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Abstract 

 

The role of plasma and serum proteomics in characterizing human disease, identifying 

biomarkers, and advancing diagnostic technologies is rapidly increasing. However, there is an 

ongoing need to improve proteomic workflows in terms of accuracy, reproducibility, platform 5 

transferability, and cost-effectiveness. Here, we present the Charité Open Peptide Standard 

for Plasma Proteomics (OSPP), a panel of 211 extensively pre-selected, stable-isotope 

labeled peptides combined in an open, versatile, and cost-effective internal standard for 

targeted and untargeted plasma and serum proteomics studies. The selected peptides show 

consistent quantification properties in human studies, across platforms and matrices, are well 10 

suited for chemical synthesis, and distribute homogeneously over proteomics-typical 

chromatographic gradients. Being derived from proteins that function in a wide range of 

biological processes, including several that are routinely used in clinical tests or are targets of 

FDA-approved drugs, the OSPP quantifies proteins that are important for human disease. On 

an acute COVID-19 in-patient cohort, we demonstrate the application of the OSPP to i) 15 

achieve patient classification and biomarker identification, ii) generate comparable quantitative 

proteome data with both targeted and untargeted proteomic approaches, and iii) estimate 

absolute peptide quantities to achieve cross-platform alignment across targeted, data-

dependent and data-independent acquisition (DIA) proteomic methods on different instrument 

platforms. The OSPP adds only cents of cost per proteome sample, thus making the use of 20 

an internal standard cost-effective and accessible. In addition to the standards, corresponding 

spectral libraries and optimized acquisition methods for several platforms are made openly 

available. 

 

  25 
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Introduction 

The analysis of human plasma and serum proteome is of increasing importance for 

biomedicine. Minimal invasive and straightforward plasma and serum collection is standard 

clinical practice, and proteins and metabolites circulating in the bloodstream reflect the 

physiological and/or pathophysiological state of humans 1–4. Plasma proteins play pivotal roles 5 

in various physiological processes and can serve as biomarkers for different conditions, with 

well-established biomarkers such as troponin T, C-reactive protein, procalcitonin, and cystatin 

C, supporting informed decisions related to diagnosis, prognosis, and intervention monitoring 
5–9. 

 10 

In clinical routine, protein biomarkers are typically examined individually. However, additional 

value can be obtained by combining biomarkers into panel assays, which hold great potential 

for improved diagnosis, monitoring of disease progression, and evaluating therapeutic efficacy 
10–14. For instance, during the COVID-19 pandemic or during a recent Mpox outbreak in 

Europe, protein panel assays aided in characterizing the antiviral host response and allowed 15 

fast response in the generation of marker panel assays 15–18. The design and set-up of protein 

panel assays for medical use however creates additional analytical and regulatory challenges, 

particularly to differences between platforms, sites, or batches, and when different analytical 

tests are used for the measurements of individual biomarkers 14.  

 20 

Liquid chromatography-mass spectrometry (LC-MS) based plasma proteomics has gained 

significant attention in both the identification and analysis of individual biomarkers but is 

especially attractive for the discovery and measurement of marker panels 14,16,18–23. LC-MS 

enables simultaneous evaluation of large numbers of proteins, elucidating the functional 

implications of specific biomarkers and unveiling changes within pertinent pathways while 25 

maintaining relatively low operational costs 3,12,24,25. However, their routine application still 

encounters obstacles originating from discrepancies in analytical platforms, data acquisition 

methods, and processing pipelines. These variations limit cross-platform reproducibility and 

complicate the development of automated and routine-applicable workflows.  

 30 

One potential approach to address some of these challenges is to include stable isotope-

labeled peptide standards (SIS) in the plasma proteomic workflows 26,27 where 13C, and 15N 

are commonly used stable isotopes 28–32. SIS is most commonly used in targeted proteomics 

platforms, used as quality control procedures, for estimating absolute peptide quantities, and 

also helps to achieve cross-platform and cross-laboratory reproducibility 26,29,33,34. Isotope-35 

labeled peptides as internal standards are increasingly gaining popularity in discovery 
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proteomic workflows as well 35–39, with broad peptide standards, such as the PQ500 standard 

(Biognosys, Switzerland) 40–42 or the PeptiQuant 270-protein human plasma MRM panel (MRM 

Proteomics Inc., Canada) 21,43, designed for targeted analysis, being more available. Thus far, 

there remain however practical limitations slowing their broad use in the routine. These include 

i) high costs per sample and ii) challenges in the consistent detection of the added SIS 5 

peptides across platforms and methods. At least for some studies, the use of these peptide 

panels might also be restricted by licensing terms.  

