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Abstract 

Purpose: We present an observational study involving free-breathing short-scan-time dynamic MRI 

(dMRI) method that can be routinely used for computing dynamic lung volumes accurately. 

Materials and Methods: (i) Full-resolution free-breathing sagittally-acquired 2D dMRI scans are 

gathered from 45 normal children via True-FISP sequence. Sparse dMRI (s-dMRI) scans are simulated 

from these datasets by subsampling in the spatio-temporal domains via a limited number NSS of selected 

sagittal locations and TSS of time instances (respectively, NFS and TFS for full scan). (ii) A 4D image is 

constructed from both full and sparse scans. Lungs are segmented from 4D image, and their volumes 

from full (VF) and sparse dMRI (VS) scans are computed. (iii) A regression model is fit for VF as a 

function of VS on a training set, and the full-resolution volume VP predicted by the model is estimated 

from VS. (iv) The deviation of VP from VF is analyzed on both synthesized sparse dMRI scans from a 

separate full-resolution test set and actual s-dMRI scans prospectively acquired from 10 normal 

children. 

Results: With NSS=5 (per lung) and TSS=40, the deviation of VP from VF was ~2% with a total scan-

time of ~9 min (45-60 min for the full scan with NFS=15-22 (per lung) and TFS=80). These metrics 

become 0.4%, and <20 min for s-dMRI with NSS=15-22 (per lung) and TSS=40.  

Conclusion: s-dMRI is a practical approach for computing dynamic lung volumes that can be used 

routinely with no radiation concern, especially on patients who cannot tolerate long scan times. 

(Word count: 249) 

Keywords: Lung volume, pulmonary function, dynamic magnetic resonance imaging (dMRI), thoracic 

insufficiency syndrome (TIS), spatio-temporal sampling.  
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1.  Introduction 

Assessment of dynamic volumes of the two lungs separately during tidal breathing is useful for 

assessment of many pediatric and adult thoracic disorders [1] such as scoliosis, thoracic insufficiency 

syndrome (TIS) [2, 3], and various pulmonary disorders [4], and for determining the effects of 

therapeutic interventions [5]. Several imaging modalities have been used for lung volume estimation, 

including chest radiography (CXR), thoracic computed tomography (CT), and thoracic MRI.  

Lung volumes derived from CXR are based on the volumes contained within the thoracic contours [6-

10]. The major limitation of this approach is its compromised accuracy stemming from estimating a 3D 

phenomenon via 2D projection spaces and the inability to properly separate left and right lungs. These 

issues become compounded for patients with deformed thorax and dynamic imaging.  

Lung volumes derived from thoracic CT scans include tissue volumes and gas volumes [6] within the 

segmented region. Comparable correlations have been observed between chest CT as compared with 

plethysmographic total lung capacity [11-14]. However, patients would have to be able to perform an 

adequate breath-hold, which can be challenging for children. Alternatively, they would have to undergo 

image acquisition during general anesthesia to achieve breath holding, which is particularly problematic 

in the pediatric setting.  

4D dynamic magnetic resonance imaging (dMRI) seems to be the best choice currently [15] because of 

its soft tissue contrast, lack of ionizing radiation, and greater flexibility in the choice of imaging plane 

for acquisition. However, its major limitation is that it requires a relatively long acquisition time [5, 15, 

16], as it can take up to 45 minutes to complete a dMRI study. Therefore, approaches to acquire the 

images more rapidly without sacrificing the accuracy of volumetric parameters estimation are highly 

desirable. 

We present a novel approach, called sparse dMRI, or s-dMRI, to significantly speed up a previously 

established dMRI scanning method for studying pediatric TIS [5, 15-22]. A very preliminary version 

of this work was presented in the 2021 SPIE Medical Imaging conference and its proceedings [23]. The 

present paper is substantially different with the following enhancements. (i) A detailed description of 
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the methodology. (ii) Several strategies for both spatial and temporal sampling compared to just a basic 

method for spatial sampling. (iii) Extensive evaluation on retrospective and prospectively acquired data 

sets compared to demonstration on just a small retrospective data set. (iv) A comparative assessment 

with several related techniques.  

2.  Methods 

2.1 dMRI scan protocol, subjects, image data 

Full resolution scan: For each sagittal slice location through the chest, image slices are acquired rapidly 

while the subject breaths freely, using the following imaging parameters: 3T-MRI scanner (Verio, 

Siemens, Erlangen, Germany), True-FISP sequence, TR=3.82 ms, TE=1.91 ms, voxel size ~1×1×6 mm3, 

320×320 matrix, bandwidth 258 Hz, and flip angle 76 degrees, FOV: 15mm above apexes of lungs to 

base of kidneys. For each sagittal location, 80 slices are obtained over 8-14 breathing cycles at ~480 

ms/slice. Around 35 sagittal locations across the chest are imaged resulting in 2800-3200 2D slices. 

