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Abstract

Introduction: The complexity of Inflammatory Bowel Diseases (IBD) presents challenges for

the management of these diseases. Predicting treatment outcomes remains difficult, leading

to suboptimal outcomes and high costs. Emerging evidence suggests the potential of the gut

microbiome in predicting response to biologic treatments. In this prospective study we aimed

to predict treatment response to vedolizumab and ustekinumab in 79 IBD patients by

integrating clinical data, gut microbiome profiles and fecal metabolites and validating these

findings in a replication cohort of 47 IBD patients. 

Methods: Treatment response was defined as either continuation or discontinuation of the

biologic at six months. We performed whole genome metagenomic shotgun sequencing on

the baseline fecal samples to detect microbial and functional profiles. Additionally, over 1000

metabolites were captured through untargeted metabolomic profiling. Baseline diversity,

dissimilarity and differential abundance analyses compared responder and non-responder

groups. The prediction tool CoDaCoRe was used to identify predictive log-ratio biomarkers.

We tested our identified ratios in an external cohort and attempted to replicate the

microbiome-based signals of previous studies. Finally, we used a neural-network framework

to model the relationship between metabolites and microbes, comparing these clusters in

responders and non-responders and tested our approach with different definitions of

response. 

Results: We identified seven metabolites to be differentially abundant between responders

and non-responders (FDR < 0.05). However, no significant differences in bacterial species

and pathways were detected at baseline between responders and non-responders. Our

prediction analysis indicated only marginal predictive utility of the gut microbiome and fecal

metabolites for treatment response, when compared to a clinical model using fecal

calprotectin, disease duration and disease activity, among other factors (AUC only clinical

features: 0.71±0.13, AUC microbial and clinical features: 0.73±0.12). The main predictive

features of these models were the disease activity and previous anti-TNF use combined with

high abundance of Phocaeicola vulgatus, Bacteroides uniformis and Alistipes onderdonkii,

and the low abundance of Ruminococcus gnavus and Faecalibacterium prausnitzii. Testing

our identified ratio of 10 species in an external cohort of 47 IBD patients reinforced the lack

of predictive power of the microbiome. No replication of previously published predictive

signals of the microbiome was observed. Additionally, we identified 2 metabolite clusters and

1 microbiome cluster associated with response, and observed that predictors were highly

dependent on the definition of response. 
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Conclusion: While previous studies of similar size have shown that microbial features can

predict response to either vedolizumab (VedoNet), or vedolizumab, ustekinumab and

anti-TNF, our comprehensive study found no significant differences in the gut microbiome at

baseline between responders and non-responders among IBD patients treated with

ustekinumab or vedolizumab. Microbial features added no predictive power to drug response

in our IBD patient cohort or an independent replication cohort. Addition of metabolite

features did not improve predictive power. These findings suggest minimal impact of the

pre-treatment gut microbiome on treatment outcomes with these medications in IBD patients

with long term chronic disease. Generalizability beyond initial study cohorts is limited,

leaving predictors for individualized IBD-medication selection unidentified, but based on this

work, likely do not lie in the fecal microbiome.
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Introduction

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis

(UC), are complex chronic inflammatory disorders of the gastrointestinal tract. They affect

over 1.3 million individuals in Europe alone, posing significant challenges for

gastroenterologists due to the considerable heterogeneity in onset and progression1. The

precise etiology of IBD remains elusive, but it is currently believed that it involves a

combination of genetic susceptibility, an inappropriate immune response to the gut

microbiome, and a variety of environmental triggers2. This multifactorial nature adds

complexity to managing IBD and hampers the development of potential therapeutic targets.

Traditionally, IBD treatment focused on reducing inflammation using immunomodulators with

pleiotropic effects such as mesalazines, corticosteroids and azathioprine. Over the last two

decades drugs that target specific components of the immune system became standard of

care for induction and maintenance of remission in IBD, such as TNF-alpha inhibitors (e.g.

infliximab), integrin receptor antagonists like vedolizumab (α4β7-integrin inhibitor) and

inhibitors of IL-12/IL-23 (e.g. ustekinumab). Unfortunately, these drugs have hit a therapeutic

ceiling and only reduce remission in one-half to two-third of patients3,4. Moreover, the

ongoing necessity of surgical interventions5, the development of rare serious side effects,

and high costs of these drugs, underscore the importance of identifying patient-specific

characteristics to predict outcomes before treatment initiation.

Currently, there are no well-established biomarkers that predict whether a patient will

respond to advanced therapy or not. Patient-related factors (such as age, sex, smoking

habits) and disease-related factors (disease duration, location, activity), have not been found

to be reliable in this respect6. Interestingly, longitudinal studies of the fecal microbiome have

revealed differences in gut microbiome composition between patients with IBD who respond

to biological treatments and those who do not. For instance, responders to TNF-alpha

inhibitors tend to have higher abundances of certain bacteria like Bifidobacterium,

Clostridiales and Eubacterium rectale7,8, while non-responders show a depletion of

Faecalibacterium prausnitzii9. Microbial differences have also been observed for response to

vedolizumab and ustekinumab10,11. Additionally, emerging evidence underscores the

importance of metabolites derived from the gut microbiome in mediating host-microbiome

interactions and immune responses12. Analyzing these metabolites offers valuable insights

into the biochemical activity of the gut microbiome. A recent study demonstrated the

predictive potential of these metabolites, showing that a specific ratio of metabolites can

classify IBD and non-IBD samples13. Furthermore, recent studies showed that changes in
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bile acid levels are predictive of therapeutic response14, e.g. CD patients responding to

TNF-alpha inhibitors exhibited higher serum levels of secondary bile acids15.

