models adjusted for age and gender, a Benjamini-Hochberg correction was used to account for 

multiple testing (additional detail in supplemental information). Associations (i.e. odds-ratios) 

between LTCs were estimated in CPRD AURUM and SIDIAP, and meta-analysed with fixed-effects 

using the RMA function in the R package ‘metafor’.21   

Genetic Correlation  

To provide the most powerful set of genetic data we sought to meta-analyse genetic studies 

according to two criteria: first, there should be evidence that the conditions defined in the different 

genetic studies were the same, or very similar, conditions. Second, there should be no overlap 

between the sources of genetic data. We used LDSC to estimate the within-condition between-

dataset genetic correlation (𝑅𝑔) and limited meta-analyses to studies where the within-condition 

genetic correlation was >0·8.11 To ensure there was no overlap in genetic data, The FinnGen and 

Consortium data were added to the meta-analysis when within-condition 𝑅𝑔 with UKB was >0·8, 

otherwise we used UKB only (i.e., the genetic evidence suggests that the conditions used by 

consortium GWAS and/or FinnGen are not consistent with those defined using diagnostic codes for 

LTCs in our project for UK Biobank). Where Consortium data included UKB and/or FinnGen, 

Consortium data were favoured, because of the larger number of cases, and UKB/FinnGen excluded 

to avoid sample overlap. Studies were meta-analysed using GWAMA.22 LTC pairs with genetic 

correlation at a false discovery rate of 5% were first separated into those within and across domains 

and second, sorted into three groups as those with weak, intermediate, and strong genetic 

correlations. See the Supplementary Methods for individual study references, Supplementary Figure 

2 for analysis flowchart, and Supplementary Table 1 for effective sample size and other information. 

Comparison between observational and genetic correlations 

Linear regression models estimated the association between genetic correlations and observed co-

occurrence between LTC pairs, where LTC pair genetic correlation was used as the dependent 

variable and observed co-occurrence as the outcome. Additional models estimated the associations 

in subsets of LTC pairs within and across disease domains. LTC pairs were classified as within or 

across disease domains based on ICD-10 chapters (Supplementary Table 2). 

Professional, Patient and Public Involvement 

Two co-authors (LF and MM) are public collaborators with direct experience of living with multiple 

LTCs. They are co-investigators attending fortnightly research meetings to co-develop the research. 

Additional workshops for patients and carers with experience of multiple LTCs have contextualised 

the importance of the research and directly informed research decisions on LTC selection and 

refinement as outlined above.23 

Healthcare professionals, including primary and secondary care physicians and allied healthcare 

professionals (led by authors JM, CVF and SEL) informed the definition, selection, and precision 

coding of LTCs. Detailed clinician review of LTC pairs identified potential underlying mechanisms and 

selected LTC pairs where an association was considered novel.  
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Ethical considerations 

This study was approved by the relevant ethics committees:  

SIDIAP Scientific and Ethical Committees (19/518-P) on 18/12/2019. The SIDIAP database is based on 

opt-out presumed consent. If a patient decides to opt out, their routine data would be excluded of 

the database. 

CPRD ISAC committee protocol number 23_003109.  

The Northwest Multi-Centre Research Ethics Committee approved the collection and use of UK 

Biobank data for health-related research (Research Ethics Committee reference 11/NW/0382). UKB 

was granted under Application Number 9072.  

Role of the funding source 

The funders had no input into the study design; in the collection, analysis, and interpretation of data; 

in the writing of the report; or in the decision to submit the paper for publication. 
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Results 

The majority of long-term conditions common in older people are heritable 

We identified 72 LTCs that were common and showed evidence of heritability. The most prevalent of 

these conditions in primary care data were hypertension (CPRD: 51·7%; SIDIAP: 63·2%), 

osteoarthritis (CPRD: 35·3%; SIDIAP: 37·8%), and upper body enthesopathy (CPRD: 27·0%; SIDIAP: 

20·0%) (Supplementary Table 1). The most heritable of these LTCs were fibromyalgia (ℎ2=25·1%) and 

type 2 diabetes (ℎ2=21·3%) (Supplementary Table 1). Further details of all 72 plus 12 additional 

conditions that did not meet our heritability criteria are available online: https://gemini-

multimorbidity.shinyapps.io/atlas. 