 

In response to these challenges, we introduce the Charité Open Peptide Standard for Plasma 

Proteomics (OSPP). Consisting of 211 isotope-labeled peptides derived from proteins 10 

involved in a wide range of biological processes, this panel is designed around peptides that 

have a high analytical performance, allowing constant detection at low technical variance. 

Made of peptides with favorable physical properties for chemical synthesis, combined with 

constant detection of the selected peptides, renders the OSPP highly cost-effective, so that 

on conventional proteomic platforms, it adds only cents of extra costs per sample.  15 
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Results 

Selecting peptides for a global plasma proteomic standard 

To establish a robust and versatile SIS panel, we utilized proteomic data produced in 1,505 

control injections, which were measured alongside the analysis of 15,617 plasma and serum 

proteomes at the Charité High throughput proteomics core facility from 2020 to 2022. These 5 

samples were prepared from human plasma and serum pools using a semi-automated 

workflow in 96 well plates which involves a clean-up step using solid phase extraction before 

being analyzed on a proteomic platform that uses analytical flow rate reverse phase 

chromatography, with water-to-acetonitrile gradients and a throughput of 3-5 minutes/sample 
44. Proteomes were recorded using data-independent acquisition on two SCIEX TripleTOF 10 

6600+ instruments operating in SWATH 45 or Scanning SWATH 44 mode. Data was analyzed 

using DIA-NN 46 with the DiOGenes spectral library 47.  

To prioritize the most reliably quantified precursors, we introduced a relative rank metric, which 

was defined as following. First we defined precursor weight as a ratio of a precursor’s % 

presence 𝑃𝑃𝑟𝑒𝑠, to the coefficient of variation %𝐶𝑉 15 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑝, 𝑛)  =  𝑃𝑃𝑟𝑒𝑠(𝑝, 𝑛)/𝐶𝑉(𝑝, 𝑛), 

and a weight-based rank 𝑅𝑎𝑛𝑘(𝑝, 𝑛)  =  𝑟𝑎𝑛𝑘{𝑊𝑒𝑖𝑔ℎ𝑡(𝑝, 𝑛)}. Here, p stands for precursor and 

n for a study pool series. The weight thus corresponds to a precursor’s signal-to-noise ratio 

(𝑆/𝑁 =  1/𝐶𝑉) multiplied by its presence. 

In order to exclude the influence of the total number of precursors on the ranking, we 20 

introduced relative rank 𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝, 𝑛), defined as the ratio of the rank to its maximum value 

in a study.  

𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝, 𝑛)  =  𝑅𝑎𝑛𝑘(𝑝, 𝑛)/𝑚𝑎𝑥_𝑝{𝑅𝑎𝑛𝑘(𝑝, 𝑛)} 

Finally, the precursor’s average (over considered studies) relative rank 𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝) was used 

to select the best „global“ (i.e. non-project specific) precursors for every protein while we also 25 

required that the lower cutoff of the relative rank be set as 0.6.  

𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝)  =  𝑚𝑒𝑎𝑛_𝑛{𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝, 𝑛)} 

𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝)  ≥  0.6 



6 

We selected only proteotypic peptides quantified in at least half of the examined studies. To 

allow coverage of a larger protein concentration range, only three top-ranked precursors were 

selected for each protein (Figure 1). Eventually, this selection process identified 382 

consistently quantified peptides. We then ranked these according to their suitability as internal 

standards such as a peptide length between 6-25 amino acids, a minimal likelihood of missed 5 

cleavages, and low susceptibility to chemical modifications (Figure 1, Supplementary Table 

1). Among these, we further prioritized peptides with high synthesis efficiency according to the 

Peptide Analyzing Tool (Thermo Scientific) 48. We also incorporated 24 out of 50 peptides from 

a previous peptide panel, which showed excellent cross-platform analytical performances 16,18. 