Considering the pivotal role of the gut microbiome and host immunity in the pathogenesis of

IBD, we hypothesized that integrating clinical data, metagenomic gut microbiome profiles,

and fecal metabolomics can predict response to biologics. To test this, we analyzed these

data layers of 79 patients treated with either vedolizumab or ustekinumab and constructed

response-prediction models.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.10.24307195doi: medRxiv preprint 

https://www.zotero.org/google-docs/?VSHUl0
https://www.zotero.org/google-docs/?pYRwpq
https://doi.org/10.1101/2024.05.10.24307195


Methods

Study cohort

A total of 100 patients were recruited for this study, with 50 patients initiating vedolizumab

and 50 patients starting treatment with ustekinumab at the specialized IBD center of the

Department of Gastroenterology and Hepatology of the University Medical Center Groningen

(UMCG), the Netherlands. Inclusion criteria required patients to be 18 years or older and

have a confirmed diagnosis of IBD for at least three months prior to inclusion, based on

clinical, endoscopic, and histopathological criteria. Informed consent from all participants

was obtained through Parelsnoer IRB (NL24572.018.08) and GEID (NL58808.042.16).

Clinical characteristics, fecal samples and lab results were collected at baseline, i.e. prior to

the start of therapy. IBD-related clinical characteristics were derived from medical records,

including the Montreal classification, IBD disease duration, prior medication use, and

previous surgical interventions. Additionally, demographic and clinical features, such as age,

sex, BMI, current medication use, smoking behavior, and disease severity scores (Harvey

Bradshaw Index (HBI) for CD, Simple Clinical Colitis Activity Index (SCCAI) for UC), were

determined at baseline. The decision to initiate vedolizumab or ustekinumab therapy was

made by the patients’ treating physician.

Defining response

Response to vedolizumab or ustekinumab was determined by drug survival (decision to

continue the biologic treatment) at the six months mark, based on the physicians’ global

assessments (including fecal calprotectin, serum CRP levels, and clinical disease activity

scores). Consequently, if the treating physician discontinued the biologic treatment before six

months, patients were classified as being non-responders. In addition, we performed

analyses using other definitions of response since the definition of response lacks uniformity

in the existing literature: i) sustained response, defined as the ongoing use of the biologic

drug after two years, and ii) a reduction of ⩾3 points from baseline in HBI/SCCAI scores at

14 weeks for vedolizumab and 16 weeks for ustekinumab corresponding to a physician visit.

Sample collection and processing

Patients produced and immediately froze the fecal samples at home using a provided stool

collection kit. Research staff from the UMCG collected the feces on dry ice, using insulating

polystyrene foam containers, and stored them at -80⁰C. DNA was extracted from fecal

material using the QIAamp Fast DNA Stool Mini Kit and the QIAcube automated sample

preparation system (Qiagen, Germany). The samples were sent to the sequencing facilities:
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vedolizumab samples were processed at NovoGene in Hong Kong, and ustekinumab

samples were processed at Novogene in the United Kingdom (the different locations were

due to the relocation of Novogene Europe). Both batches underwent whole genome shotgun

metagenomic sequencing using the Illumina NovaSeq 6000 S4 flowcell with PE150. While

no obvious batch effects were observed, we accounted for batch (biologic cohort) in our

analyses. For the metabolomics, fresh frozen samples were drilled on dry ice until obtaining

on average 0.5 mg of fecal material, transferred into a 2ml tube and shipped to Metabolon

facilities for untargeted metabolomic measurements.

Metagenomic and metabolomic data processing

First, we removed the Illumina adapters from the raw metagenomic reads and trimmed them

using the KneadData (v0.12.0.) tool. We then removed reads aligning to the human genome

using Bowtie2 (v2.5.1). The taxonomic composition was profiled using MetaPhlan4 (v4.0.6,

library vOct22). This resulted in 2 kingdoms, 14 phyla, 151 classes, 170 orders, 206 families

and 1087 species-level genome bins (SGBs), further referred to as species, for the total

cohort. Bacterial species with a prevalence of more than 15% and a minimum mean relative

abundance of 0.1% were kept for analyses (species n = 65) and taxa that were unclassified

at species level were excluded. We profiled the abundance of microbial metabolic pathways

using HUMAnN (v3.6), resulting in 476 predicted pathways. After applying filtering based on

a prevalence of more than 15% and a minimum relative abundance of 0.001%, 193

pathways were left for analyses. Because of the compositional nature of the data, prior to

statistical tests we transformed the microbial abundances and pathway abundances using

the centered log-ratio method (CLR).