Associations between conditions 

Pairwise combinations of 72 conditions resulted in 2,546 pairs, of which 260 were within-domain 

and 2,286 across-domain (based on ICD10 classification) (Figure 1; Table 1). Ten pairs were excluded 

due to overlapping code lists, e.g., transient ischaemic attack (TIA) and “all stroke”. Prevalence 

estimates were based on data from 2,425,014 CPRD patients (46·3% male) and 1,053,640 SIDIAP 

patients (43·0% male). Genetic correlations were estimated using data from 450,197 UKB 

participants (45·7% male), 377,277 FinnGen participants (44·1% male), and from condition-specific 

GWAS data with sample sizes ranging from 12,366 to 181,522 cases. 

Regression analyses across N=2,546 pairs demonstrated that a 1% increase in 𝑅𝑔 equates to a 2·76% 

increase in the odds of co-occurrence (95% Confidence Intervals 2·65%-2·87%), thus the stronger the 

genetic correlation between an LTC pair, the higher the chance of the pair co-occurring in primary 

care.  

1. The majority of within-domain LTC pairs are genetically correlated and co-occur together in 

primary care data 

From 260 pairs of within-domain LTCs, N=209 (80·4%) were genetically correlated and co-occurred in 

primary care more often than expected (e.g., heart failure and atrial fibrillation - 𝑅𝑔=0·60-SE=0·03, 

OR: 7·53 [7·45-7·61]). Significant negative genetic correlations were absent in this group (Figure 2, 

blue). 

 

2. Many across-domain LTC pairs are genetically correlated and tend to co-occur in primary care 

data 

In across-domain pairs, we identified N=105 (4·6%) that were as strongly genetically correlated 

(𝑅𝑔>0·48) as the strongest third of within-domain pairs. These pairs were more likely to co-occur in 

primary care (Figure 2, green). For example, sinusitis and gastro-oesophageal reflux disease (GORD) 

(𝑅𝑔=0·49-SE=0·06), erectile dysfunction and peripheral neuropathy (𝑅𝑔=0·49-SE=0·10) and iron 

deficiency anaemia and peripheral arterial disease (𝑅𝑔=0·45-SE=0·10) were as strongly associated as 

within-domain pairs coronary heart disease and stroke (𝑅𝑔=0·49-SE=0·03), rheumatoid arthritis and 

polymyalgia rheumatica (𝑅𝑔=0·48-SE=0·09), and TIA and peripheral arterial disease (𝑅𝑔=0·48-

SE=0·08). Diseases of the musculoskeletal system or connective tissue were present in 8 of the 10 

across-domain LTC pairs with the strongest genetic correlations, but only 18.3% of all significant 

across-domain pairs. 

Clinician reviews of LTC pairs highlighted that associations are known, and have established 

explanatory mechanisms for all within-domain LTC pairs, and for most across-domain LTC pairs. For 

example, associations could reflect 1) shared pathology (e.g. Type 2 Diabetes and Erectile 
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dysfunction – OR: 3·27 [3·24-3·30], 𝑅𝑔=0·41-SE=0·04), 2) the first condition is a risk factor for the 

second (e.g. obesity and osteoarthritis – OR: 2·00 [1·99-2·01], 𝑅𝑔=0·54-SE=0·02), 3) treatment effects 

(e.g. intervertebral disc herniation where non-steroidal anti-inflammatory drugs (NSAIDs) could pre-

dispose to gastro-oesophageal reflux disease (GORD) -OR: 1·60 [1·58-1·62], 𝑅𝑔=0·50-SE=0·03) and 4) 

shared symptoms leading to overlapping diagnoses (e.g., sinusitis and GORD - OR: 2.00 [1.98-2.02], 

𝑅𝑔=0·49-SE=0·06). However, other across-domain LTC pairs had no well-established shared 

mechanisms for genetic and observed associations. Some examples were tendon disorders and 

diverticular disease (OR: 1·49 [1·48-1·50], 𝑅𝑔=0·65-SE=0·13), fibromyalgia and irritable bowel 

syndrome (IBS) (OR: 3·38 [3·30-3·47], 𝑅𝑔=0·65-SE=0·13), fibromyalgia and asthma (OR: 1·87 [1·83-

1·92], 𝑅𝑔=0·45-SE=0·06) and IBS and peripheral neuropathy (OR: 1·6 [1·57-1·64],𝑅𝑔=0·57-SE=0·12). A 

total of N=89 genetically correlated and co-occurring LTC pairs involved treatable deficiencies in iron 

and vitamin B12, e.g. B12 deficiency and COPD (OR: 1.57 [1·55-1·60], 𝑅𝑔=0.35-SE=0·06). 

3. A small number of pairs of conditions are negatively genetically correlated and co-occur less 

often than expected in primary care. 

We identified 33 (1·3% of N=2,546) pairs of LTC conditions that were negatively genetically 

correlated (FDR <0·05), implying that the genetic risk of one is associated with protection from the 

other. N=19 (56·0%) of these pairs were observed together less often than expected in primary care. 