Total scan time is typically ~45 min and up to an hour for larger subjects. From this set of slices, one 

representative 4D image comprising one full breathing cycle is constructed post hoc [15, 16] from which 

volumetric parameters are derived to demonstrate the utility of dMRI in studying TIS [5, 20-22]. The 

full resolution scan data were acquired from 45 normal pediatric subjects, including 26 females and 19 

males (average age 9.5 years, range 6.2-13.7). These 45 subjects overlap with 20 subjects in the 

preliminary paper [23]. 

Sparse scan: In the sparse protocol, 10 subjects (4 males and 6 females with average age 16.3 years, 

range 13.1-18.8) were scanned using the above sequence, with 5-7 sagittal slices uniformly located 

across each of right lung and left lung and 40 temporal slices for each sagittal location. These 10 subjects 

were also scanned at full resolution for comparison. 

All datasets were acquired under an ongoing research protocol approved by the Institutional Review 

Board at the Children’s Hospital of Philadelphia (CHOP) and University of Pennsylvania, along with 

Health Insurance Portability and Accountability Act authorization. 

2.2 Overview of the framework 
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The s-dMRI approach is depicted in Figure 1. In the modeling stage, we utilize 20 training dMRI 

datasets from full scans, simulate spatio-temporal subsampling to create sparse scans from the full 

scans, compute various dynamic volumes, denoted VF from full scan and VS from sparse scan, and 

obtain a regression model to represent the relationship between VF and VS. In the prediction stage, we 

first compute VS from an independent cohort of sparse scan from 25 subjects, and then estimate the 

predicted full volume VP by using the prediction model. For details on the method, please see 

supplementary material.  

2.3 Spatial subsampling 

There are three main parameters that determine spatial subsampling: (i) Number of slices selected NSS. 

The number of sagittal locations imaged in full scan, denoted NFS, varies from 15 to 22 slices between 

lateral and medial edges of each lung depending on body size. The idea of spatial subsampling is to 

select NSS < NFS locations between lateral and medial edges of each lung. (ii) Method of selecting 

locations MSL. We compared two strategies for selecting locations. In UFM strategy, NSS locations 

uniformly situated between the edges of the lung are selected for imaging. In MAX method, the sagittal 

location showing maximum lung cross-sectional area is first selected for each lung and subsequently 

the remaining locations are determined to be uniformly situated on the two sides of this location (Figure 

2). Since UFM has no requirement of finding the location with the largest area, implementation of the 

method for actual clinical scanning is simple, practical, and straightforward. (iii) Method of 

interpolation Int. A straightforward way of determining lung volume VS from the sparse scan is via 

nearest neighbor (NN) interpolation. For a better approximation of the full scan volume VF, we 

compared three methods for interpolating the area curve to estimate VS – linear spline (LIN), quadratic 

spline (QUA), and cubic spline (CUB) (Figure 3).  

To build the regression model, we utilized the full-scan dMRI data and created sparse scans from them 

by selecting the sagittal locations. We designate the predicted lung volume derived from VS with the 

linear model as VP and use relative root mean squared (rRMS) error to evaluate the accuracy of the 

predictive model:  
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where N represents the number of samples used for the regression process.  

Figure 4 illustrates the process of regression using UFM method with different NSS and interpolation 

methods. Notably, refined interpolation methods shown in Row 2 achieve better regression accuracy 

than NN shown in Row 1. Clearly, accuracy improves as NSS increases.  

2.4 Temporal subsampling 

We denote the number of temporal slices acquired for each sagittal location in full scan by TFS (= 80 in 

in our case). We empirically evaluated the effect of choosing TSS < TFS time samples for the sparse scan 

on the changing lung volumes. In the full scan data with TFS time samples, we selected only the first TSS 

samples, perform 4D construction using these temporally “subsampled” data for different choices of 

TSS, and determined the volume deviation from the full scan as a function of the degree of temporal 

subsampling. 

3. Results 

3.1 Optimal parameter setting 

The key independent measures we assess are right and left lung volumes at any time point such as end 

inspiration and end expiration, denoted, respectively, by RLVei, LLVei, RLVee, and LLVee. There are 

4 parameters in the s-dMRI approach: NSS, slice selection methods (UFM or MAX), interpolation 

methods (NN, LIN, QUA, or CUB), and TSS. Of these, NSS and TSS behave similarly – the larger the 

value, the more accurate will be the estimated volumes. They are also the arbiters of the time savings 

compared to the full scan. Slice selection methods and interpolation methods determine the accuracy of 

approximation achieved for fixed values of NSS and TSS. Therefore, for different possible choices of NSS 

and TSS, we systematically study the tradeoff between accuracy and efficiency to choose the best setting 

for the parameters. 
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Figure S1 illustrates the variation of rRMS in spatial subsampling as a function of NSS with different 

slice selection methods and interpolation methods on the 20 data sets used for modeling for the four 

volumes RLVei, LLVei, RLVee, and LLVee. Since NN is non-competitive, it is excluded from 

consideration. Notably, for NSS > 5, rRMS hovers around or falls below 2%, with LIN having a slight 

advantage over other interpolation methods. We may also note that there is not much difference in 

rRMS errors between slice selection methods MAX and UFM for NSS > 5. Since UFM is simpler to 

actually implement in performing sparse scans, we recommend UFM as the method of slice selection. 

