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Key Points 70 

Question: Can an open-access data challenge support the rapid development of cough-based 71 

artificial intelligence (AI) algorithms to screen for tuberculosis (TB)? 72 

 73 

Findings: In this diagnostic study, teams were provided well-characterized cough sound data 74 

from seven countries, and developed and submitted AI models for independent validation. 75 

Multiple models that combined clinical and cough data achieved the target accuracy of at least 76 

80% sensitivity and 60% specificity to classify microbiologically-confirmed TB. 77 

 78 

Meaning: Cough-based AI models have promise to support point-of-care TB screening, and 79 

open-access data challenges can accelerate the development of AI-based tools for global 80 

health.  81 
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Abstract 82 

Importance. Open-access data challenges have the potential to accelerate innovation in 83 

artificial-intelligence (AI)-based tools for global health. A specimen-free rapid triage method for 84 

TB is a global health priority. 85 

 86 

Objective. To develop and validate cough sound-based AI algorithms for tuberculosis (TB) 87 

through the Cough Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM challenge. 88 

 89 

Design. In this diagnostic study, participating teams were provided cough-sound and clinical 90 

and demographic data. They were asked to develop AI models over a four-month period, and 91 

then submit the algorithms for independent validation.  92 

 93 

Setting. Data was collected using smartphones from outpatient clinics in India, Madagascar, the 94 

Philippines, South Africa, Tanzania, Uganda, and Vietnam.  95 

 96 

Participants. We included data from 2,143 adults who were consecutively enrolled with at least 97 

two weeks of cough. Data were randomly split evenly into training and test partitions. 98 

 99 

Exposures. Standard TB evaluation was completed, including Xpert MTB/RIF Ultra and  100 

culture. At least three solicited coughs were recorded using the Hyfe Research app.  101 

 102 

Main Outcomes and Measures. We invited teams to develop models using 1) cough sound 103 

features only and/or 2) cough sound features with routinely available clinical data to classify 104 

microbiologically confirmed TB disease. Models were ranked by area under the receiver 105 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.13.24306584doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24306584


 6

operating characteristic curve (AUROC) and partial AUROC (pAUROC) to achieve at least 80% 106 

sensitivity and 60% specificity. 107 

 108 

Results. Eleven cough models were submitted, as well as six cough-plus-clinical models. 109 

AUROCs for cough models ranged from 0.69-0.74, and the highest performing model achieved 110 

55.5% specificity (95% CI 47.7-64.2) at 80% sensitivity. The addition of clinical data improved 111 

AUROCs (range 0.78-0.83), five of the six submitted models reached the target pAUROC, and 112 

highest performing model had 73.8% (95% CI 60.8-80.0) specificity at 80% sensitivity. In post-113 

challenge subgroup analyses, AUROCs varied by country, and was higher among males and 114 

HIV-negative individuals. The probability of TB classification correlated with Xpert Ultra semi-115 

quantitative levels. 116 

 117 

Conclusions and Relevance. In a short period, new and independently validated cough-based 118 

TB algorithms were developed through an open-source and transparent process. Open-access 119 

data challenges can rapidly advance and improve AI-based tools for global health. 120 
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Introduction 121 

As global health challenges intersect with rapid advancements in technology and artificial 122 

intelligence (AI), digital health tools have the potential to enhance disease surveillance, 123 

diagnosis, and management.1–3 In particular, the widespread availability of smartphones and 124 

wearable sensors create opportunities for low-cost, non-invasive applications to increase 125 

healthcare access and quality.4 However, development and deployment of AI solutions have 126 

primarily focused on commercial applications in high-income markets. A major challenge to 127 

equitable implementation of these tools is a lack of available datasets from diverse geographic 128 

settings, and limited focus on conditions that disproportionally affect low- and middle-income 129 

countries (LMICs).2,5 Moreover, available datasets may be proprietary, preventing open-access 130 

sharing and transparent algorithm development. The consequence is a dearth of AI tools 131 

validated in LMICs and that address the public health challenges they face. 132 

 133 

Tuberculosis (TB) is the leading cause of death from an infectious disease worldwide.6 The high 134 

mortality is driven by a large case detection gap, in which 3.1 million of the estimated 10 million 135 

individuals who develop TB disease each year have not been diagnosed or reported to public 136 

health programs.6 AI has already supported TB diagnosis through automated chest X-ray 137 

reading, and computer-assisted detection algorithms (CAD) have been endorsed by the World 138 