Of the 19 pairs, 16 involved malignancies, for example, skin cancer and rheumatoid arthritis (𝑅𝑔=-

0·14-SE=0·04) and five pairs included schizophrenia (e.g. schizophrenia and upper body 

enthesopathy, 𝑅𝑔=-0·17-SE=0·03) (Figure 2, red).  

4. Some pairs of conditions show discordance between observed co-occurrence and genetic 

correlation 

A total of 34 (1.3% of 2,546) pairs did not co-occur in primary care data more than chance (after 

false discovery rate correction) but had a positive genetic correlation (Figure 2, purple), such as 

female genital prolapse and type 2 diabetes (OR: 0·97 [0·96-0·98], 𝑅𝑔=0·13-SE=0·02). This group 

included several pairs involving mental health conditions and pain-related conditions e.g. 

schizophrenia and fibromyalgia (OR: 0·84 [0·75-0·94], 𝑅𝑔=0·13-SE=0·02). 

We identified 739 disease pairs (29·0%) showing significant positive co-occurrence without genetic 

correlation (Figure 2, purple). Examples include fibromyalgia and polymyalgia rheumatica, indicative 

of explorative diagnosis along a diagnostic pathway (OR: 0·84 [0·75-0·94], 𝑅𝑔=0·15-SE=0·12); iron 

deficiency anaemia with colorectal cancer (OR: 2·55[2·49-2·60] , 𝑅𝑔= 0·04-SE=0·07), as well as 

abdominal aortic aneurism (AAA) with bladder cancer (OR: 2·23[2·09-2·37], 𝑅𝑔=0·04-SE=0·12), which 

may involve incidental findings. 
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Discussion 

Associations between conditions and mechanisms of multimorbidity 

We report the first, systematic investigation of the shared genetics and co-occurrence in primary 

care of 2546 pairs of long-term conditions (LTC). Our study builds on previous work in multimorbidity 

by integrating two of the largest most representative sources of primary care data with large scale 

genetic data for each of 72 conditions. Most pairs (61·0%) tended to co-occur in primary care data 

and share genetics, with a subset of across-domain pairs showing genetic correlations as strong as 

many within-domain pairs.  The overall positive relationship between observed phenotypic 

associations and genotypic correlations is consistent with and considerably extends work from a 

previous smaller-scale study, limited to 17 conditions in UK Biobank. 24 These findings suggest 

diverse shared pathways and mechanisms drive co-occurrence of LTCs in multimorbidity. 

There are several potential mechanistic explanations for our results. These mechanisms could 

include shared pathophysiology, such as atherosclerosis, as a likely shared risk factor for 

cardiovascular diseases such as atrial fibrillation and heart failure.25 Causal mechanisms may also 

include one LTC acting as a risk factor for a second LTC, such as obesity increasing the risk of 

osteoarthritis due to increased mechanical stress on weight-bearing joints. Shared genetic and 

observational mechanisms  between LTCs could result from the combined effect of both types of 

causal pathways, such as increased risk of erectile dysfunction in type 2 diabetes, caused by shared 

pathophysiology and by the effect of hyperglycaemia on the endothelium. 26 Lastly, concordance 

between phenotypic and genetic correlations may result from iatrogenic mechanisms. For example, 

secondary stroke prevention with antiplatelet medications, such as clopidogrel, increases the risk of 

gastritis, and the use of non-steroidal anti-inflammatory drugs (NSAIDs) for pain in musculoskeletal 

conditions such as intervertebral disc herniation increases the risk of gastro-oesophageal reflux 

disease (GORD). 27 

We highlight LTC pairs that co-occur more often than expected by chance and that are genetically 

correlated but lack strong clinical understanding. For example, tendon disorder and diverticular 

disease were associated and novel other than one case study. 28  A few LTC pairs include a readily 

treatable condition such as B12 deficiency or iron deficiency anaemia, highlighting a potential direct 

path towards intervention. 