For the metabolomic data, raw data processing and quality control were performed

according to Metabolon's standards. This data was batch-normalized (raw values divided by

the median of the samples in the batch) and missing values were imputed with the minimum

value across all batches in the median scaled data. The data was then transformed using

the natural log, since metabolomic data typically displays a log-normal distribution. For

analyses we filtered the metabolites on presence in >70% of the samples (metabolites n =

816).

Statistical analyses

Analyses were performed in R (v4.2.3) and Python (v3.8.8). All taxonomic microbiome

analyses were performed at species level. The analyses were conducted for the total cohort

and also stratified by biologic therapy.
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Diversity and dissimilarity analyses

Alpha diversity was calculated using the Shannon index, a metric encompassing both

species evenness and richness, using the diversity function of the R vegan package

(v2.6-4). Differences between responders and non-responders were tested with the

Wilcoxon rank-sum test. For beta-diversity, measuring the dissimilarity of microbial

composition between samples, Aitchison distances (Euclidean distance of CLR transformed

data) were computed using the function vegdist and visualized using Principal Coordinate

Analysis (PCoA) plots. To test differences in community structure between responders and

non-responders and the effect on variation in microbial and pathway composition, we

performed a PERMANOVA test with 1000 permutations, as implemented in the adonis2

function where we added sex, age, BMI and sequencing read depth and additional

covariates known to affect the composition of the microbiome: proton-pump inhibitor (PPI)

use, antibiotics use three months prior to sampling and history of bowel resections. The

betadisper function was used to confirm whether outcomes of the PERMANOVA were

influenced by variations in dispersion between groups.

Differential abundance of species, pathways and metabolites

We aimed to identify microbial species, pathways and metabolites whose baseline

abundances differed between responders and non-responders. Differential abundance

analysis was conducted using linear regression, considering age, sex, BMI, PPI-use,

antibiotics use, history of bowel resections [yes/no], IBD diagnosis subtype, and sequencing

read depth as covariates. Analyses were corrected for multiple testing by applying the

Benjamini-Hochberg procedure, with significance defined as a false discovery rate (FDR) of

<0.1. For the metabolites, using imputed peak area data, we analyzed bile acids and tested

the logratio of primary bile acids (PBA) and secondary bile acids between responders and

non-responders.

Metabolite-microbiome interaction network

To identify any metabolite-microbiome interactions and if any of these interactions are

associated with responders or non-responders, we used MiMeNet (v1.0.0). As input we

provided the metabolite raw AUC values and the microbiome relative abundances multiplied

by the read counts of each file for pseudocounts. Additionally, we put the labels of responder

or non-responder on each patient. We used the R iGraph package (v2.0.3) for visualizing the

interaction graph.

Prediction of response outcomes
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We used the CoDaCoRe package (v0.0.4) as our primary method to predict response to

biologic therapy. This algorithm is designed to identify predictive log-ratio biomarkers in

high-throughput sequencing data. The predictions were carried out independently for

metagenomic data (taxonomy and pathways), metabolite data, clinical data and

combinations of these data layers. For the taxonomic data, the input for the prediction

models was the non-transformed species data with the same filtering as for the microbiome

analyses (prevalence >15% samples and a minimum mean relative abundance of 0.1). The

relative abundance was then multiplied by the aligned reads to generate pseudocounts per

bacterial species. For the pathway prediction input we used similar preprocessing steps as

for the bacterial species, first we filter on prevalence >0.15 and a minimum mean relative

abundance of 0.001, then we multiply the leftover pathways by the reads in the processed

samples to create pseudocounts as input for the CoDaCoRe models. For the metabolite

input, raw AUC data was used. We predicted responses using the logratiotype setting

amalgamations, i.e ratio constructed from the sum of features, and a lambda of 2. All

predictions involved splitting samples into 75% training and 25% testing sets. Because of

limited sample size, this step was permuted 100 times to obtain accurate values for the

model AUC and test AUC. We summarized the features selected in the highest AUC ratio

from CoDaCoRe for each permutation as a fraction of the total number of permutations. To

determine the main predictors in each model, we applied a cutoff of 10% presence across all

predictions. We then created ratios using the features chosen for the numerator and

denominator and applied these ratios to the samples to visualize the difference between

groups.

Prediction model performances

To assess the performance of the ratios, first, we created a Generalized Linear Model (GLM)

based only on clinical factors. As input for the clinical data we used sex, BMI, age, fecal

calprotectin, CRP, previous use of anti-TNF medication, disease duration, and disease

activity. Disease activity was determined based on the baseline HBI and SCCAI scores (no

activity HBI <5 or SCCAI <3, mild disease activity HBI 5-7 or SCCAI 3-5, moderate disease

activity HBI 8-16 or SCCAI 6-11, and severe disease activity HBI >16 or SCCAI >11)16. We

trained the model on 75% of the data, and then tested it on the remaining 25% of the data

with 100 permutations to determine model AUC. Then we added the created ratio based on

microbial features and compared performance. This was repeated with the ratio based on

metabolite features, and then also with the ratio based on pathway features. We then

combined all these ratios in one model to compare the full predictive power of our features

compared to the model containing only clinical features.
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Replication efforts

Replication cohort

To validate the predictive features we identified in our cohort, we used a replication cohort

combined from patients of a tertiary referral center (University Medical Center Utrecht) and a

general hospital (Gelderse Vallei hospital). All patients had Crohn’s disease and started

biologic therapy (vedolizumab, infliximab or adalimumab). Consent from all participants was

obtained (METC 16-137). Inclusion period was between 2016 and 2020 The decision to

initiate vedolizumab, infliximab or adalimumab therapy was made by the patients’ treating

physician. Clinical characteristics and fecal samples were collected at baseline. Fecal

samples were stored within 24 hours at -80⁰C, IBD related clinical characteristics were

derived from medical records, including the Montreal classification, IBD disease duration,

prior medication use, and previous surgical interventions. Additionally, demographic and

clinical features, such as age, sex, BMI, current medication use, smoking behavior, and HBI

were recorded at baseline.