  10 
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Figure 1 Overview of the Peptide Selection Process to generate the Charité Open Standard for Plasma 

Proteomics (OSPP) 5 

Plasma and serum proteomic data acquired from 1505 measurements of study control samples were used for 

selecting 187 peptides with ideal properties of an internal standard (Scheme). Peptide selection for the OSPP was 

based on consistent detection across studies, the obtained signal stabilities, chemical and biophysical properties, 

and suitability for synthesis. In addition, we added 24 peptides out of a previously generated targeted panel assay, 

which showed excellent cross-platform performance 16 The total of 211 selected peptides (Supplementary Table 10 

1) were synthesized in both native and isotopically labeled form which coelute on the chromatogram. 
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Eventually, our selection converged on 211 proteotypic peptides (187 newly selected peptides 

plus the 24 peptides from the previously described COVID-19 / MPox panel 16,18. These 

peptides are derived from 131 plasma proteins of which 57 key proteins are represented by 

two or three peptides. Due to the addition of the 24 best performing peptides from the COVID-

19 / MPox panel assay, for three proteins — SERPINA3, APOA1, and APOB — four or five 5 

peptides are included (Supplementary Table 1). The proteins cover the upper four orders of 

magnitude in the concentration range of human plasma (Figure 2a) and have been associated 

with several diseases, such as cancer and atherosclerosis. They encompass enzymes, 

transporters, and some cytokines (Figure 2b). Several of them cover a broad range of FDA-

approved drug targets 49 and a fraction already serving as routine clinical-chemistry 10 

biomarkers in different matrices (serum, as well as citrate-, heparin-, or EDTA-plasma) (Figure 

2b, lower panel).  

 

Detection of the OSPP standard peptides in different matrices 

To create the OSPP the selected peptides were synthesized in both native and isotopically 15 

labeled forms, with heavy labeling of the C-terminal arginine or lysine using 13C15N . Validation 

of the synthesized peptides involved quality checks via LC-UV/VIS by the peptide 

manufacturer and in-house analytical assessment by LC-MS analysis. Subsequently, native 

and SIS peptides were batch-pooled in groups of 11 based on their abundance in EDTA 

plasma and analyzed with 5 µl/min microflow-rate reversed-phase chromatographic gradient 20 

analyzed by Zeno SWATH DIA on a ZenoTOF 7600 instrument (SCIEX) 50. Quality criteria 

entailed the co-elution with their respective native forms, and that no native peptide signals 

were detected in isotopically labeled peptide preparations. Reassuringly, the selected 

peptides all have well-distributed hydrophobicity scales, achieving a balanced elution 

distribution across the entire retention time range in a 20-minute microflow chromatography 25 

(Figure 2c, Supplementary Table 1). 
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Figure 2: Characteristics of the OSPP peptide panel 

a) Plasma proteins represented by peptides in the OSPP, sorted by their abundance in human plasma according 

to analytical-flow rate DIA analysis (x-axis) as well as their estimated concentration on an absolute scale 49,51 (left 

y-axis). The inset shows the log-scale plasma protein concentration distribution of OSPP compared to those 5 

identified in the analytical flow DIA dataset. The panel peptides are derived from proteins whose concentration 

spans over four orders of magnitude. 

b) OSPP proteins and their associated biological functions as curated from The Human Protein Atlas 49,51 (upper 

panel), whether they are FDA-approved drug targets (middle panel), as well as their use in routinely used clinical 

tests based on Serum, Citrate, Heparin, or EDTA plasma, respectively (lower panel).  10 

c) Extracted ion chromatograms illustrating the chromatographic elution of the OSPP peptides in a 20-min µflow 

reversed-phase liquid chromatography, as analyzed by Zeno MRM-HR or Zeno SWATH DIA on a ZenoTOF 7600 

instrument (SCIEX). Intensities were normalized to the maximum intensity of the respective peptide. The OSPP 

peptides distribute chromatographically. 

 15 

Next, we evaluated the detection of the OSPP SIS upon spiking them into commercial plasma 

and different blood-derived sample types matrices, Heparin-, Citrate-, and EDTA - plasma, a 

commercial standard plasma (zenbio) as well as in serum. As an initial analysis of stable 

isotopic labeled peptides, we added an equal concentration of each peptide (“Single-conc. 