LTC pairs showing discordance between genetic correlations and co-occurrence in primary care raise 

interesting questions about clinical service provision. The 34 LTC pairs with evidence of shared 

genetics but occurring less often than expected by chance were dominated by combinations of 

musculoskeletal and mental health conditions, such as schizophrenia with fibromyalgia, and with 

rheumatoid arthritis, or alcohol addiction and spondylolisthesis. These combinations could suggest 

that diagnoses of severe mental health conditions lead to underdiagnosis of concomitant physical 

LTCs probably involving diagnostic overshadowing. 29–31 LTC pairs with increased observed co-

occurrence but without evidence of genetic correlation could include clinical instances where 

diagnosis with one LTC leads to increased odds of being diagnosed with a second LTC. For example, 

iron deficiency anaemia (IDA) and colorectal cancer, where a diagnosis of IDA triggers an 

investigation for colorectal cancer; or Abdominal Aortic Aneurysm (AAA) and bladder cancer, where 

an AAA is incidentally detected during an investigation for bladder cancer. Discordant pairs highlight 

instances where pathways for diagnosis of chronic conditions are inadequate, and these may remain 

undiagnosed and untreated.  
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Strengths and limitations 

This study uses large and representative data from electronic health records (EHRs), with findings 

replicated across datasets.13,14 EHRs are inclusive of those with disability, frailty and MLTC who are 

frequently under-represented in clinical research. Observational data were also complemented with 

three high-quality genetics data sources. An exhaustive review process has been carried out to 

compare chronic, heritable diseases across genetic and EHR data. There is no clear international 

consensus on the assessment of multimorbidity. In this study, we have used a comprehensive 

method to select common chronic LTCs in older populations, based on existing literature, that has 

ensured the inclusion of 2546 multimorbidity disease pairs, the largest systematic collection to date. 

Clinical experts curated LTC definitions and LTC pairs, which are available for future MLTC 

investigations. 

A few limitations should be considered. 1) The genetic analyses were limited to individuals of 
European genetic ancestry due to a paucity of large-scale genetic data from people of non-European 
ancestry. 2) Limiting primary care data to individuals at least 65 years may introduce survival bias; 
negative effect sizes cannot be automatically conferred as protective. For example, where we found 
reduced co-occurrence between schizophrenia and musculoskeletal condition another study found 
an increased rate of mortality between the two.32 3) Participants may have co-occurring LTCs 
because of misdiagnosis or codes associated with the diagnostic pathway, for example, the strong 
co-occurrence observed for polymyalgia rheumatica and fibromyalgia. 4) Finally, differences in 
statistical power for defining conditions as genetically correlated or co-occurring means it is 
important to consider 95% confidence intervals when considering specific pairs. However, in this 
study we have used extremely large datasets, ensuring tight confidence intervals around our 
estimates.  

How could these results help clinicians?  

Understanding novel associations and associations involving treatable conditions can highlight 
opportunities for improved detection, and interventions for prevention, delaying onset or treatment 
of LTC pairs. Genetic correlations provide a starting point for the identification of specific 
mechanisms of MLTC providing a foundation for research on potential prevention and treatment. 
This knowledge can lead to novel treatment approaches and drug repurposing across LTC pairs that 
will inform clinical guidelines to the benefit of patients.33 

LTC pairs that are genetically correlated without observed co-occurrence could highlight 
underdiagnosed conditions, some of which may be amenable to screening or education to improve 
detection. This includes conditions with a potentially high symptom burden in groups in whom there 
are barriers to clinical presentation or accessing healthcare, such as people with mental health 
diagnoses, or highlights conditions that are commonly not diagnosed, such as AAA suggesting 
screening programs extended only to men over 65 as a one-time event have not been appropriately 
adopted.34 

Lastly, we highlight potentially treatable conditions with high co-occurrence, such as iron deficiency 

anaemia with peripheral neuropathy, and B12 deficiency with diabetes complications and 

treatments or supplementation advice could be explored further.35,36  

Further work  

Future detailed work is planned to investigate the specific relationships between LTC pairs. 

Multimorbidity represents complex interactions of biological pathways and environmental factors. 
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Longitudinal research, adjusted for confounders, can elucidate mechanisms and risk factors involved 

for selected, under-researched LTC pairs with strong genetic correlation. Genetic causal inference 

methodologies can identify targets for intervention,37 allowing researchers to test and propose 

personalised preventative and therapeutic actions.  

Conclusion 

We have performed a systematic analysis of multimorbidity, integrating large scale primary care and 

genetic data from multiple sources, and involving patients as collaborators. We have identified novel 

combinations of conditions, including those that tend to share genetic factors but not co-occur in 

primary care, and vice versa. Our data is accessible through an interactive web app (https://gemini-

multimorbidity.shinyapps.io/atlas), which we anticipate will provide a valuable resource for further 

research in multimorbidity.  
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diagnostic code lists, code and results available on our GitHub (https://github.com/GEMINI-

multimorbidity/) site and Shiny website (https://gemini-multimorbidity.shinyapps.io/atlas/). GWAS 

summary statistics will be available following acceptance at the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/home). 
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Figure 1. Pairwise associations between 72 long-term chronic conditions: co-occurrence in 

observational data (upper right panel) and genetic correlation (lower left panel) 