As this cohort contained some overlapping biologic use (vedolizumab) and some

non-overlapping biologic use (infliximab, adalimumab), we tested two different setups. First,

we visualized the predictive features from our vedolizumab only subset in the vedolizumab

patients of the Utrecht cohort. Second, we visualized the features from our total cohort in the

anti-TNF subgroup of the Utrecht cohort. Subsequently we created GLMs testing the model

performance based on the same clinical features used in our own cohort prediction, and then

the same model including the microbiome ratio. We trained the vedolizumab only model on

all our vedolizumab patients and tested this on the Utrecht vedolizumab patients. The

anti-TNF model was trained on our full cohort and tested on the Utrecht anti-TNF patients.

VedoNet prediction

To test the previously described VedoNet prediction model10, we identified the metagenomic

and clinical features (n=49) in our data overlapping with their features as input for a Sklearn

(v.1.3.1) Random Forest model (1000 trees, depth of 45), using 4 split 5 repeats k-crossfold

validation. Using only the samples from patients starting with vedolizumab, and after

removing any samples with data missing for any of these features, we used 22 patients (13

responders and 9 non-responders) for this comparison.

Enterotypes

To replicate the prediction based on enterotypes17, we used Dirichlet Multinomial Mixtures

(DMM) from the DirechletMultinomial package to determine enterotypes (community types).
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Community typing was performed on a genus-abundance matrix including all available study

samples. We also performed DMM analysis on a combined matrix of samples from this study

and 8298 samples from the Dutch Microbiome Project to improve accuracy of community

typing. We looked at potential associations between response and patients baseline

characteristics (sex, age, BMI, CRP, fecal calprotectin, smoking status, disease duration,

previous resections, prior use of anti-TNF therapy, and enterotype). These variables were

modeled as single explanatory variables in a logistic regression (glm function, family =

binomial(link = "logit")).
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Results

1. Cohort overview

1.1 Patient inclusion

A total of 100 patients were recruited (50 for each biologic). Several patients had to be

excluded for various reasons: one patient withdrew from the study, two discontinued therapy

early due to side effects and seven patients were excluded because of the presence of a

stoma or pouch (since these fecal samples are not representative of the content of the whole

intestinal tract). Additionally, five baseline samples were not collected, four samples failed

sequencing, and two samples had to be excluded due to a low number of sequencing reads.

The samples from 79 patients from which all data layers were complete (taxonomy,

pathways and metabolites), were used for analyses (Figure 1A).

1.2 Clinical characteristics

The study cohort consisted of 79 patients with IBD, initiating biologic treatment with

vedolizumab (n=42) or ustekinumab (n=37). Fifty-nine percent of patients had CD, 29% UC

and 11% of the patients IBD-U (Table 1). The sex distribution was slightly skewed towards

females (54%). Among the participants, 23 patients were categorized as non-responders at

6 months, while 56 (71%) were responders (Figure 1B). Average age and BMI were

comparable between the groups. Non-responders had higher clinical scores at baseline

(SCCAI) than responders (p < 0.001). Additionally, levels of fecal calprotectin tended to be

higher in non-responders (1856) at baseline compared to responders (1149), with the

trending towards statistical significance (p = 0.07).
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Figure 1: Cohort and sample overview
A) Flowchart showing the available samples for the ustekinumab and vedolizumab group
and the excluded samples. B) Responder and non-responders for the whole cohort and for
ustekinumab and vedolizumab at 6 months after initiation of therapy.
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Table 1: cohort description
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2. Baseline analyses of metagenomic and metabolomic data

2.1 Comparable baseline gut microbiome diversity and composition between responders and

non-responders

We compared the gut microbiome between responders and non-responders at baseline, i.e.

prior to the start of biologic treatment, to identify a possible microbiome signature that

predicts response to biologics. We found no differences in baseline Shannon diversity

between responders and non-responders (Mann-Whitney U test 0.56, Figure 2A), also when

stratifying by biologic (ustekinumab p = 0.76, vedolizumab p = 0.64). No clustering in

beta-diversity was observed between responders and non-responders in either the entire

cohort or when stratified by biologic treatment, suggesting a comparable overall species

composition (Figure 2B). When assessing the impact of responder status on the variance in

microbial species composition through multivariable PERMANOVA, it did not explain a

significant part of the variance (R2 = 0.008, p = 0.96). However, sequencing read depth (R2

= 0.025, p = <0.001), prior resections (R2 = 0.023, p = 0.002), and biologic (R2 = 0.023, p =

0.005) did contribute significantly to the composition variance. For pathways, responder

status did not explain a significant portion of the variance as well, while antibiotic usage (R2

= 0.026, p = 0.047) and sequencing read depth (R2 = 0.032, p = 0.014) were found to have

significant effects. This suggests that at baseline there is no distinction in the functional

abilities of the gut microbiome between responders and non-responders, however the use of

antibiotics does seem to affect the metabolic potential of the gut microbiome.