Since NSS = 5 already achieves very low error, the changes we observe in volumes from pre- to post-

operative condition in TIS treatment are typically greater than 20% [7], and increasing NSS beyond 5 

lowers error insignificantly and gradually, for spatial subsampling we recommend the choice of NSS = 

5, MSL = UFM, and Int = LIN, at least for the TIS application. 

Figure S2 illustrates the variation in rRMS in temporal subsampling as a function of TSS on the 20 data 

sets used for modeling. Table 1 summarizes the actual rRMS values. Recall that for each value of TSS, 

full spatial volume is considered without any spatial subsampling to study the effect of temporal sub-

sampling on its own. Notably, increasing TSS beyond 40 does not improve accuracy substantially and 

lowering the value below 40 is not advisable either. As such, we recommend TSS = 40 as the optimal 

setting.  

In the actual analysis of the accuracy of the whole s-dMRI process presented below, we will use the 

optimal settings of MSL = UFM, Int = LIN, and TSS = 40.  

3.2 Assessing accuracy of the s-dMRI process 

Using the optimal settings obtained as above, we determine the actual volume prediction accuracy in 

terms of rRMS error from retrospectively obtained data subsampled from full dMRI scans as well as 

prospectively acquired actual sparse scans. 

Retrospective analysis 

Figure 5 summarizes s-dMRI predictive performance in terms of rRMS error on the 25 test subjects for 

the 4 volume measures for the parameter setting of UFM, LIN, and TSS = 40 for different values of NSS. 
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We also report the mean and standard deviations across the test subjects in Table S1. For this analysis, 

the sparse scans were obtained via simulation from the full scans. The mean scan time per lung is also 

shown in Figure 5 corresponding to different values of NSS as a dashed curve. The upper right corner of 

the curve represents the actual scan time per lung that was measured for TSS = 40 without leaving out 

sagittal locations and corresponding to roughly NSS = 15. In other words, the scan corresponding to that 

point involved temporal but not spatial sub-sampling. For lower values of NSS, the scan time shown is 

an estimation based on the number of slices imaged per lung. Notably, only with temporal sub-sampling 

(TSS = 40) and without any spatial sub-sampling, the total scan time can be reduced from ~45 minutes 

to ~20 minutes with an rRMS error of under 0.4% for the 4 key volume parameters compared to the full 

scan! 

Prospective analysis 

For the prospectively acquired sparse scans (NSS = 5-7, TSS = 40), the rRMS errors in the different volume 

measures are as listed in Table 2. The reference measures used in this evaluation were the volumes 

obtained from the full-resolution scans of the same subjects. The mean scan time for the sparse scans 

was 4.5 min for each lung and the total scan time was ~9 min. The error and the scan time are 

comparable to those from retrospective simulated scans for NSS = 5 and TSS = 40.  

In Figure 6, we display the 2D spatial and temporal slices corresponding to the right lung selected from 

the 4D image constructed from a sparse scan of a normal female subject. 

4. Discussion 

In this paper, we presented a novel approach using limited-slice, short scan-time, free-breathing, 

thoracic dynamic MRI to accurately estimate key lung dynamic volumetric parameters. Taking a well-

established full resolution scan that takes 45 min – 1 hour per scan as reference, we demonstrated a root 

mean squared error in estimating volumes of less than 2% in pediatric subjects with a total scan time of 

~9 min by utilizing only 5 sagittal MRI slices through each lung and for each sagittal slice location 

acquiring 40 slices as a time sequence under free breathing conditions covering roughly 5-10 pediatric 

respiratory cycles. The method exploits the smoothness of the lung area in sagittal slices as a function 
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of the slice location (Figures 2, 3) for each lung to achieve reduced scan time. By scanning at full spatial 

resolution (i.e., NSS =NFS) but reducing temporal samples by half (i.e., TSS = 0.5 TFS), we showed that 

the above error drops to ~0.4% with a total scan time of ~20 min. As such, the proposed s-dMRI 

approach constitutes a practical approach to measure dynamic volumes and their changes separately for 

each lung in any application that needs to study the dynamic function of the two lungs separately under 

natural free-breathing conditions. The approach can lead to increased patient comfort and convenience 

for practical real-world clinical applications, as we have observed in the TIS application. This may also 

potentially lead to improved image quality and usability due to a reduction of patient motion, discomfort, 

and abnormal breathing patterns 

In the TIS application, the pre- to post-operative changes in the key volume parameters and tidal 

volumes are > 20% and > 40%, respectively [5], as such the above errors are unlikely to interfere with 

our ability to measure operative treatment response. Even the more accurate version with NSS = NFS and 

TSS = 40 is highly practical with a 20-minute scan time. 