Standard”, 21.1 ng total peptide amount) into 1.5 µg of total protein digest from each matrix. 20 

Most (199/211) of the peptides are well quantified in Hexuplicate injections of commercial 

plasma and 97% (204 out of 211) peptides were detected in all blood matrices using analytical 
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flow rate chromatography (500 µl/min, 5-minute gradient) with a timsTOF HT mass 

spectrometer and analyzed using diaPASEF 52, demonstrating that the selected peptides are 

suitable as an internal standard in all the commonly used plasma and serum matrices.  

 

After evaluation of precursor intensities in all sample matrices, we created the concentration-5 

matched OSPP, in which each signal corresponding to a stable isotope-labeled peptide 

matches its endogenous counterparts in EDTA plasma within one order of magnitude in signal 

intensity. For this, we divided the peptides into four concentration bins of 10 pg/µl to 2 ng/µl 

for each peptide in 10% (v/v) Acetonitrile (Supplementary Table 2). 

 10 

Targeted plasma proteomics to study the human host response to a SARS-CoV2 

infection 

 

Next, we validated the OSPP for its use in targeted proteomics. As a use case, we focused on 

citrate-plasma samples obtained from a small (n=45) but well-balanced cohort of COVID-19 15 

patients. This cohort comprises healthy controls as well as individuals hospitalized between 

March 1 and 26, 2020 at Charité 16,44,53,54 exhibiting varying severities of COVID-19, classified 

using the WHO ordinal scale for clinical improvement 55,56. The WHO severity ranges from 0 

(healthy control), 3 (mild disease, hospitalized due to COVID-19, but without need for 

supplemental oxygen therapy) to 7 (critically ill patients with invasive mechanical ventilation 20 

and other organ support therapy) (Supplementary Table 3).  
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Figure 3: OSPP peptides measured by targeted proteomics, report disease severity in a COVID-19 inpatient 

cohort 

a) The OSPP was applied to citrate plasma samples, collected for a balanced COVID-19 cohort (a subgroup of the 

PA-COVID19 study 53) studied during the first wave of the pandemic consisting of healthy volunteers (n=15, 5 

WHO0), COVID-19 affected individuals requiring hospitalization but no oxygen therapy (n=10 (WHO3), COVID-19 

affected individuals requiring hospitalization and non-invasive oxygen therapy (n=4, WHO4; n=3 WHO5), and 

severely affected hospitalized individuals requiring mechanical ventilation (n=3 (WHO6), n=10 (WHO7). 

b) Unsupervised clustering by principal component analysis (PCA) based on the OSPP normalized quantity of 202 

quantified peptides clusters patients with COVID-19 by disease severity.  10 

c) Peptides with a significant abundance change (down- (top panel) and up-regulated (bottom panel)) distinguish 

healthy from affected individuals, as well as mild from severe forms of the disease, represented by the WHO 

treatment escalation score. Heatmaps display the log2 fold-change of the indicated peptide to its median 

concentration in patients with a severity score of WHO3. The top 15 significant peptides (adjusted p < 0.05) are 

shown. 15 

d) Visualization of the response to COVID-19 based on selected peptides indicating different COVID-19 severity 

trends (changing with severity expressed according to the WHO ordinal scale (as in (c)), and differentiating healthy 

from COVID-19-infected individuals). Boxplots display the OSPP normalized quantity of selected peptides in 

patients in different severity groups as explained in (a). The box-and-whisker plots display 25th, 50th (median) and 

75th percentiles in boxes; whiskers display upper/lower limits of data (excluding outliers). The extracted ion 20 

chromatograms display the relative response of representative samples of individuals classified according to the 

disease severity. 
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Upon sample preparation using the aforementioned semi-automated workflow, 1 µl (40.4 ng, 

total peptide amount over all 211 peptides) of the OSPP was spiked into 1.5µg of total plasma 

digest. Samples were separated using 20-min 5 µl/min µflow chromatography on an ACQUITY 

UPLC M-Class system (Waters), coupled with a ZenoTOF 7600 system (SCIEX). Data was 

recorded using a targeted method (Zeno MRM-HR) and processed using Skyline 57, including 5 

manual inspection of peak integration.  