2.2 No differential abundant species and pathways between responders and non-responders

Next, we explored whether the microbiome composition at species and pathway level was

correlated to response. We modeled CLR-transformed species and pathway abundances

using linear regression, accounting for covariates as described in the methods. Our analysis

did not identify any species with differential abundance between responders and

non-responders at baseline that surpassed the FDR threshold of 0.1. However, when

considering nominal significance, we observed an increase in the species Clostridiales

bacterium in responders (p = 0.032, estimate = 1.973, Figure 2C). Stratifying the analysis by

biologic treatment did not show any species reaching FDR significance. Our analysis of

functional pathways revealed no FDR significant pathways with differential abundance

between responders and non-responders at baseline, however when considering nominal

significance (p<0.05) four pathways were found to be increased in non-responders (Figure
2C). These pathways are involved in phospholipid biosynthesis, pyruvate fermentation, and

phosphatidylglycerol biosynthesis.
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2.3 Baseline differences in metabolites between responders and non-responders

Next, we analyzed the metabolomics data with the hypothesis that responders might display

a distinct metabolite profile compared to non-responders prior to the initiation of biologic

treatment. We used the data of 816 metabolites present in at least 70% of the samples,

applying linear regression to the natural-log transformed data. We identified seven

metabolites with significant differential abundance at FDR level (Figure 2D), belonging to

different metabolite classes. Upon stratification by biologic treatment, we did not observe any

differentially abundant metabolites at baseline that reached FDR significance at <0.1. When

only looking at bile acids, and grouping all available PBAs (n = 15) and SBAs (n = 43), we

found that the logratio of PBA/SBA showed a significant difference between responders and

non-responders (p = 0.035, estimate -1.233).

2.4 Network analysis shows interactions between microbial and metabolite clusters but

limited associations with response

While our differential abundance analysis showed limited to no differences in gut microbiome

features between responders and non-responders, it is important to take into account that

this method focuses on isolated features. However, the microbiome is a complex ecosystem

of microbes interacting with each other. Although the effects of each feature might be small

or seem insignificant on its own, investigating them as part of a community considering the

interplay between microbes (and metabolites), might reveal interesting patterns. Therefore,

to explore the association between microbes and metabolites and test correlations with

treatment response, we used MiMeNet. We identified seven microbial clusters and ten

metabolite clusters. Figure 3 displays each cluster, indicating the number of features per

cluster. While some example microbes and metabolites are shown per cluster, it is important

to note that clustering was based on abundance rather than biological function or relevance,

so the labels may not represent each cluster accurately. We observed that the cluster

containing Faecalibacterium prausnitzii and the cluster containing Alistipes finegoldii showed

opposite associations with metabolite clusters compared to the cluster containing

Escherichia coli. Both Faecalibacterium prausnitzii and Alistipes finegoldii are generally

associated with health. Next we aimed to associate these distinct microbiome-metabolite

clusters with response. Three clusters were associated with responders; specifically,

microbiome cluster 3 (Mann Whitney U, p=0.017) containing Clostridiales bacterium, and

metabolite cluster 9 (Mann Whitney U, p=0.0499) containing urate, were positively

associated with response to biologic therapy. On the other hand, we found metabolite cluster

5 (Mann Whitney U, p=0.01) containing many ethanolamides, to be positively associated

with non-response to biologic therapy.
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Figure 2: Baseline alpha diversity, beta diversity and differential abundant microbes,
pathways and metabolites between responders and non-responders.
Shown are the comparisons of 79 patients taking ustekinumab or vedolizumab, categorized
by their response to therapy after 6 months. A) Alpha diversity between responders and
non-responders displays no difference between these groups. (Mann-whitney U, p=0.56) B)
Beta diversity between responders and non-responders using the Aitchinson distance. The
overlapping centroids indicate no difference at the species level between responders and
non-responders. C) Nominally significant p<0.05 relative abundant pathways and microbes
between responders and non-responders. Clostridales bacterium and four pathways are
associated with response, but these results do not pass the FDR <0.1 threshold. D) Seven
metabolites showing significant differences (FDR <0.1) between responders and
non-responders, suggesting that the only differences between responders and
non-responders at baseline appear within the abundance of specific metabolites.
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Figure 3: Microbiome-Metabolite interactions
Network plot showing the interaction between microbial clusters and metabolite clusters in
the whole cohort for 79 patients treated with Vedolizumab and Ustekinumab, created using
MiMeNet. Clusters are based on co-occurrence, not biological relation; a full overview of
features per cluster is available in the Supplemental Table S1 and S2. For each cluster one
or more metabolites and bacteria are highlighted based on potential relevance. This
representative does not have statistical or biological ascendancy over any other species or
metabolite in the cluster. 2 metabolite clusters were significantly associated with response
(Mann Whitney U, p=0.0499, p=0.01). And one bacterial cluster was significantly associated
with response (Mann Whitney U, p=0.017).
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3. Prediction of response to biological therapy

