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Abstract Accurate estimation of gestational age (GA) is essential to plan appropriate antenatal 

care. Current GA estimation models rely on fetal biometry measurements, which are susceptible to 

ethnic and pathological variations in fetal growth, especially in the second and third trimesters of 

pregnancy. In this study, we challenge the current paradigm of estimating GA using fetal biometry, 

by using ultrasound (US) images and deep learning models which can automatically learn image 

features associated with GA. We developed deep learning models for GA estimation using US 

images taken at 18-32 weeks of pregnancy from 2207 participants of Garbh-Ini - a hospital-based 

prospective cohort of pregnant women in North India. Further, we designed a novel conformal 

prediction (CP) algorithm to detect and reject images when there is a data distribution shift, 

preventing erroneous predictions. Our best model, GArbh-Ini Ultrasound image-based Gestational 

age Estimator (GAUGE), which was trained on US images of the fetal head (9647 images from 

2207 participants), had a mean absolute error (MAE) of 2.8 days when evaluated on an internal test 

dataset (N = 204). GAUGE is 44% and 35% more accurate than the widely used Hadlock and 

INTERGROWTH- 21st biometry-based GA models, respectively on the internal test dataset. For an 

external test dataset (N = 311), collected retrospectively from The Ultrasound Lab, New Delhi, the 

same model achieved a MAE of 5.9 days. In addition, we show that GAUGE relies on the finer 

details in the image instead of the fetal biometry and that this leads to a similar performance across 

small for gestational age (SGA) and appropriate for gestational age (AGA) groups. The ability of 

GAUGE to consider image features beyond derived biometry suggests that GAUGE offers a better 

choice for populations with a high prevalence of fetal growth restriction. 

Keywords: gestational age, deep learning, artificial intelligence, prediction model, pregnancy 

dating, image analysis. 
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1 Introduction 

 

Gestational age (GA) estimation is the cornerstone of obstetric care, and its significance is widely 

known(1, 2). GA not only influences clinical decision-making for monitoring fetal growth and 

other pregnancy related complications, but also affects population-level estimates of pregnancy 

outcomes such as preterm birth, fetal growth restriction, and stillbirth(3, 4). Traditionally, GA is 

estimated using the first day of the last menstrual period (LMP). This method has several 

assumptions and is imprecise in a large proportion of women with recall bias, irregular menstrual 

periods, oral contraceptive use, and recent breastfeeding(5, 6). Currently preferred ways of 

estimating GA in clinical practice use ultrasound-based measurements of fetal biometry such as 

crown rump length (CRL), head circumference, biparietal diameter, occipitofrontal diameter, femur 

length, and abdominal circumference. In clinical practice, the recommended and accurate way of 

estimating GA uses CRL measured before14 weeks of gestation(7, 8). GA estimation in the second 

and third trimesters (> 14 weeks) relies on fetal biometry parameters other than CRL, which are 

susceptible to ethnic and pathological variations in fetal growth especially in this period(1, 2). In 

low middle income countries (LMICs) such as India, where nearly 30% of pregnant women seek 

antenatal care beyond their first trimester(9) and a high prevalence of small for gestational age fetus 

(35%), the current biometry-based methods are a mere approximation. In such a scenario, the only 

way of achieving accurate GA estimation, particularly in the latter part of pregnancy, are to rely on 

fetal anatomies that are spared in growth restriction conditions(10) or to have non-biometry based 

information in the ultrasound (US) images to determine GA.  

 

Deep learning approaches do not rely on derived biometry and can automatically learn image 

features associated with GA. Recent studies using deep learning on US images and video sweeps 
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for GA estimation have shown better results than models based on fetal biometry(11-15). Many of 

these studies use opensource or retrospective data and lack external validation. Another limitation 

of existing models, in fact all deep learning models, is that they predict on any given input image 

even when it is out-of-distribution thereby raising concerns on their trustworthiness.  