Dynamic MRI methods in the literature that demonstrated full 4D imaging capability under free-

breathing conditions with demonstrated scan time practicality and accuracy metrics for measuring lung 

dynamic volumes in pediatric subjects are few. We summarize in Table 3 methods from the literature 

that are similar to the goals of this paper. Most existing techniques require breath maneuvering such as 

breath holding or separate navigator scanning or focus on analyzing the motion of the diaphragm only, 

often at a few selected points or slice locations, or for achieving adequate spatio-temporal resolution 

employ smaller field of view that does not cover the abdominal organs. Their conversion to estimate 

volumes routinely is not obvious or face additional challenges. In other words, a practical method for 

pediatric use without radiation concerns that can perform scanning in 10-20 minutes for estimating free-

breathing dynamic volumes and tidal volumes separately for each lung does not seem to exist at present. 

Key competing methods are [24], which reports an ultra-short echo-time MRI, and XD-GRASP [25] 

and iMoCo [26] methods that provide adequate spatiotemporal resolution with about 5-10 minutes of 

acquisition time. However, the adequacy of image quality and coverage of the field of view in these 

methods for auto-segmentation of the lungs and key abdominal organs for pediatric applications 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.12.24306855doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.12.24306855


 

remains to be proven. In our application, and hence in the full scan and sparse scan, the field of view 

extends to the inferior aspect of the kidneys since we are interested in studying how respiratory 

restrictions affect the mobility of key abdominal organs like the liver, kidneys, and spleen and vice 

versa, as already demonstrated [15, 16, 21, 22, 27, 28]. As such image quality and coverage should 

afford accurate auto-segmentation of not just the lungs but also these key organs. Studying the utility 

of such recent new imaging sequences for our purposes to reduce the acquisition time for each slice in 

our method but then use our current paradigm of weaving the selected slices together ingeniously 

through the OFx strategy [16] to form a 4D image will be one of our future goals. 

The main limitation of our study is the somewhat small sample size and the lack of demonstration of 

the s-dMRI approach in adults for broader applicability. Fortunately, since the respiratory rate is much 

lower in adults, we may be able to reduce TSS further to reduce acquisition time. However, it remains to 

be investigated if we may need to also increase NSS beyond 5, since the body width is greater in adults 

than in children, which may prolong the scan time.  

In conclusion, s-dMRI offers a practical approach for computing dynamic volumes of individual lungs 

accurately that can be used routinely with no radiation concern, especially on patients who cannot 

tolerate long scan times. The s-dMRI sequence employed in this paper is a general sequence and can 

be easily implemented on any modern MRI scanner. 
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Table 1: rRMS errors in volume estimation for different choices of the number of temporal samples 
TSS and no spatial subsampling. 

TSS 20 30 40 50 60 70 
LLVee 0.020 0.017 0.015 0.011 0.009 0.008 
RLVee 0.016 0.014 0.012 0.007 0.005 0.004 
LLVei 0.028 0.020 0.013 0.014 0.011 0.008 
RLVei 0.024 0.016 0.011 0.015 0.011 0.008 

rRMS: relative Root Mean Squared error. 
LLVee: Left Lung Volume at End-Expiration. 
RLVee: Right Lung Volume at End-Expiration. 
LLVei: Left Lung Volume at End-Inspiration. 
RLVei: Right Lung Volume at End-Inspiration. 
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Table 2. rRMS errors in volume measures in 
our prospective study involving sparse scans. 
LLVee RLVee LLVei RLVei 
0.0528 0.0505 0.0464 0.0512 

rRMS: relative Root Mean Squared error. 
LLVee: Left Lung Volume at End-Expiration. 
RLVee: Right Lung Volume at End-Expiration. 
LLVei: Left Lung Volume at End-Inspiration. 
RLVei: Right Lung Volume at End-Inspiration. 
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Table 3. Summary of related papers from literature. NA = not available. 

 Modality Dimension Breathing Scan time Population 
# of 

subjects 
tested 

Voxel size 
(mm3) 

Qanadli et 
al., 1999 
[29] 

MRI 2D Breath 
Hold 14s per slice Adults (24-

32) 15 4.6x4.6 (mm2) 

Coxson et 
al., 2008 
[30] 

CT 3D Breath 
Hold Not available Adults 57 1.25x1.25x10 

Fuld et al., 
2012 [31] CT 3D Breath 

hold < 10 s Adults (20-
64) 37 0.61x0.61x0.5 

Jahani et al., 
2015 [32] CT 4D Breath 

hold ~ 1 min Adults 6 0.5x0.5x0.75 

Higano et 
al., 2017 
[24] 

3D radial  
UTE 
MRI 

3D Free 
breathing 9-16 min Adults & 

neonates 22 0.78x0.78x0.78 

Martini et 
al., 2019 
[33] 

dMRI 2D Free 
breathing 2 resp cycles Adults 39 NA 

Safavi et al., 
2020 [34] MRI 2D Breath 

hold 10 s per slice Adults (>18 
years) 31 NAxNAx6 

Sato et al., 
2022 [35] dMRI 2D Free 

breathing 121 ms per image Not 
available 31 2x2x13.5 

XD-GRASP 
[25] MRI 3D Free 

breathing 
~95s/partition x 
80 partitions Adult 5 1.5x1.5x6 

iMoCo [26] MRI 3D Free 
breathing 5min30s Adult 

Pediatric 11 1.1x1.1x1.1 
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Figure 1. The framework of the proposed s-dMRI method to estimate lung volumetric parameters. In 

the modeling stage, a linear regression model is created between volume VS from sparse scans and 

volume VF from full scans using training data. In the prediction stage, VF is predicted (denoted by VP) 

from VS using the model and separate sparse scan data obtained either through simulation or via actual 

subject scans. 