Health Organization (WHO) as a triage tool.7 However, CAD systems require infrastructure and 139 

expertise to obtain chest X-rays which limit their impact at primary health facility levels. Cough is 140 

a common symptom of TB, and initial studies suggest that there are unique acoustic features 141 

that can distinguish pulmonary TB from other respiratory conditions.8,9 Furthermore, cough 142 

detection applications have already been developed for mobile phones and smart watches,10 143 

providing an opportunity to integrate cough-based AI algorithms for point-of-care TB 144 

assessment by providers and patients. 145 
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 146 

In other diseases, including COVID-19,11 open-access, crowd-sourced data challenge initiatives 147 

have been used to accelerate the development of novel algorithms.12 These initiatives provide a 148 

transparent platform to share methods and findings, and support independent validation. To 149 

expedite AI diagnostic development for TB, we established a cough sound repository from 150 

individuals prospectively enrolled with presumptive TB across seven high TB-burden countries, 151 

and launched the Cough Diagnostic Algorithm for TB (CODA TB) Dream Challenge.13 We 152 

present the results of the challenge and highlight the role of this approach to rapidly advance AI 153 

tools for global diseases that impact LMICs. 154 

 155 

Methods 156 

CODA TB DREAM Challenge 157 

The CODA TB DREAM Challenge launched on October 26, 2022. Participants were asked to 158 

develop a model to classify TB disease in two sub-challenges: (1) using cough sounds alone 159 

and (2) using cough sounds and basic demographic and clinical variables. Challenge teams 160 

were allowed to submit results for one or both sub-challenges. To be considered in the official 161 

ranking, teams needed to submit a final report that outlined their methods and conclusions, and 162 

a link to their source code. The timeline of the challenge is shown in Supplemental Figure 1.  163 

 164 

The challenge was hosted by Sage Bionetworks, which has developed an open-science, 165 

collaborative competition framework for evaluating and comparing computational algorithms, 166 

using the DREAM Challenges framework. DREAM focuses exclusively on biomedicine with an 167 

explicit mandate for transparency, openness, and collaboration. The challenge was set up on 168 

Synapse (www.synapse.org/tbcough), which provided all instructions, a secure platform for data 169 
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sharing, a forum for communication with challenge participants, and supported submission of 170 

models for independent validation.  171 

 172 

Any individual or team could participate in the challenge. After registering for a free Synapse 173 

account, they certified that they understood the Synapse data use policy, verified their identify, 174 

and agreed to the challenge guidelines to not attempt to identify or contact any study 175 

participants, to not share the data with others, and that they must comply with the intended use 176 

of the data. If they agreed to these conditions, they were given access to the de-identified 177 

training data as described below. The challenge was advertised as broadly as possible, 178 

including on social media, to multiple academic institution listservs and departments of global 179 

health, bioinformatics and computer science, companies interested in cough-based or TB 180 

diagnosis, and previous DREAM Challenge participants. 181 

 182 

Study dataset 183 

Data for the CODA TB DREAM Challenge were obtained from two multi-country TB diagnostic 184 

evaluation studies.13 The Rapid Research in Diagnostic Development TB Network (R2D2 TB 185 

Network) enrolled participants at outpatient health centers in Uganda, South Africa, Vietnam, 186 

the Philippines and India. The Digital Cough Monitoring Project enrolled participants in Tanzania 187 

and Madagascar. Ethical approvals for the studies were obtained from institutional review 188 

boards (IRB) in the US (R2D2 TB Network, University of California, San Francisco) and Canada 189 

(Digital Cough Monitoring Project, University of Montreal), as well as IRBs in each country in 190 

which participants were enrolled. All participants provided written informed consent for study 191 

participation, cough recording and anonymized data sharing. 192 

 193 

In both studies, eligible participants were 18 years or older and had a new or worsening cough 194 

for at least two weeks. Participants completed a standard evaluation for TB including a clinical 195 
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questionnaire and examination, sputum-based molecular testing (Xpert MTB/RIF Ultra, 196 