 

In this paper, we tried to overcome these limitations by using high quality data, collected 

prospectively. and managed using standard protocols, in Garbh-Ini cohort from North India and 

demonstrated the model’s performance by externally validating the model. Further, we introduce a 

novel conformal prediction framework that identifies out-of-distribution samples and prevents 

erroneous predictions. In summary, we present GArbh-Ini Ultrasound image-based Gestational age 

Estimator (GAUGE), a deep learning-based model for GA prediction. We showed GAUGE is more 

accurate than existing biometry-based methods, depends on the finer details in the image, and 

performs consistently in both SGA and AGA groups. 

 

2 Results 

 

Study population: Of the 8235 participants recruited into the GARBH–Ini cohort, data from 5594 

participants, enrolled at <14 weeks of gestation, was considered for the analysis. A total of 833 

participants with abortions (18), still birth (119), multiple pregnancy (44), loss to follow-up (652) 

were excluded. To ensure that the gold standard GA was accurate, we excluded women where the 

GA calculated using CRL and that using LMP disagreed by over a week (1541). Finally, US 

images of the head (n=9647), abdomen (n=9342), and femur (n=8285) from 2207 participants were 

included in the analysis (Fig. 1). The median age of the participants was 23 years (IQR 21, 26), 
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with 21% underweight (body mass index (BMI) < 18.5 kg/m2) and 14.1% overweight (25 kg/m2 <= 

BMI < 30 kg/m2) or obese (BMI >= 30 kg/m2). More than half (51%) of the participants were 

nulliparous. The median fetal gestational age at enrollment into the study was 10.1 weeks (IQR 8–

12.1 weeks). The detailed sociodemographic and clinical characteristics of the included participants 

are summarized in Table 1. The comparison of baseline characteristics show that the participants 

included in this study were representative of all participants of the parent cohort (Supplementary 

Table 1). 

 

Fetal head images were sufficient for accurate modelling 

Initially, we developed three separate CNN regression models using the US images of the head, 

femur, and abdomen, respectively to identify which anatomy is best to use in a model. The model 

trained using images of the head was most accurate with a MAE of 3.5 days, compared to those that 

used images of the femur (MAE:6.3 days) and abdomen (MAE:7.1 days) on the internal test dataset 

(Supplementary Table 2). We have also developed a multi-input model which takes all three 

images (head, femur, and abdomen) and predicts GA to evaluate if this combination of images can 

improve the prediction. Contrary to our expectations, there was no improvement in the prediction 

(MAE of 3.6 days). These results suggest that images of the fetal head harbor all the information 

required to predict GA and are sufficient to build accurate models. Based on these observations, we 

used only fetal head images for further modelling. 

 

Development and validation of GAUGE model  

In addition to the baseline regression model based on head images, we designed a novel multi-task 
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model (GAUGE) that segments the head along with GA estimation (Fig. 2a). The MAE varied by 

less than a day during bootstrapping (30 runs) demonstrating the good convergence of our model. 

The samples which were rejected by our CP framework (Fig. 2b) have higher error rates in both 

internal and external validation datasets substantiating its use while predicting on new samples 

(Supplementary Fig. 1).  The CP framework identified images from 7.7% participants from the 

internal test and 62% from the external test set as out-of-distribution samples and rejected them 

before the prediction (Supplementary Fig. 2, Supplementary Table 3). The GAUGE model had an 

overall MAE of 2.8 days on the internal test dataset and was chosen as the final model for GA 

estimation. In the 18-20 (329 images), 20-30 (30 images) and 30+ week (475 images) windows, the 

MAE of the GAUGE model was 2.3, 5.6, and 3.0 days respectively. When compared with existing 

biometry-based models, the GAUGE model was 44% (MAE in days 5.11 vs 2.8) and 35% (MAE in 

days 4.41 vs 2.8) more accurate than the widely used Hadlock(16) and Intergrowth-21st(2) GA 

models respectively on our internal test dataset (Fig. 3). On the external test dataset, the GAUGE 

model achieved an overall MAE of 5.9 days and had an MAE of 4.1, 8.4, and 4.9 days in 18-20, 

20-30 and 30+ week windows respectively (Table 2). 