3.1 Limited predictive power for treatment response of metagenomic and metabolomic data

Following the more complex modeling approach, we implemented the CoDaCoRe package

to determine the predictive power of ratios between metabolites, microbes or pathways in

our dataset. Because of the limited sample size, we observed large variation based on which

samples were randomly assigned to the test and training sets, therefore we chose to run 100

permutations of this assignment and averaged the AUCs across these permutations. In the

combined cohort we observe an average test AUC of 0.59±0.09 for MGS species and

0.58±0.07 for the metabolites. When stratifying the prediction for each biological therapy, we

observed test AUCs of 0.78±0.15 for each microbiome and metabolite predictors

independently in the ustekinumab cohort, and 0.65±0.14 and 0.66±0.12 for microbiome and

metabolites respectively in the vedolizumab cohort, indicating a difference in predictive

power in microbial or metabolite features or response mechanism between vedolizumab and

ustekinumab. The predictors are shown in Supplemental Figure S1. Because the individual

cohorts have limited power for prediction we focused on the combined cohort. The features

used in the prediction are shown in Figure 4A. An overview of each independent log ratio is

shown in Figures 4B-D with the combined ratio shown in Figure 4E.

To test the performance of the models created with the CoDaCoRe package we compared a

model based purely on clinical features, and each ratio alone, and then the clinical features

combined with the ratios. We observed similar predictive power from the clinical features

alone, the microbiome ratios alone and the metabolite ratios alone, AUCs of 0.71±0.13,

0.71±0.13 and 0.70±0.14. Only pathways showed less predictive power at 0.61±0.11.

Combining all ratios and clinical features only marginally improved the prediction to

0.73±0.12. Comparing the model fit between the model containing only clinical features and

the model containing all three ratios in addition to the clinical features showed a marginally

significant improvement (Likelihood ratio test, p=0.04986). All AUCs are shown in Figure 4F.

3.2 External cohort validation shows no predictive power of microbial features

To validate our findings, we included an external cohort from the University Medical Center

Utrecht. Baseline fecal samples were collected and response status was determined by

biologic continuation at six months of treatment. The Utrecht cohort comprised 47

participants: 10 started with adalimumab, 17 with infliximab, and 19 with vedolizumab. First,

we selected the predictive microbe features for vedolizumab from our previous analysis and

used them in the Utrecht vedolizumab patients (Figure 5A), when comparing this ratio plot

with the plot shown in Figure 4B, the direction of the effect is reversed. Secondly, we
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compared the microbe features from the whole cohort with the anti-TNF Utrecht group,

attempting to identify a generalized microbial signal indicating response to medication. This

ratio is shown in Figure 5B, here the non-responders group cluster together around the

lower end of the ratio, but the responders are seen across the full range. Testing these ratios

in GLMs, we observed an AUC of 0.8 based on only clinical features in the vedolizumab

cohort; additional inclusion of the microbiome ratio slightly worsened performance (Figure
5A). Testing a GLM in the anti-TNF cohort had worse performance compared to the

vedolizumab cohort with an AUC of 0.655, which was also lowered slightly by the inclusion

of the microbiome ratio to 0.639, although these values are very close together (Figure 5B),

comparing these model fits also showed no significant improvement upon adding the

microbiome ratio to either model (likelihood test, p>0.05). Overall, we observe limited to no

predictive power of our models in the Utrecht cohort based on the microbial features

identified in our cohort.
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Figure 4: Features used in the prediction models, visualized feature ratios and
prediction AUC overview
A) Performing permutation analysis for the CoDaCoRe feature selection generated features
for each of the categories, shown is the features with a frequency of 10% or higher. Stronger
predictors are observed with a higher frequency. B, C, D) Visualized log ratios using the
features in panel A from the abundances of the whole cohort data, shown are microbial,
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pathway and metabolites ratios. Densities of the responders and non-responders show
limited separation. E) Combined plot of the ratios visualized in B,C and D. Responders are
higher on average, although the largest density area still overlaps. F) ROC-AUC plot
showing the AUC for the Generalized Linear Models based on clinical features, and
microbial, pathway and metabolite ratios independently, and combined into one model.
AUCs were determined using 100 permutations of 75% test and train split. Clinical features
showed the best performance for each of the individual predictions, and combining
multi-omic predictions only improved the prediction marginally.

4. Replication of previous published predictive microbiome features

4.1 VedoNet model features do not predict response in our dataset

In a previous study in 85 patients treated with vedolizumab, the authors created a prediction

model, VedoNet, consisting of a selected set of 54 microbiome and clinical variables, which

demonstrated strong discriminatory ability in predicting clinical remission (AUC = 0.872)10.

We were able to match 49 out of the 54 features in our data and had complete information

for each of these features for 22 Vedolizumab patients. Using these features of VedoNet, we

aimed to predict response to vedolizumab using a random forest model. Our replication

analysis resulted in an AUC of 0.63±0.23 (Figure 5C). Our prediction has no predictive

power when compared to the reported AUC of 0.872, indicating that these features do not

have the same predictive capability in our dataset.