 

To evaluate how well peptides could be detected and quantified across healthy individuals or 

patients with varying COVID-19 severity, we used the Zeno MRM-HR method and tested for 

their presence in samples in the aforementioned cohort. Peptides that were detected in more 10 

than two-thirds of samples were included for subsequent analysis, and this criterion was met 

by 202 of the 211 peptides. Among those peptides, more than two-thirds (138/202) exhibited 

significant changes according to COVID-19 severity (Supplementary Table 4). Moreover, 

principal component analysis of all peptide relative quantities normalized by OSPP grouped 

patients based on the WHO score, with the first dimension explaining 31.3% of the variance 15 

originating from disease severity (Figure 3b), of which we highlight the top 15 up- and down-

regulated peptides that change according to WHO grade (Figure 3b). These peptides 

correspond to several proteins important for the COVID-19 host response. For example, 

peptides derived from disease variant protein CLEC3B are down-regulated in severe COVID-

19 while complement factor C3-derived peptides increased due to treatment escalation (Figure 20 

3c,d). Additionally, other peptides exhibited distinct signals corresponding to specific treatment 

escalations. For example, a peptide derived from the enzyme inhibitor ITIH3 is strongly 

associated with infection itself, as is a peptide from the acute phase protein AHSG (Figure 

3c,d). Others, such as peptides from the kidney and inflammation marker CST3, changed 

drastically during critical COVID-19 cases, most likely reflecting kidney dysfunction6 and 25 

peptides associated with the calcium-regulated, actin-modulating protein gelsolin (GSN) which 

the reduced abundances were associated with worse outcomes 58 (Figure 3c,d). In summary, 

OSPP was effectively used in a Zeno MRM-HR assay to stratify COVID-19 patients. 

Furthermore, this targeted method successfully identified protein markers covered by OSPP 

for specific disease state transitions as was reported in our previous discovery proteomics 44,54 30 

and targeted MRM studies on the same cohort 16. 
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Comparing untargeted (Zeno SWATH DIA) with targeted (Zeno MRM-HR) 

proteomics for plasma proteome analysis using the OSPP  

 

A common difficulty in plasma proteomics is the comparison of datasets recorded with different 

acquisition methods. We proceeded to compare the results obtained with a targeted to an 5 

untargeted method, Zeno SWATH DIA 50. To this end, samples were acquired using the same 

instrumental setup with a 20-minute 5 µl/min RP chromatographic gradient in Zeno SWATH 

DIA acquisition mode. The data processing pipeline involved DIA-NN 46, using a modification 

of the DiOGenes spectral library 47, to which we added isotopic labels (13C15N) specifically on 

OSPP peptides, and excluded b ions for quantification. 10 

 

The majority of peptides (207/211), both the native and its matched SIS form, were quantified 

in over two-thirds of patient samples using Zeno SWATH DIA. Overall, 199/211 of these pairs 

were quantified in both Zeno SWATH DIA and Zeno MRM-HR (Figure 4a). As a normalization 

strategy that does not take into account the OSPP internal standard, we used a median 15 

normalization via endogenous peptide quantities (referred to here as "norm_light"). Moreover, 

in order to evaluate the benefits provided by the OSPP, we calculated a ratio of the quantity 

of endogenous peptide over the quantity of its corresponding SIS (i.e., the light/SIS, “ratio”).  

 

  20 
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Figure 4: Using the OSPP as an internal standard to align targeted and untargeted MS data, on the example 

of a COVID-19 cohort 

a) Intersections of quantified peptides (in both peptide groups, endogenous and SIS) of targeted and untargeted 5 

MS methods to the OSPP peptide list (Venn diagram)  

b) Coefficient of variation (CV) values calculated from each peptide quantity in quintuplicates of a study pool sample 

for both methods (Density plot). Dashed lines display the median CVs of each normalization strategy (norm_light: 

14%, ratio: 9%) 

c) Quantities of Ceruloplasmin-derived peptide GAYPLSIEPIGVR in critically ill COVID-19 patients (n = 13), as 10 

determined by Zeno MRM-HR and ZenoSWATH (correlation plot). A regression line was fitted to the data (y~x). 