 

 

Figure 2. Illustration of the area curves for the two slice selection methods MSL = MAX and MSL = 

UFM. Sagittal locations are marked along the x-axis, starting from the right side of the patient with the 

first sagittal location slightly outside the thorax and ending with the last slice outside the left side of the 

thorax. The medial and lateral edges of the right and left lungs are marked in (a). (a-e) MAX: The 

numbers of selected slices NSS are respectively from 1 to 5. (f-j) UFM: The numbers of selected slices 

NSS are respectively from 1 to 5. The continuous curves represent the lung area as a function of the slice 

location obtained from the slices in the full scan. The vertical bars denote the area of the lung in the 

slice selected at that location in the sparse scan. NSS = Number of Slices Selected. MSL = Method of 

Selecting Locations. MAX = Maximum area method for MSL. UFM = Uniform method for MSL. 
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Figure 3. Illustration of the different interpolation methods on data sets from 4 different subjects. The 

layout is as in Figure 2. All examples use the MAX method of slice selection. Area curves shown: from 

full scan (black), LIN-linear spline (red), QUA-quadratic spline (green), and CUB-cubic spline (blue). 

In (a) and (b), NSS = 2; and in (c) and (d), NSS = 5. NSS = Number of Slices Selected. 

 

 

 

Figure 4. Illustration of linear regression from VS to VF. 20 samples of the left lung at end expiration 

from 20 normal subjects were used. The slice selection method used was MSL = UFM. 1st row: Int = 

NN. 2nd row: Int = LIN. (a), (d) NSS = 1; (b), (e) NSS = 3; (c), (f) NSS = 5. VF = Volume from Full scan. 

VS = Volume from Sparse scan. NSS = Number of Slices Selected. MSL = Method of Selecting Locations. 

UFM = Uniform method for MSL. 
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Figure 5. Illustration of relative root mean squared (rRMS) error of the s-dMRI process for estimating 

the 4 key lung volumes RLVei, LLVei, RLVee, and LLVee as a function of the parameter NSS. Errors 

are estimated from sparse scans simulated from full scans of 25 normal subjects. The curve of mean 

scan time per lung is also shown as a dashed curve. NSS = Number of Slices Selected. RLVei = Right 

Lung Volume at end-inspiration. RLVee = Right Lung Volume at end-expiration. LLVei = Left Lung 

Volume at end-inspiration. LLVee = Left Lung Volume at end-expiration. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.12.24306855doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.12.24306855


 

 

Figure 6. An example of the 4D constructed image of our sparse scan covering the right lung of a 

normal female subject. Each row shows one respiratory cycle of 5 time points for one sagittal location. 

The different rows indicate 5 different sagittal locations. The yellow dashed line represents the end-

expiration level of the diaphragm dome.   
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Estimating lung volumetric parameters via rapid, limited-slice, 

free-breathing thoracic dynamic MRI  

 

Supplemental Material 
 

S1. Details on Methods 

S1.1 dMRI scan protocol, subjects, image data 

There are two main approaches to form a 4D image through dMRI: (i) Real-time 3D volumetric 

approach: Use ultra-fast 3D MRI sequences to obtain real-time 3D volumetric data. (ii) Retrospective 

2D slice approach: Use fast 2D MRI sequences to continuously acquire 2D images slice by slice while 

the subject is breathing freely, and then form a 4D image by selecting among these slices. For real-time 

methods, given the limitations of current hardware and software, it is difficult to achieve high spatial 

and contrast resolution, high signal-to-noise ratio, and sufficiently high temporal resolution 

simultaneously, especially given the high respiratory rate of pediatric subjects, which may compromise 

our ability to reliably perform auto-segmentations. Therefore, in this paper, for the s-dMRI method, we 

utilized the second approach for image acquisition.   

In this approach, for each sagittal slice location through the chest, covering from the right edge of the 

thoracic body region to the left edge, image slices are acquired rapidly while the subject breaths freely 

and normally, using the following imaging parameters: 3T MRI scanner (Verio, Siemens, Erlangen, 

Germany), True-FISP sequence, TR=3.82 ms, TE=1.91 ms, voxel size ~1×1×6 mm3, 320×320 matrix, 

bandwidth 258 Hz, and flip angle 76 degrees, field of view extending from at least 15 mm above the 

apex of the lungs superiorly to the base of the kidneys inferiorly. For each sagittal location, 80 image 

slices are obtained over 8-14 tidal breathing cycles at ~480 ms/slice time-continuously. On average, 35-

40 sagittal locations across the chest are imaged. Therefore, a total of 2800-3200 2D MRI slices are 

generated which constitute a full-resolution spatio-temporal sampling of the subject’s dynamic thorax 
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over 100s of respiratory cycles. Total scan time is typically ~45 min and up to an hour for larger subjects. 