4.2 Gut enterotypes do not associate with response

A previous study showed the predictive power of the Bact2 enterotype in combination with

other stool factors17. Our attempt to repeat analysis using DMM revealed that the optimal

number of dirichlet components based on Laplace or BIC approximation was three within our

dataset, resulting in the identification of three distinct communities, i.e. enterotypes (Figure
5D). One community is defined by a high prevalence of Prevotella, the other two by a high

prevalence of Bacteroides, with one of the Bacteroides communities also featuring a high

prevalence of Faecalibacterium. Incorporating additional samples from the DMP to the

abundance matrix resulted in the identification of two clusters (one with a high abundance of

Prevotella copri), aligning with previous findings reported by Gacesa et al18. Next, we

examined potential associations between enterotypes and treatment response outcomes.

The three identified enterotypes were included in a Chi-square test, which did not display a

significant association between enterotypes and response (X2 (2, N = 79) = 1.59, p = 0.45).

In a recent study, the predictive potential of enterotypes, specifically Bacteroides2 (Bact2), in

vedolizumab response was highlighted17. Bact2 is characterized by a depletion of
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butyrate-producing bacteria, reduced microbial load, and is associated with gastrointestinal

inflammation. We identified a Bacteroides community in our cohort that shares similarities

with the Bact2 enterotype, showing low abundances of butyrate-producing bacteria and

reduced richness compared to our other communities. We investigated the relationship

between this enterotype and response to vedolizumab and ustekinumab in our cohort using

logistic regression. Our analysis did not identify any significant association between

response and our Bact2 (coefficient -0.2, p = 0.70). Additionally, we tested response and

other baseline variables, and found that previous anti-TNF use is significantly correlated to

response to ustekinumab or vedolizumab (coefficient = 1.31, p = 0.027, n=18 anti-TNF

naive).
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Figure 5: Utrecht validation and other prediction replication
A) 6-month vedolizumab features plotted as a log ratio based on Utrecht cohort values and
ROC-AUC plot from GLM models based on clinical features alone and clinical features plus
6-month vedolizumab microbiome features log ratio. Models were trained on the
vedolizumab cohort and tested on the Vedolizumab patients in the Utrecht cohort. B) 6
month combined cohort features plotted as a log ratio based on Utrecht cohort values and
ROC-AUC plot form GLM models based on clinical features and clinical features alone and
clinical features plus 6 month combined cohort microbiome features log ratio. Models were
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trained on the combined cohort and tested on the anti-TNF patients in the Utrecht cohort. C)
ROC-AUC curve based on Vedonet features in our vedolizumab cohort, determined using 4
fold 5 repeat k-fold cross validation in a random forest model. D) PCoA plot for enterotype
clustering in our combined cohort.

5. Response definitions based on short- and long-term response show different results

Finally, we repeated all analyses to identify features associated with short term response –

based on HBI/SCCAI scores at week 14 and 16 and long-term response/durable response.

Durable or prolonged response, defined as continuation of therapy after ~2 years, occurred

in 48 patients (55%), while 40 patients discontinued therapy, indicating that 17 patients

experienced a loss of response between six months and ~2 years after initiation of

treatment. In two patients the response after ~2 years could not be confirmed because of

relocation to another part of the country or their passing. Similarly, defining response using

clinical scores resulted in another distribution, with 35 responders (42%) and 48

non-responders identified.

Diversity and dissimilarity analyses were conducted for the additional definitions of response,

but no baseline differences between responders and non-responders were observed for

either definition. Subsequently, we performed differential abundance analysis for microbes,

pathways and metabolites based on each definition of response, considering the total cohort

and stratifying by biologic treatment. Interestingly, the majority of features showing

differential abundance in one response-definition-cohort combination were specific to that

combination. There was limited overlap in features between the same definition across the

three various cohorts, and similarly there was limited overlap between definitions within the

same cohort (Figure 6).
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Figure 6: Overlapping features based on three response definitions
UpSet plot showing the number of features overlapping between nine different sets: the
entire cohort and the cohort stratified by biologic, and the three definitions of response. The
categories of the overlapping features are indicated in pink (bacteria), blue (metabolites) and
yellow (pathways).
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Discussion

In this prospective study our aim was to identify factors of the gut microbiome predictive of

response to biologics (vedolizumab and ustekinumab) in patients with IBD. Several studies

have linked baseline microbiome composition to therapy outcomes, suggesting that the gut

microbiome plays a critical role as a potential modulator and predictor of treatment

response7,10,11,17. We took a comprehensive approach and considered clinical characteristics,

gut microbiome species, pathways and fecal metabolites. Our analyses, focusing on the

alpha and beta diversity of the gut microbiome at baseline, both at species level and

pathways, did not reveal significant differences that could help to identify future responders

or non-responders. Seven metabolites were found to differ at baseline between responders

and non-responders. In line with the minimal differences in gut microbiome and metabolite

profiles at baseline in relation to treatment response, the AUCs of our prediction analysis

indicated that a combination of these features (AUC=0.73±0.12) might only marginally aid in

predicting response to biologic treatments. While our cohort is one of the largest reported to

date, the added predictive power of microbiome features was limited, implying a lack of

biological effects from the microbiome on the outcomes of ustekinumab and vedolizumab

therapy.