 

GAUGE model relies on the finer details in the image. Heat maps were created using a 

regression activation map technique (Supplementary Fig. 3). These showed that the finer details 

within the skull were more predictive of GA when compared to the outline of the skull (from which 

fetal biometry is calculated). To further investigate this finding, we used image blurring and 

resizing to compromise the finer details in the image while maintaining the outline of the skull. 

When tested on the images that were blurred using Gaussian filters of sizes 3x3, 5x5, 7x7 and 9x9 

pixels, the MAE of the GAUGE model increased to 5.62, 7.96, 9.16, and 9.48 days respectively 
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(Fig. 4, Supplementary Fig. 3). A similar increasing trend in MAE was found (4.81, 7.21 and 12.26 

days) when the model was tested on images where the spatial resolution was reduced by 75%, 50% 

and 25% respectively (Fig. 4, Supplementary Fig. 4). The models which were trained end-to-end on 

the resized images also showed increased MAE when compared to the GAUGE model (5.9 days). 

The above results show that fine intensity patterns play an important role in model prediction. This 

observation is particularly relevant to GA prediction in fetal growth restriction, where existing 

biometric-based models tend to have high error rates. To investigate this, the errors of the GAUGE, 

Hadlock and INTERGROWTH-21st models were compared in small for gestational age (SGA) and 

appropriate for gestational age (AGA) groups. We found that the GAUGE model performed 

consistently in SGA and AGA groups whereas both the Hadlock and INTERGROWTH-21st 

models underestimated the gestational age in the small for gestational age as compared to 

appropriate for gestation babies (Fig. 5, Supplementary Table 4). 

3 Discussion 

 

In this study we developed and externally validated the GAUGE model which predicts GA from 

the US images of the fetal head in the second and third trimesters of pregnancy. The results of 

GAUGE model (2.8 and 5.9 days in internal and external validation) are comparable to the two 

recently published models by Dan et al. (MAE of 5 days) and Lee et al. (MAE 3 days in second 

trimester and 4.3 days in third trimester). While Dan et al. used a large hospital based retrospective 

data, Lee et al. used data from the prospective cohort and performed external validation like our 

study.  We challenged the current clinical paradigm of estimating GA using fetal biometry and 

demonstrated that GAUGE performs consistently in SGA and AGA populations unlike biometry-

based models.  Existing clinical GA estimation models exclusively use fetal growth measurements 
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and are error-prone in populations with a high prevalence of abnormal fetal growth patterns(2, 10, 

12).   Our model convincingly addresses the limitations of existing clinical GA estimation models 

and is appropriate for use in such populations. 

 

The architecture of the GAUGE model is designed to focus on the features relevant to the fetal 

head for GA estimation (Fig. 2a). Although segmentation of the fetal head is separate from the 

prediction of gestational age and is not essential, we found that this strategy enabled us to achieve 

better accuracy and generalization than the simple image regression model. (Supplementary Table 

5). Additionally, our model provides a visual representation of the region of the fetal head which 

would inspire more confidence on the model amongst users although further research is critical. 

Despite performing two tasks, GAUGE model has similar computational requirements (26.1 

million parameters) when compared to a simple image regression model (21.3 million parameters). 