From this set of slices, one representative 4D image comprising one full breathing cycle of the subject, 

constituted by 200-300 slices, is constructed post hoc via image analysis strategies [S1, S2].  

In the study of TIS, to the 4D image constructed from the above full-resolution scan, we apply a 

sequence of operations to derive several volumetric parameters including left and right lung volume at 

end inspiration (EI) and end expiration (EE), and tidal volumes of the two lungs [S3-S7]. Our goal in 

the s-dMRI method is to maximally reduce the number of slices acquired both spatially and temporally 

so that the total scan time is significantly reduced without compromising the accuracy of estimating 

these dynamic volumes. 

dMRI datasets for this paper are acquired from 45 normal pediatric subjects, including 26 females and 

19 males (average age 9.5 years, range 6.2-13.7). Additionally, for assessing the change in volume 

estimation that may occur in the same subject from full resolution dMRI to s-dMRI, 10 subjects (4 male 

and 6 female) were scanned using the above full-resolution protocol and a sparse protocol where 5-7 

sagittal slices uniformly located across each of the right lung and left lung were acquired with only 40 

temporal slice data gathered for each sagittal location. All datasets were acquired under an ongoing 

research protocol approved by the Institutional Review Board at the Children’s Hospital of Philadelphia 

(CHOP) and University of Pennsylvania, along with Health Insurance Portability and Accountability 

Act authorization. Of the scans from 45 subjects, 20 cases were used for the “modeling” aspect of the 

s-dMRI approach, and the remaining 25 cases were used for predictive testing.  

S1.2 Overview of the framework 

The pipeline of our s-dMRI approach is depicted in Figure 1. In the modeling stage, we utilize the 20 

training dMRI datasets from full scans through the thorax, simulate spatio-temporal subsampling to 

create sparse scans from the full scans, compute various dynamic volumes, denoted VF from full scan 

data and VS from sparse scan data, and obtain a regression model to represent the relationship between 

VF and VS. In the prediction stage, we first compute VS from an independent cohort of test sparse scan 

data from 25+10 subjects, obtained either through simulation or via actual subject scans, and then 

estimate the predicted full volume VP by using the created prediction model. Our aim is to make VP as 
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close as possible to VF. The 4 key independent volumetric parameters needed in our application are: 

left and right lung end-inspiratory volumes and left and right lung end-expiratory volumes. We compute 

volumes VF and VS from full and sparse scans from the segmentations produced by a deep-learning-

based method [S7], which achieved a mean + standard deviation of Dice of 0.97+0.02, and performing 

manual correction as needed. 

We think of the current scanning set up as full scan constituting full resolution acquisition since the 

acquisition time is already at the limit of practical viability and increasing the spatial and/or temporal 

resolution further will only add more time. There are two aspects to sparse scanning for reducing dMRI 

acquisition time: subsampling in the spatial domain – meaning selecting fewer sagittal locations and 

subsampling in the temporal domain – meaning acquiring less than 80 temporal slices for each sagittal 

location. The 4D image construction method we employ [S2] builds from these data (whether full or 

sparse scan) one 4D image representing the subject’s breathing thorax over one breathing cycle. This is 

accomplished via an optical-flux-driven optimization method. Firstly, the breathing signal for each 

sagittal location is extracted based on the flux of the optical flow vector field of the body region from 

the image time series. The optical flux allows us to perform a full analysis of all respiratory cycles, 

extract only normal cycles in a robust manner (and discard abnormal cycles such as those due to shallow 

or deep breathing), and map all extracted normal cycles on to one respiration model cycle for each 

sagittal location. The normal cycle models associated with the different sagittal locations are finally 

composited to form the final constructed 4D image (see [S2] for details). Lowering the number of spatial 

locations will result in poorer spatial representation of the lungs while lowering the number of time 

instances can lead to poorer representation of the dynamics in the 4D image. We will study these 

subsampling processes, their trade-off, and our volume estimation strategy in the following sections.  

S1.3 Spatial subsampling 

Our approach is to select fewer sagittal locations over the lung regions strategically for imaging and 

then fit a smooth function to represent the area of the lung at the selected slices as a function of the slice 

location so as to incur minimal error in volume estimation compared to volume from full resolution 

images. There are three main parameters that determine this selection: (i) the number of slices selected, 
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NSS, (ii) the method of selecting these locations, MSL, and (iii) the interpolating function Int used to fit 

the area curve as a function of the slice locations. We assume that the sagittal locations corresponding 

to the lateral and medial edges of each lung are identified and known. 

Number of slices selected NSS  

The number of sagittal locations imaged in our current full scan, denoted NFS, varies from subject to 

subject, depending on the body size, from 15 to 22 slices between the lateral and medial edges of each 

lung. The idea of spatial subsampling is to select NSS < NFS locations between the lateral and medial 

edges of each lung. This parameter maximally influences accuracy. Accuracy also depends on the other 

two variables, as demonstrated in Figures 2 and 3.   