Previous studies have explored the relationship between the gut microbiome and its

metabolites, and outcomes of biologics treatments in IBD, focusing particularly on its

predictive capabilities. In line with prior studies, we found some predictive power associated

with higher abundance of specific secondary bile acids, like lithocholic acid, in our

models15,19. However, we did not find a difference in abundance of this SBA between

responders and non-responders. Interestingly, when grouping the available PBAs and SBAs

in our dataset, the logratio PBA/SBA was significantly different between responders and

non-responders. We could not further investigate these signals in our replication cohort as

there were no fecal metabolites available. Additionally, a study reported that CD patients

responding to vedolizumab showed significantly higher alpha-diversity at baseline, although

this difference did not reach significance in UC patients10. We did not identify baseline

differences in alpha-diversity between responders and non-reponders. Furthermore, they

also found that PCoAs failed to differentiate between remitters and non-remitters, which

aligns with the findings from our study. While they identified species (Roseburia inulinivorans

and Burkholderiales) to be more abundant at baseline in CD remitters compared to

non-remitters, these species were not identified as differentially abundant in our analyses.

Also, their predictive model, termed VedoNet (AUC=0.872), did not show the same predictive

power in our vedolizumab cohort (AUC=0.61). However, it is worth noting that there are
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several disparities between the studies, potentially explaining the lack of overlap in results:

1) differences in geographic origin of the patients, including differences in lifestyle 2) different

definitions of endpoints (remission at 14 weeks based on disease severity score versus our

6 month response definition), 3) fecal sample collection and processing differences and 4)

differences in health care systems, which may lead to different patient populations that get

treated with vedolizumab. In another study, it was demonstrated that a model based on

clinical data, stool characteristics and the Bact2 enterotype showed predictive power for

treatment outcomes (73.9% accuracy for biological therapies)17. Interestingly, their model

including only clinical data, showed a comparable ROC-AUC value of 73.5% Our study

findings show a similar pattern. Our model including microbiome features and clinical

features only marginally improved the clinical model, suggesting that the clinical model alone

hold considerable predictive value and inclusion of microbiome factors only slightly improves

the predictive capability.

The absence of baseline differences in microbial diversity between responders and

non-responders before the start of treatment may be attributed to the diverse disease

courses and prior management strategies among the patients. Patients starting with biologic

treatment often have a history of exposure to an intense range of therapies, for instance,

80% of our patients had prior exposure to TNFalpha antagonists. This exposure could

induce substantial alterations in both the gut microbiome and metabolite profiles prior to

sampling. Consequently, this may result in challenges to distinguish significant differences

between responders and non-responders, i.e. taxa, pathways or metabolites in a cohort of

this size. Furthermore, given the well-established fact of high heterogeneity in gut

microbiome composition between individuals20, the search for broad indicators or

‘biomarkers’ of the gut microbiome may give results that are small and too nuanced. The

individual’s optimal microbiome composition for response most likely varies, underscoring

the need for personalized medicine.

Our analyses underscore the significant impact of the chosen definition of response and the

timing of defining response on study outcomes. Definitions relying on disease severity

scores (HBI and SCCAI) possess a subjective nature. They might capture symptoms

resembling and belonging to irritable bowel syndrome rather than accurately reflecting active

disease of IBD. This study had the opportunity to use extensive information captured by the

medical records of the patients. We believe that the optimal representation of the clinical

context involves a broad approach, including a combination of clinical disease activity

scores, routine laboratory diagnostic values, fecal calprotectin and most importantly, the

global assessment of the treating gastroenterologist based on these factors. For
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generalizability, our study could have benefitted from incorporating endoscopic response

scores. However, it is important to acknowledge that our study was not a randomized trial,

and patients received standard care. The standard care practice does not involve evaluation

of endoscopic response.

To conclude, our study showed that within our prospective cohort of IBD patients undergoing

treatment with ustekinumab or vedolizumab, no significant differences in the gut microbiome

at baseline between response and non-responders were observed, and incorporating

microbial or metabolite features did not improve predictive power, leading us to infer that the

gut microbiome at this stage of IBD may have very little, or no impact on the outcome of

treatment with either vedolizumab or ustekinumab. The lack of replication of other prediction

methods suggests that predictive models, whether successful or not, appear limited to the

initial study cohorts of each prediction. Additionally, the sample size and sparsity of

microbiome datasets in many studies increases the risk of overfitting and false positives,

emphasizing the importance of external validation. Based on our findings and efforts to

identify and replicate predictors for treatment response, it appears that predictors of

therapeutic success are not found in the fecal microbiome.
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Supplementary Figure S1

Frequency of features used in the CoDaCoRe predictions over all medication and
response definitions
Shown are the predictors from the CoDaCoRe permutation analysis. Only features selected

more than 10% of the time are shown. For each cohort the Numerator and Denominator are

shown and for each response definition. Features highlighted in the numerator are more

abundant in responders and features in the denominator are more abundant in

non-responders.
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Supplementary table S1
MiMenet metabolite features
See attached excel file
Supplementary table S2
MiMenet microbiome features
See attached excel file

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.10.24307195doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.10.24307195