d) Distribution of all r2 values calculated for each quantified light peptide in each severity group from correlating 

Zeno MRM-HR and Zeno SWATH DIA (Density plot, Supplementary Table 5). 

e) Distribution of slopes from correlating Zeno MRM-HR and Zeno SWATH DIA, fitted to a linear model (y ~ x) 

(Boxplot). The color of the dots represents the respective severity group. The box-and-whisker plots display 25th, 15 

50th (median), and 75th percentiles in boxes; whiskers display upper/lower limits of data (excluding outliers).  

f) Median endogenous normalized (“norm_light”) and OSPP normalized (“ratio”) quantity of Ceruloplasmin-derived 

peptide GAYPLSIEPIGVR in patients across different severity groups (Boxplots). The box-and-whisker plots 

display 25th, 50th (median), and 75th percentiles in boxes; whiskers display upper/lower limits of data (excluding 

outliers).  20 
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To assess the quantitative precision, we generated a study pool sample and analyzed it in 

quintuplicate, alongside the study samples. While Zeno SWATH DIA produced precise 

quantification results also without the standard, a marked improvement in CV is observed upon 

normalizing the peptide signals to the OSPP. The median CV of all peptides quantified 

changed from 14% without the standard, to 9% of median CV with the OSPP normalized 5 

values (Figure 4b, Supplementary Table 5).  

 

Next, we explored quantitative similarities and differences between the targeted Zeno MRM-

HR and the DIA method, by fitting a linear regression model to each peptide quantity in each 

severity group. In our comparison, an r2 close to 1 indicates data acquired from Zeno SWATH 10 

DIA has a close relation to Zeno MRM-HR data, and a slope close to 1 indicates that the 

quantities obtained from both methods are highly consistent. For example, the quantity for the 

Ceruloplasmin-derived peptide GAYPLSIEPIGVR correlated with an r2 of 0.55 without OSPP 

normalization for Zeno MRM-HR and Zeno SWATH DIA. When applying OSPP to form ratios 

between the endogenous peptide signal and the standard, the r2 value increased to 0.89 15 

(Figure 4c). Across the top 30 up- or down-regulated peptides that distinguish the COVID-19 

patients in Zeno MRM-HR (as in Figure 3c), the average r2 of the mild patient group was 0.53 

(up-regulated) or 0.27 (down-regulated) without the standard and improved to an average r2 

of 0.88 (up-regulated) or 0.74 (down-regulated) upon OSPP normalization. Also, across all 

peptides in all severity groups, the median correlation between the normalized quantities 20 

obtained with Zeno MRM-HR and Zeno SWATH DIA improved markedly from 0.39 to 0.83 

(Figure 4d). For comparison between methods, we also observed a calculated slope generally 

closer to 1 when applying normalization to the internal standard (Figure 4e, Supplementary 

Table 5). 

 25 

Owing to this improvement in analytical precision, the ability to distinguish disease severity 

also improved, and was consistent between the methods. For example, the copper transport 

protein Ceruloplasmin was reported as upregulated in severe COVID-19 in previous studies 
54,59–61. In our analysis, significance of this signal would have been missed without 

normalization to the OSPP (p = 0.078 in Zeno MRM-HR and p = 0.075 in Zeno SWATH DIA), 30 

but we detected a significant correlation with severity and Ceruloplasmin levels upon 

normalizing to the OSPP, in both targeted and untargeted proteomics (p = 0.014 in Zeno MRM-

HR and p = 0.011 in Zeno SWATH DIA) (Figure 4f, Supplementary Table 5 ).  
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Use of the OSPP in comparing plasma proteomic data acquired on different DIA-

MS platforms 

 

In the next step, we tested the OSPP for comparing various LC-MS configurations, spanning 

from nano-flow chromatography (250 nl/min) to an 800 µl/min analytical flow rate 5 

chromatography used in high-throughput applications, coupled to different mass 

spectrometers, namely an Orbitrap Exploris 480 System (Thermo Scientific) and a ZenoTOF 

7600 System (SCIEX). We injected samples from the aforementioned COVID-19 cohort, and 

data was acquired using DIA-MS on all platforms and processed with the same DIA-NN 

pipeline.  10 

 