Cepheid, Sunnyvale) and liquid or solid medium culture testing. Participants were asked to 197 

produce at least three solicited cough sounds during the baseline visit prior to any TB treatment 198 

initiation. The coughs were collected on an Android-based smartphone using the Hyfe Research 199 

app,14 which uses a convolutional neural network (CNN) model to automatically detect the 200 

cough and saves the 0.5 second peak sound.13 Solicited cough sounds were collected, though 201 

any triggered passive coughs were also recorded. TB disease status was based on a 202 

microbiological reference standard, defined by a positive molecular or culture result. Further 203 

details on the study procedures and dataset including a summary of participant demographics 204 

and country distribution have been published previously.13 205 

 206 

A training set (n=1,105) for algorithm development was created by taking a 50% sample of the 207 

dataset randomized at the individual level. Of the remaining data, 24% (n=248) was randomly 208 

selected at the individual level for the “leaderboard” test set, from which challenge participants 209 

could receive periodic feedback on their model performance, and the remainder (n=790) was 210 

reserved as the final test set for algorithm evaluation. Challenge teams were given direct access 211 

only to the training set, which included the raw peak cough sound recordings in WAV format, as 212 

well as associated age, sex, height, weight, smoking status, self-reported duration of cough, 213 

history of prior TB, common TB symptoms (hemoptysis, fever, night sweats, weight loss), heart 214 

rate and temperature. These variables were chosen as data that would be readily available in 215 

routine primary care settings. We did not include HIV status as the testing and/or results may 216 

not be available or known at the time of cough assessment. 217 

 218 

Algorithm development and evaluation 219 

Participating teams could train an algorithm using any pre-processing approach and model, and 220 

with any programming language (i.e. R, Python, etc.) or framework (such as Keras or Pytorch). 221 
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For evaluation, models were required to be saved in Open Neural Network Exchange (ONNX) 222 

format and submitted in a Docker container, with any code needed for pre-processing the data. 223 

 224 

Challenge teams had five interim opportunities to evaluate their algorithms on the “leaderboard” 225 

test set before the final algorithms were due for test set evaluation (Supplemental Figure 1). 226 

The teams submitted their preliminary models and we independently applied those models to 227 

the leaderboard test set. The output of each model was continuous TB prediction scores used to 228 

generate calculate area under the receiver operating characteristic curve (AUROC) and two-229 

way partial AUROC15  (pAUROC) with 80% sensitivity and 60% specificity. We set this threshold 230 

to identify promising algorithms that had an accuracy that was at least within 10% of the 231 

minimum WHO target product profile (TPP) accuracy for a TB triage test (≥90% sensitivity, 232 

≥70% specificity).16 A higher pAUROC indicates that a greater area meets the minimum target 233 

sensitivity and specificity. Original model evaluation was performed in Python (version 3.8.8). All 234 

subsequent analyses were performed in R Software version 4.2.2 (2022-10-31). Evaluations of 235 

model statistics were done using the pROC R package. Implementation of the pAUROC was 236 

provided by Chaibub Neto, et al.17,18   237 

 238 

The final submission deadline was on February 13, 2023, four months from the launch of the 239 

challenge. Similar to the leaderboard rounds, challenge teams submitted their pre-processing 240 

code (if applicable) and trained models, and we independently applied the model to the test set. 241 

Final model performance was evaluated by the pAUROC. If no model could meet the accuracy 242 

threshold, the algorithms were evaluated by the total AUROC. Variability in the AUROCs and 243 

pAUROCs were assessed via bootstrap resampling (n = 1,000).  244 

 245 

Clinical Data Only Model  246 
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As a sensitivity analysis to assess the degree that the clinical variables alone contributed to the 247 

models in sub-challenge 2, we developed a Random Forest model19 using the clinical and 248 

demographic variables provided to challenge participants. In addition to the variables provided, 249 

body mass index (BMI) was computed from height and weight variables, and duration of cough 250 

symptoms was log-transformed prior to model fitting. The model was trained using 1,000 trees. 251 

 252 

Subgroup analyses 253 

After the challenge was complete, first- and second-ranked teams (n=5 due to ties) in both sub-254 

challenges were invited to participate in additional model evaluation. We assessed the accuracy 255 

of the models by country, sex, and HIV status. We also compared the probability of TB 256 

classification for each model by Xpert MTB/RIF Ultra semi-quantitative PCR result. 257 

 258 

Results 259 

Challenge Implementation 260 

147 individuals and 18 teams registered for the CODA TB DREAM Challenge. In each 261 

leaderboard round, two to eight teams submitted models. Thirteen teams submitted final models 262 

for sub-challenge 1, and eight for sub-challenge 2. Of those that submitted final models, eleven 263 

(sub-challenge 1) and six (sub-challenge 2) teams submitted a summary of methods and model 264 

code. The winning models for each sub-challenge are described in the Supplemental Methods. 265 