LTCs tested are common (≥0.5% prevalence in individuals aged 65 and older) and heritable (SNP-

based heritability z-score >4) – see Methods. Observational associations (upper right triangle of 

heatmap) are Odds Ratios from meta-analysed logistic regression models from two population-

representative primary care cohorts (CPRD and SIDIAP) comprised of individuals aged 65 or older 

and alive on January 1st, 2020 (to aid in readability, ORs >4 are set to 4, and ORs <0·25 are set to 

0·25). Genetic correlations (lower right triangle of heatmap) are from meta-analysed GWAS 

summary statistics from up to three sources (UKB, FinnGen, and published consortium studies). LTCs 

within the same ICD-10 chapter (i.e., “within-domain”) are highlighted with dotted lines. See 

Supplementary Tables 3 and 4 for full results, and web app for interactive version: https://gemini-

multimorbidity.shinyapps.io/atlas.   

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.24307009doi: medRxiv preprint 

https://gemini-multimorbidity.shinyapps.io/atlas
https://gemini-multimorbidity.shinyapps.io/atlas
https://doi.org/10.1101/2024.05.13.24307009
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

Table 1. Observational co-occurrence and genetic correlation between LTC pairs  

 

All Observational (primary care) associations 

Genetic 
Correlation 

 
Not Significant Weak Intermediate Strong Total 

Not Significant 100 (10·8) 765 (82·7) 53 (5·7) 7 (0·8) 925 (36·3) 
Weak  18 (2·1) 692 (79·8) 138 (15·9) 19 (2·2) 867 (34·1) 
Intermediate  0 (0) 265 (45·8) 245 (42·3) 69 (11·9) 579 (22·7) 
Strong  0 (0) 18 (10·3) 69 (39·4) 88 (50·3) 175 (6·9) 

 
Obs Total 118 (4·6) 1740 (68·4) 505 (19·8) 183 (7·2) 

2546 
(100)   

Across-domain 
Pairs 

 
Not Significant Weak Intermediate Strong Total 

Not Significant 98(4·3) 727(31·8) 45(2) 6(0·3) 876 (38·3) 
Weak 16(0·7) 653(28·6) 115(5) 12(0·5) 796 (34·8) 
Intermediate 0 (0) 256(11·2) 209(9·1) 44(1·9) 509 (22·3) 
Strong 0 (0) 18(0·8) 51(2·2) 36(1·6) 105 (4·6) 

 
Obs Total 114 (4·9) 1654 (72·4) 420 (18·4) 98 (4·3) 

2286 
(100)   

Within-domain 
pairs 

 
Not Significant Weak Intermediate Strong Total 

Not Significant 2(0·8) 38(14·6) 8(3·1) 1(0·4) 49 (18·9) 
Weak 2(0·8) 39(15·0) 23(8·8) 7(2·7) 71 (27·3) 
Intermediate 0 (0) 9(3·5) 36(13·8) 25(9·6) 70 (26·9) 
Strong 0 (0) 0 18(6·9) 52(20) 70 (26·9) 

Obs Total 4 (1·5) 86 (33·1) 85(32·7) 85(32·7) 260 (100) 

 

For each pair the log-odds ratio of the least prevalent disease explained by the more prevalent disease 

adjusting for age and sex was meta-analysed across CPRD and SIDIAP. Observed LTC pairs were divided 

into terciles based on within-domain pairs; weak (Odds-Ratio [OR] ≤1·46) intermediate 

(1·46<OR≤1·90) and strong (OR>1·90). The genetic correlations of LTC pairs were divided into terciles 

based on within-domain pairs: weak (Rg≤0·25), intermediate (0·25<Rg≤0·48) and strong (Rg<0·48) 

correlation. 
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Figure 2. The relationship between LTC observational co-occurrence and genetic 

correlation 

 

Scatter plots of the relationship between observed co-occurrence and genetic correlation of LTC 

pairs. (blue) linear regression line, (yellow) terciles of genetic correlation, (red) terciles of likelihood 

of observed co-occurrence. Terciles estimated based on within-domain LTC pairs. The upper panel 

shows all pairs with pairs discussed in result section 1:4 highlighted. The lower two panels show the 

across-domain (left, n=2,286) and within-domain (right, n=260) pairs. See Supplementary Tables 3 

and 4 for full results, Supplementary Table 5 for the highlighted pairs and the web app for interactive 

versions: https://gemini-multimorbidity.shinyapps.io/atlas. See Supplementary Figure 3 for plot 

stratified by domain. 
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