Method of selecting locations MSL 

We compared two strategies for selecting locations, named UFM and MAX. In the uniform strategy 

UFM, NSS locations uniformly situated between the lateral and medial edges of the lung are selected for 

imaging. In the MAX method, the sagittal location showing maximum lung cross-sectional area is first 

selected for each lung and subsequently the remaining locations are determined to be uniformly situated 

on the two sides of this location from the lateral or medial edge. See Figure 2. In our experiments, for 

the MAX method, we first find the sagittal locations that are at the lateral and medial edges of each 

lung in the localizer image. Then we find the sagittal location that roughly shows the largest area for 

the lung in the localizer image. The number of locations desired for the two segments in either side of 

this location is then specified. For the UFM method, the approach is similar without the requirement of 

finding the location with the largest area, but the total number of desired locations is specified. Thus, 

implementation of the method for actual clinical scanning is simple, practical, and straightforward. 

Method of interpolation Int 

A straightforward way of determining lung volume VS from the sparse scan is via nearest neighbor 

interpolation – compute volume contributed by each selected slice by multiplying the area of the lung 

in the slice by the space between slices and add up these volumes over all selected slices. This is 

equivalent to nearest neighbor (NN) interpolation. For a better approximation of the full scan volume 
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VF, we compared three methods for interpolating the area curve to estimate VS – linear spline (LIN), 

quadratic spline (QUA), and cubic spline (CUB) (Figure 3). The idea is that the estimated volume is 

obtained by integrating the areas under the area curve which results from interpolation (see Figure 3). 

In Figures 3(a) and (b), NSS is too small, and LIN interpolation is not as good as the higher-order spline 

interpolation methods. In Figures 3(c) and 3(d), however, there is not much difference among the three 

interpolation methods. As the number of selected slices (NSS) increases, the accuracy of approximation 

will improve although the image acquisition time will also increase, as there is a trade-off between the 

accuracy of approximation and image acquisition time.   

Regression 

To build the regression model, we utilized the full-scan dMRI data we already had and created sparse 

scans from them by selecting the sagittal locations as explained above. This allowed us to perform 

various simulation experiments via different NSS, location selection methods, and interpolation methods 

without having to actually perform sparse scans on subjects. We utilized regression models built via 

simulated sparse scans in this manner and tested the s-dMRI method on both simulated scans that were 

not used for modeling and actual prospectively acquired sparse scans.   

We designate the predicted lung volume derived from VS with the linear model as VP and use relative 

root mean squared (rRMS) error as a function of NSS, MSL, and Int to evaluate the accuracy of the 

predictive model:  

 

where N represents the number of samples used for the regression process.  

Figure 4 illustrates the process of regression using UFM method and different NSS and interpolation 

methods. Notably, refined interpolation methods shown in Row 2 achieve better regression accuracy 

than NN shown in Row 1. Furthermore, accuracy improves as NSS increases, and even when NSS = 1 

(Figures 4 (a), (d)), there is a strong linear relationship between VS and VF. Note how we exploited the 

smoothness of the area curve for each lung separately to reduce the number of slices and hence the 
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acquisition time. The sagittal slice planes are ideal in this regard compared to axial or coronal.   

S1.4 Temporal subsampling 

We denote the number of temporal samples (slices) acquired for each sagittal location in our current 

full scan by TFS. As explained previously, TFS = 80 in the full resolution dMRI protocol. The idea behind 

temporal subsampling is to acquire TSS < TFS time samples so as to reduce acquisition time and incur 

minimal loss of accuracy in estimating lung volumes.  

The temporal resolution achievable in our dMRI full scan, or equivalently the number of time instances 

captured over one respiratory cycle in our constructed 4D image, is determined by several factors: the 

respiratory rate (RR) of the individual subject, the time needed for acquiring one image slice data (480 

ms in our current protocol), and the number of normal tidal breathing cycles observed over TFS time 

samples. Our 4D construction method OFx first identifies (slices constituting) the normal breathing 

cycles and compiles the distinct respiratory phases observed in these cycles into one composite 

respiratory cycle (see [S2] for details). The temporal resolution thus improves as we gather more normal 

cycles in a subject scan. When RR is high, the number of normal cycles collectable and hence the 

number of time instances captured in the 4D image becomes low. Conversely, when RR is low, more 

normal cycles are collected, resulting in higher temporal resolution in the 4D image. In our current full 

resolution scan, we achieve 4-10 time instances in the constructed 4D image, as observed in subjects of 

age 4 to 20 years. 

Given the above theoretically intractable complex variabilities, we decided to perform an empirical 

evaluation of the effect of choosing TSS < TFS time samples on the changing lung volume. In the full 

scan data with TFS time samples we already have, we select only the first TSS < TFS samples, perform 4D 

construction using these temporally “subsampled” data for different choices of TSS, and determine the 

volume deviation from the full scan as a function of the degree of temporal subsampling.  