The reports for the full set of submissions are available through the challenge website.20 266 

 267 

Sub-challenge 1  268 

As shown in Table 1, Figure 1A and Supplemental Figure 2, AUROCs ranged from 0.689 to 269 

0.743. The top model achieved a specificity of 55.5% at 80% sensitivity; as further shown in 270 

Supplemental Table 1, it did not achieve the WHO TPP-based accuracy thresholds for a triage 271 
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test at 90% sensitivity and 70% specificity. Of the 11 groups, 4 (36%) used CNNs, 4 (36%) used 272 

artificial neural networks, and 3 (27%) used gradient boosting decision tree methods. 273 

 274 

Sub-challenge 2 275 

All groups used the same algorithm approach they utilized in sub-challenge 1. As shown in 276 

Figure 1B, Supplemental Figure 3 and Table 2, overall performance improved compared to 277 

the use of cough sounds alone, and the top performing model achieved an AUROC of 0.832 278 

(95% CI 0.795-0.863) and a pAUROC of 0.003 (95% CI 6.1e-06-0.012). Five of the six (83%) 279 

submission achieved at least 80% sensitivity and 60% specificity, with the top model reaching 280 

73.8% (95% CI 60.8-80.0) at 80% sensitivity. For the WHO TPP for a TB triage test, the top 281 

performing model achieved 54% specificity (95% CI = (38%, 63%)) at 90% sensitivity 282 

(Supplemental Table 1). In sensitivity analysis, the clinical data only model achieved an 283 

AUROC of 0.817 (95% CI 0.778-0.850) and pAUROC of 0.004 (95% CI 5.5e-4-0.010). This was 284 

higher than the cough only model, but the top combined cough and clinical data model 285 

outperformed both.  286 

 287 

Subgroup Assessment 288 

Model performance for the combined cough sound and clinical data models (sub-challenge 2) 289 

was variable across country of data collection (Figure 2A). In general, the models performed 290 

better on data from the Philippines, Uganda, Tanzania and Vietnam. The median AUROC of the 291 

cough and clinical data models was slightly higher for males compared to females (median 0.82 292 

vs. 0.78, p<0.01, Figure 2B). Model performance was also slightly higher among people not 293 

living with HIV compared to people living with HIV (median AUROC 0.83 vs. 0.78, p<0.01, 294 

Figure 2C). Subgroup results for sub-challenge 1 (cough sounds only) are shown in 295 

Supplemental Figures 4-7. Findings were similar, although we found slightly lower accuracy in 296 

males vs. females (median AUROC 0.69 vs 0.71, p = 0.02) in contrast to sub-challenge 2. 297 
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 298 

For all submitted cough and clinical data models, the median predicted probability of being TB-299 

positive increased with Xpert MTB/RIF Ultra semi-quantitative level, from trace positive results 300 

to high bacillary load results (Figure 3, Supplemental Figure 7).  301 

 302 

Discussion 303 

The CODA TB Dream Challenge addressed a critical need to accelerate the development of AI-304 

based tools for global health through an inclusive, open and transparent approach. The 305 

challenge brought together students, researchers, and industry partners from a diverse 306 

geographical spectrum with a common goal of developing novel TB diagnostic algorithms using 307 

cough sounds. In a short period, challenge participants created, tested and improved algorithms 308 

using cough sounds and routine clinical and demographic data that approached the WHO TPP 309 

accuracy targets for a TB triage test. Open-access research and citizen science represent a 310 

potential paradigm shift in how digital health solutions can be developed for global health by 311 

harnessing the collective expertise of an international community to address a common 312 

scientific and humanitarian goal.   313 

 The cough-sound only models had similar accuracies with AUROCs that ranged from 314 

0.65-0.74. This performance is within the wide range of cough-based models that have been 315 

developed to detect COVID-19 (AUROCs 0.62 to 0.98).21–24 In India, for example, a cough-316 

based CNN model achieved an AUROC of 0.75 to detect COVID-19.24 There are a few 317 

published cough-sound models in TB that have shown higher performance (AUROC 0.79-318 