 

One of the concerns recognized in using deep learning models is the reliability of prediction on new 

samples (for example: samples from diverse geographical regions, acquired using different 

machines, and with varied resolutions and quality). Inspired by recent literature(17), we have 

introduced a novel image-based conformal prediction framework to prevent GAUGE from 

predicting on data where there is a distribution shift relative to the data used to train the model, 

thereby preventing erroneous predictions. Our intention here is to detect the out-of-distribution data 

and reject it. Our approach is different from the domain adaptation techniques, where the goal is to 

adapt the model by using the out-of-distribution data.  We hypothesize that the ability of our model 

to say “I don’t know” increases trust in the model predictions and the same can be evaluated in 

future studies.  
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One of the limitations of our work is that there were fewer samples in our training and test datasets 

between 20–30 weeks of gestation compared to 18-20 or 30 + weeks owing to the ultrasound scan 

schedule for the GARBH-Ini cohort which aligned with the antenatal standard of care available to 

the participants. This is also reflected in the wider confidence interval of MAE during this window. 

Further, we found that half of the samples from the external test dataset were rejected by the 

conformal prediction step.  We believe that this is due to the lower spatial resolution images in the 

external test dataset when compared to training images (240 x 320 pixels vs 1920 x1080 pixels). 

Other reasons for rejection by the conformal prediction algorithm could be because of participant 

characteristics, and different US machines. 

 

We have developed deep learning models for GA estimation that are more accurate than those used 

in current routine clinical practice. This may be due to our state-of-the-art deep learning models and 

training techniques, a large dataset from a prospective cohort, and an accurate gold standard. As we 

are using the images directly as input to the machine learning model rather than using the measured 

values of the fetal biometry, an additional potential advantage is that GAUGE reduces time, effort, 

and the inter-operator variability which may occur during the manual measurement of fetal 

biometry in US images. From the perspective of translating this model to clinical practice, our next 

steps are to evaluate the GAUGE model in diverse settings for its accuracy, to characterize the 

image rejection and to package the model within a software tool that seamlessly integrates into the 

sonologists’ workflow. Overall, we believe that our GAUGE model has the potential to improve 

antenatal care and subsequently perinatal health outcomes particularly in LIMC settings. 
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4 Methods 

 

GARBH–Ini Cohort description  

This study is nested within the ongoing GARBH–Ini (interdisciplinary Group for Advanced 

Research on BirtH outcomes- DBT India Initiative) cohort  at Gurugram Civil Hospital (GCH), 

Haryana, India, initiated in May 2015.  Pregnant women are enrolled in this  ongoing prospective 

observational cohort before 20 weeks of gestation based on a dating US scan. . The participants are 

scheduled for four follow-up antenatal visits for an US scan during weeks 11–14, 18–20, 30–32 and 

35-37. Socio-demographic, environmental and clinical information is collected at the time of 

enrollment and during follow- up visits by trained medical professionals using questionnaires that 

follow standard protocols(18).  

Images are acquired by a study radiologist using a GE Voluson E8 Expert (General Electric 

Healthcare, Chicago, Illinois) and GE Voluson E8 ultrasound machine. For each participant, the 

radiologist captures images required for the fetal biometry in triplicates according to standard 

protocols (harmonized with Alliance for Maternal and Newborn Health Improvement 

protocols(19)). Twenty percent of randomly selected de-identified images are reviewed by a team 

of experienced radiologists every month for quality monitoring using a scoring system (18). The 

detailed methodology on the image acquisition, management, quality assessment protocols are 

published elsewhere. All the images are de-identified and stored in a server located at the 

Translational Health Science and Technology Institute, Faridabad. 

Further details of the methodology are published previously(18). 

 

Ethics and Informed Consent 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.13.24305466doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24305466


11 

 

Our study was approved by the ethics committee of the Gurugram civil hospital, Gurugram and 

Translational Health Science and Technology Institute, Faridabad and adhered to the tenets of the 

Declaration of Helsinki as part of the overall Garbhini cohort objectives. Written informed consent 

was obtained from the participants after the nature of the study was explained. If an eligible woman 

was illiterate, a thumb impression was taken from her after ensuring that she had understood and 

had also explicitly stated her consent verbally; a literate impartial witness signed the consent form. 