S1.5 Evaluation strategies 

Optimal parameter setting  

The key independent measures we assess are right and left lung volumes at any time point such as end 
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inspiration and end expiration, denoted, respectively, by RLVei, LLVei, RLVee, and LLVee. There are 

4 parameters in the s-dMRI approach: NSS, slice selection methods (UFM or MAX), interpolation 

methods (NN, LIN, QUA, or CUB), and TSS. Of these, NSS and TSS behave similarly – the larger the 

value, the more accurate will be the estimated volumes. They are also the arbiters of the time savings 

compared to the full scan. Slice selection methods and interpolation methods determine the accuracy of 

approximation achieved for fixed values of NSS and TSS. Therefore, for different possible choices of NSS 

and TSS, we systematically study the tradeoff between accuracy and efficiency to choose the best setting 

for the parameters. 

Evaluation   

Optimal setting for the model: The accuracy of volume estimation for a given time point is determined 

by the three spatial subsampling parameters NSS, slice selection methods, and interpolation methods. As 

such, we first fix the time point to EE and EI and analyze the model fit in terms of rRMS as we vary 

NSS. Similarly, for different choices of TSS we perform 4D construction for full scan spatial sampling 

and study the behavior of rRMS as a function of TSS. From these analyses, we determined the setting for 

the 4 parameters which would yield minimal rRMS error for the desired speed of dMRI scanning.  

Assessing accuracy of the whole s-dMRI process: Using the optimal setting obtained as above, we 

determine the actual volume prediction accuracy in terms of rRMS error from retrospectively obtained 

data subsampled from full dMRI scans as well as prospectively acquired actual sparse scans. 

S2. Extra Tables and Figures 

Table S1: Mean and Standard deviations of the relative errors. 

Figure S1. Illustration of relative root mean squared (rRMS) error of model fit for the 4 static lung 

volumes RLVei, LLVei, RLVee, and LLVee as a function of the parameters NSS, MSL, and Int in the 

modeling stage.  

Figure S2. Illustration of relative root mean squared (rRMS) error of model fit for the 4 volumes RLVei, 

LLVei, RLVee, and LLVee and as a function of the parameter TSS in the modeling stage.  
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Table S1: Mean and Standard deviation of relative root mean squared (rRMS) errors for different 
choices of number of slices in the sparse scan NSS. Here method of selecting locations MSL = UFM 

(uniform) and method of interpolation Int = LIN. 
NSS LLVee RLVee LLVei RLVei 
1 0.0418±0.0392 0.0544±0.0387 0.0453±0.0483 0.0475±0.0428 
2 0.0341±0.0258 0.0221±0.0193 0.0249±0.0175 0.0302±0.0227 
3 0.025±0.0204 0.0237±0.0168 0.0269±0.0178 0.0179±0.014 
4 0.0193±0.0124 0.0208±0.0127 0.0209±0.0114 0.0149±0.0086 
5 0.0182±0.0124 0.0153±0.0078 0.0162±0.0127 0.0174±0.0124 
6 0.0184±0.0093 0.0129±0.0091 0.0132±0.0076 0.0134±0.0098 
7 0.0137±0.0102 0.0112±0.008 0.0132±0.0091 0.0117±0.0088 
8 0.0187±0.0133 0.011±0.0088 0.0113±0.0079 0.0142±0.0098 
9 0.0144±0.0085 0.0098±0.0093 0.0091±0.0072 0.0134±0.0089 
10 0.0118±0.0102 0.0086±0.0067 0.0096±0.0095 0.0103±0.0079 
11 0.0111±0.0096 0.0095±0.0063 0.0098±0.0092 0.0118±0.009 
12 0.0124±0.0096 0.0082±0.007 0.0097±0.0082 0.0108±0.0082 
13 0.0113±0.0101 0.0085±0.008 0.0102±0.0073 0.0098±0.008 
14 0.0112±0.0097 0.0081±0.0073 0.0094±0.0075 0.0094±0.0076 
15 0.0111±0.0096 0.0081±0.0072 0.0092±0.0074 0.0091±0.0078 

LLVee: Left Lung Volume at End-Expiration. 
RLVee: Right Lung Volume at End-Expiration. 
LLVei: Left Lung Volume at End-Inspiration. 
RLVei: Right Lung Volume at End-Inspiration. 
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Figure S1. Illustration of relative root mean squared (rRMS) error of model fit for the 4 static lung 

volumes RLVei, LLVei, RLVee, and LLVee as a function of the parameters NSS, MSL, and Int in the 

modeling stage. NSS = Number of Slices Selected. MSL = Method of Selecting Locations. Int = 

Interpolation method. RLVei = Right Lung Volume at end-inspiration. RLVee = Right Lung Volume 

at end-expiration. LLVei = Left Lung Volume at end-inspiration. LLVee = Left Lung Volume at end-

expiration. 

 

 

Figure S2. Illustration of relative root mean squared (rRMS) error of model fit for the 4 volumes RLVei, 

LLVei, RLVee, and LLVee and as a function of the parameter TSS in the modeling stage. RLVei = Right 

Lung Volume at end-inspiration. RLVee = Right Lung Volume at end-expiration. LLVei = Left Lung 

Volume at end-inspiration. LLVee = Left Lung Volume at end-expiration. TSS = Number of Time 

samples in Sparse Scan. 
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