0.94),8,9 but these have been small studies that were not validated on independent datasets, 319 

and may overestimate accuracy. A major limitation of previous cough models for other 320 

conditions was the use of crowd-sourced data.11,25,26 While this approach rapidly generates 321 

large real-world datasets, there are multiple challenges, including selection bias, subjective 322 
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clinical assessment and heterogenous reference standard definitions. In CODA, we utilized a 323 

multi-country cohort of consecutively enrolled symptomatic individuals with indications for TB 324 

evaluation, standardized clinical data and cough collection protocols, objective TB testing and 325 

uniform case definitions. This increases the confidence that algorithms are identifying features 326 

specific to the disease condition, reduces AI-related biases, and better reflects how the 327 

algorithms will perform in the intended settings and populations. 328 

 Performance improved when routine demographic and clinical variables were added to 329 

models, and five of six algorithms approached the WHO-established target accuracy thresholds 330 

for a TB triage test. We chose demographic and clinical variables that are associated with TB 331 

and could be collected in primary care settings or self-reported on a mobile application. As a 332 

post-challenge sensitivity analysis, we developed a clinical data only model that performed well 333 

(AUROC 0.817), but the addition of cough sound data improved accuracy and supports the role 334 

of integrating both data types. The best performing challenge models utilized deep learning 335 

algorithms; while interpretability can be limited with such models, subgroup findings increase 336 

confidence in a TB-specific signal. First, the probability of TB classification correlated with 337 

bacterial burden as measured by semi-quantitative PCR results in both sub-challenges, which 338 

was also seen in a recent study in Kenya.8 Moreover, worse performance among people living 339 

with HIV who often have paucibacillary disease may be expected.27 These differences in 340 

accuracy have also been seen in CAD algorithms for chest x-ray interpretation,28 and different 341 

thresholds may be needed depending on the setting or target group.29 342 

It is important to recognize that the final submitted models were developed rapidly over a 343 

short timeframe, and there is potential for further optimization. This includes exploring more 344 

complex CNN architectures and/or ensembles, increasing the size of the training set and 345 

developing country-specific models. At the same time, the overarching goal of the challenge 346 

was to accelerate innovation and gain key insights into cough-based AI models for TB. In four 347 

months, the challenge 1) supported multiple new and independently validated cough sound 348 
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algorithms that could discriminate TB disease; 2) demonstrated that clinical data could augment 349 

performance; and 3) transparently shared the best performing algorithms and processing 350 

methods. 351 

To further facilitate ongoing model development, the dataset remains open-source and 352 

can be downloaded at the challenge website.30 Moreover, the website supports continuous 353 

benchmarking so that developers can submit their algorithms to receive independent feedback 354 

on model performance. Through this iterative process, the goal is to support the development of 355 

at least one cough-based algorithm that could be integrated into a simple mobile device and 356 

provide a point-of-care TB triage tool which could be deployed in community-based settings. 357 

Once developed, the continuous benchmarking mechanism and held-out data could potentially 358 

support its review by a regulatory body. 359 

The dataset and challenge had some limitations. The cough sounds collected were 360 

restricted to 0.5 second recordings around the peak; the use of whole cough sounds may further 361 

improve performance.31 As all participants were symptomatic, there are limitations in extending 362 

these models for community-wide screening, and additional data collection from screening 363 

cohorts is needed. The participants also all had cough; while solicited cough sounds may have 364 

value for those without cough, this needs to be further evaluated. Variation by country may 365 

reflect differences in co-morbidities and disease presentation, but also may be due to 366 

differences in phone model used and environmental noise. However, 0.5 second recordings 367 

limited background noise and algorithms should be developed to be compatible with multiple 368 

phone models and environments. The goal of the challenge was to classify microbiologically-369 

confirmed TB; if these algorithms are used as part of two-step screening to guide further testing, 370 

other outcomes could be considered such as a radiographic evidence of lung disease. The 371 

greater probability of TB classification in individuals with higher bacillary loads may be a useful 372 

marker of infectiousness and needs further study. By establishing the platform and approach, 373 

additional challenges can be created that update datasets and goals to support new algorithms. 374 
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In conclusion, the CODA TB Dream Challenge accelerated the development of cough-375 

sound models that can be integrated into mobile devices for a simple, point-of-care triage tool 376 

for TB. It also highlighted how open science and collaborative efforts can support rapid, 377 

inclusive, and impactful health innovations. Through such initiatives, we move closer to realizing 378 

the expansive potential of digital tools for TB and global health. 379 

 380 

Data Sharing 381 

The challenge training data and links to the code and write-ups for the model submissions are 382 

available at www.synapse.org/TBcough. Additionally, users can register to submit models for 383 

evaluation against the validation data in an ongoing manner. 384 
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Table 1. Model performance for cough-only model (Sub-challenge 1) 524 