 

Image acquisition and dataset preparation  

The US images of the head, abdomen and femur collected during the second and third trimesters 

were extracted from the image repository using OCR-based software developed in-house (detailed 

in supplementary methods). The images segregated by the OCR software had text annotations on 

them which are not suitable for building machine learning-based models as they could introduce 

model bias. We cropped the images to remove the biometry values on the bottom right of the 

images using a deep learning-based cropping model. Annotations on the region of interest were 

removed by image inpainting. These preprocessing steps are explained in detail in supplementary 

methods section.  

 

Ground truth calculation 

The GA derived from Hadlock formula using CRL at < 14 weeks of pregnancy was  considered as 

the GA gold standard and was available for all training and test images. For image segmentation 

task, the images of fetal head were manually annotated using Computer Vision Annotation Tool to 

generate the ground truth.  
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GA estimation models  

Estimating GA from a US image is treated as an image regression task and to model it, we 

modified the ResNet 34 architecture(20) by replacing the classification layer with a regression 

layer. We trained three separate models with the above-mentioned architecture on second and third 

trimester US images of the head, abdomen, and femur images. 

GAUGE  

For developing the GAUGE model we selected only those GARBH-Ini cohort participants who 

were enrolled at < 14 weeks and for whom CRL based dating using Hadlock formula was available. 

GAUGE has a UNET++ segmentation architecture(21) at its core. To predict GA using the same 

architecture we have modified it by adding a separate regression head which utilizes the features of 

the UNET++ encoder. The encoder and decoder of the model have a ResNet34 backbone and use 

an AdamW optimizer to optimize a combination of Binary Cross Entropy and Mean Squared Error 

Loss for the task of image segmentation and regression respectively. 

 

Model training procedure  

Ten percent of the total dataset was kept aside for final internal testing of the models. The 

remaining data was split randomly 30 times (bootstrapping) into training (90%) and test (10%) sets. 

The dataset has three images per participant. We used all three images while training and internal 

testing. While randomly splitting we used participant id and ensured that all the images of the same 

participant were present in the either training set or the test set. The external validation dataset has 

only one image per participant. The images were normalized using the mean and standard deviation 

of the entire dataset and histogram equalization, and contrast enhancement augmentations were 

randomly applied. Each model was trained for 100 epochs with a batch size of 128 and model MAE 
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was calculated on the test set. The mean and standard deviation of RMSE on the test set were 

reported. After all the 30 runs were complete, the model having the best RMSE on the test set was 

evaluated on the held-out internal and external test sets. 

Computational requirements  

All the models were trained in Python 3.8.12 using the Fastai 2.3.0, Pytorch Lighting, and Pytorch 

3.9.12 deep learning libraries. The models were trained on a Linux based server having a 72 core 

Intel Xeon processor, 256 GB of RAM and used a single Nvidia RTX 2080 Ti GPU with 11GB 

VRAM. 

Conformal prediction  

For conformal prediction, first, feature vectors for all the training examples were extracted by 

passing them through the encoder. The vectors obtained were averaged to calculate a reference 

feature vector. The Mahalanobis distance was calculated between the reference feature vector and 

the feature vector of every sample in the training dataset. All these distances were transformed 

using 1/X2 to achieve a normal distribution and were referred as transformed Mahalanobis distance 

(Supplementary Fig. 5). During inference, any sample that had a transformed Mahalanobis distance 

(calculated between the reference feature vector and the sample feature vector) less than mean - 

1.96(SD) was labelled an out of distribution sample and was not used for prediction. 

 

Statistical analysis  

All continuous variables were summarized using median and interquartile range and categorical 

variables were summarized using percentage. Mean absolute error (MAE) and root mean squared 

error (RMSE) were calculated using model predictions and actual values. Bootstrapping (100 runs) 

was used to calculate confidence interval of MAE. Model errors were visualized by violin plots and 
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Kolmogorov–Smirnov test was used to compare error distributions between the groups. All 

statistical analyses were performed using R programming language version 4.0.4. 