Rank1 Team AUROC (95% 

CIs) 

Model type Sound features 

used 

1 Blue Team 0.743 (0.703, 

0.780) 

Convolutional 

neural network 

Spectrogram 

2 AI-Campus High 

School Team 

0.731 (0.691, 

0.771) 

Gradient Boosting 

Decision Tree 

Mel-Frequency 

Cepstral 

Coefficients 

(MFCC), 

chromagram 

2** Raghava_India_TB 0.730 (0.690, 

0.773) 

Convolutional 

neural network 

Mel spectrogram 

4 Yuanfang Guan 

Lab Team 

0.727 (0.685, 

0.768) 

Light gradient-

boosting machine 

Mel Frequency 

Cepstral 

Coefficients , first 

and second order 

time derivatives of 

MFCC, magnitude 

of pitch tracking, 

total number of 

coughs recorded 

5 Metformin-121 0.704 (0.660, 

0.746) 

MetforNet2 Z-score 

normalization of 

cough recordings 

6 Clare 0.699 (0.655, Artificial Neural Top 300 features 
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0.746) Network extracted via 

OpenSMILE 

identified via 

principal component 

analysis 

7 Sakb 0.695 (0.654, 

0.739) 

Artificial Neural 

Network 

Top 1,024 features 

extracted via 

OpenSMILE 

identified via 

principal component 

analysis 

7 chsxashoka 0.693 (0.651, 

0.736) 

Artificial Neural 

Network 

Mel Frequency 

Cepstral 

Coefficients, Mel 

spectrogram 

9 LCL 0.689 (0.644, 

0.733) 

Convolutional 

neural network, 

Light gradient-

boosting machine 

Zero-crossing rate, 

Mel frequency 

cepstral 

coefficients, 

chromagram, mel 

spectrogram, root 

mean square 

9 sasgarian 0.689 (0.647, 

0.732) 

Artificial Neural 

Network 

Top 1,024 features 

extracted via 

OpenSMILE 
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identified via 

principal component 

analysis 

11 yhwei 0.645 (0.601, 

0.687) 

Convolutional 

Neural Network 

Spectrogram 

1. Models with the same ranking were statistically indistinguishable 525 

2.  A combined architecture of five convolutional neural network blocks, followed by a 526 

bidirectional gated recurrent unit, an attention layer, and a fully connected layer. 527 
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Table 2. Model performance for cough sound and clinical data model (Sub-challenge 2) 528 

Rank Team pAUROC (95% CI) AUROC (95% CI) 

1 Metformin-121 0.003 (6.11e-06, 0.012) 0.832 (0.795, 0.863) 

2 Yuanfang Guan Lab Team 0.003 (0, 0.009) 0.821 (0.784, 0.853) 

3 AI-Campus High School 

Team 

0.001 (0, 0.008) 0.817 (0.778, 0.850) 

4 Blue Team 0.001 (0, 0.007) 0.818 (0.779, 0.853) 

5 LCL 0.001 (0, 0.006) 0.792 (0.750, 0.829) 

6 yhwei 0 (0, 0.003) 0.784 (0.741, 0.822) 

  529 
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Figure 1. Receiver Operating Characteristic Curves for CODA TB DREAM Challenge Final 530 

Models 531 

A. Sub-challenge 1 – Cough Sounds Only 532 

 533 

B. Sub-challenge 2 – Cough Sounds and Routine Demographic and Clinical Data 534 
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Figure 2. Comparison of Area under the Receiver Operating Characteristic Curve by 536 

Country and Subgroup in Sub-challenge 2. Box plots of median area under the curve 537 

(AUROC) with interquartile range (IQR) based on all submissions, and stratified by (A) country; 538 

(B) sex and (C) HIV status. For (A), median AUROC indicated at the top, and winning model 539 

AUROC shown in red. SA: South Africa; MG: Madagascar; IN: India; TZ: Tanzania; UG: 540 

Uganda; PH: Philippines; VN: Vietnam. 541 

 542 
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Figure 3. TB probability scores of the cough sound and clinical data models stratified by 545 

Xpert semi-quantitative status. Box plot of the median probability with interquartile range 546 

(IQR). Rank indicates the final challenge ranking. Higher probability scores indicate higher 547 

likelihood that the model would classify the individual as having TB. 548 

 549 
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