 

Word count: 2705 
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Table 1: Clinical and sociodemographic characteristics of participants included in the analysis (N = 

2207) 

  

 

Variables 

 

 

Median (IQR) or N (%) 

Age 23.0 (21.0, 26.0) 

Body Mass Index (BMI) 
• Underweight 
• Normal 
• Overweight 
• Obese 

 
465 (21%) 
1,429 (65%) 
255 (12%) 
45 (2.1%) 

Gestational age at enrolment 10.1 (8.0, 12.1) 

Parity: 
• Nulliparous 
• Parous 

 
1,122 (51%) 
1,072 (49%) 

Appropriate for gestational age (AGA) 
Small for gestational age (SGA) 
Large for gestational age (LGA) 

1,173 (62%) 
665 (35%) 
45 (2.4%) 

Preterm Birth 
Term Birth 

275 (13%) 
1,820 (87%) 

Occupation: 
• Unemployed 
• Employed 

 
2,014 (92%) 
179 (8%) 

Education: 
• Illiterate 
• Literate 

 
406 (19%) 
1,788 (81%) 

  

 

 

 

 

 

 

 

 

 

Table 2: Accuracy of the GAUGE model on the internal and external test datasets reported as 

mean absolute error and 95% confidence interval in days.  
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 MAE (95% CI) 

in days 

MAE (95% CI) 

in days from 18 - 

20 weeks 

MAE (95% CI) in 

days between 20 - 

30 weeks 

MAE (95% CI) 

in days at > 30 

weeks 

Internal 

test 

 

2.87 (2.66 - 3.01) 2.38 (2.17 - 2.66) 5.60 (4.76 - 6.51) 3.01 (2.66 - 3.29) 

 

External 

test 

 

5.95 (5.04 - 6.86) 4.13 (3.43 - 4.76) 8.40 (6.44 - 10.36) 4.97 (1.82 - 8.12) 
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Fig 1: Study Flow Flowchart showing the number of participants enrolled in GARBH-Ini cohort 

and images considered for analyses. *POG: Period of gestation
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Fig 2: Schematic diagram of GAUGE a shows architecture of GAUGE. The encoder extract 

features from the input images which are used by decoder to segment the head region and by 

regression head for GA prediction. The losses of both tasks were combined to calculate a total loss 

which was used to optimize the model. b Working of the conformal prediction framework during 

inference. The reference feature vector was calculated by averaging the feature vectors of all the 
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samples in the training dataset (part of the image shown in grey background). During inference, the 

feature vector for each image is compared to the reference feature vector and Mahalanobis Distance 

(MD) between them is calculated. Lastly accept/reject decision is made by comparing MD of the 

new image to distribution of MD’s calculated on training data. 

 

 

 

Fig. 3: Comparison of error distributions of GAUGE, Hadlock, and INTERGROWTH-21st 

models (N = 204). Violin and box plots showing the distribution of error in days. The error of 

GAUGE is centered around zero and a smaller range when compared to the biometry-based 

methods of Hadlock and INTERGROWTH-21st.  
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Fig. 4: Experiments demonstrating that the model is dependent on the finer details in the 

image. a shows the mean absolute error (MAE) in days and 95% confidence interval when the 

input images are increasingly blurred using a Gaussian filter of different sizes compared to the 

baseline (unaltered input image). b shows the mean absolute error (MAE) in days and 95% 

confidence interval when the input images are reduced in size in different proportions compared to 

baseline (unaltered input image). 
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Fig. 5: Comparison of error distributions between small for gestational age (SGA) and 

appropriate for gestational age (AGA) groups (N = 204). GAUGE shows similar performance 

for both SGA and AGA groups (p = 0.1), while both Hadlock (p < 0.001) and INTERGROWTH-

21st (p <0.001) models have underestimated GA in the SGA group when compared to the AGA 

group. A Kolmogorov Smirnov test was used to compare the distributions. 
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