Out of the 211 peptides of the OSPP, 187 pairs (88.6%) of a native peptide and its matched 

isotopically labeled internal standard were consistently identified and quantified across more 

than two-thirds of the clinical samples, across both platforms and different acquisition methods 

(Figure 5a). 15 
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Figure 5: Using the OSPP as an internal standard to align data obtained with the DIA-MS-platform, on the 

example of a COVID-19 cohort 

a) OSPP peptides quantified on the indicated DIA-MS platforms (UpSet plot). Intersection of sets of peptides 5 

quantified on multiple platforms are shown. Each column corresponds to a DIA-MS platform or set of platforms 

(dots connected by vertical lines) quantifying the same peptides. The number of peptides in each set appears 

above the column, while the ones shared per DIA-MS platform are indicated in the graphic below the column, with 

the name of the DIA-MS platform on the left (nThermo: nanoflow attached Exploris 480, (-MS1: MS1 quantification; 

-MS2: MS2 quantification), hZSWATH: analytical flow attached ZenoTOF 7600, Zeno SWATH DIA; hZsSWATH: 10 

analytical flow attached ZenoTOF 7600, scanning DIA; uZSWATH: µflow attached ZenoTOF 7600, Zeno SWATH 

DIA). 

b) Quantitative performance (signal stability) of OSPP peptides, during the measurement of the same study pool 

samples from the COVID-19 cohort (as in Figure. 3a) evaluated based on 𝑛 ≥ 3 study pool samples injected 

throughout the acquisition on different DIA-MS platforms. Shown are the log2 fold-changes of the normalized 15 

quantities for each of the 187 quantified peptides normalized to the median of the study pool samples for the 

respective peptide. 

c) Coefficient of variation (CV) values (bins = 50) calculated for each peptide in the study pool sample within all 

MS methods (Density plot). 

d) Coefficient of variation (CV) values calculated for each peptide in the biological plasma samples within all MS 20 

methods (Density plot). Boxplots show the distribution of CVs in each severity group; 25th, 50th (median), and 75th 

percentiles are shown in boxes; whiskers display upper/lower limits of data. 

e) Unsupervised clustering by principal component analysis (PCA) based on the OSPP normalized quantity of 187 

quantified peptides clusters patients with COVID-19 by severity, for normalization by the median of endogenous 
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light peptides (left) or via ratio to heavy peptide standard (right). Differences in clustering indicate a reduced 

influence of technical variance when normalizing via ratio to heavy standard peptide.  

f) Endogenous peptide median normalized and OSPP normalized quantities of Ceruloplasmin-derived peptide 

GAYPLSIEPIGVR across different severity groups. The box-and-whisker plots display 25th, 50th (median), and 

75th percentiles in boxes; whiskers display upper/lower limits of data (excluding outliers).  5 

 

 

First, we compared the quantities obtained from study pool samples, which were injected at 

least 3 times on each of the platforms. We noticed that forming a ratio with the OSPP internal 

standard value was sufficient to obtain nearly consistent results across all platforms (Figure 10 

5b). Also, the CV values of all study pool replicates improved significantly, for all platforms. 

Without normalization to the OSPP internal standard, peptide intensities obtained across 

platforms displayed a median CV of 33.4%, and with normalization to the OSPP, a median CV 

of 16.2% was observed (Figure 5c, Supplementary Table 6). 

 15 

Next, we conducted a similar analysis with the COVID-19 cohort samples. As expected, peak 

areas differed between platforms without normalization to the internal standard. Upon forming 

ratios with the corresponding OSPP standard, the peptides were quantified across platforms 

with a median CV of just 13.2% (Figure 5d, Supplementary Table 6). Next, we generated 

biplots for both normalization strategies, i.e., with and without the OSPP, and analyzed the 20 

data using PCA. Without normalizing to the OSPP, technical variance emerges as the 

predominant source of variation, accounting for 28.9% of the observed variability in principal 

component (PC) 1, surpassing the biological variance inherent to the samples (14.7%, PC2). 

Most separation on PC1 was explained by the type of the mass spectrometer, with data 

obtained from the Orbitrap-type mass spectrometer separating from the TOF instrument 25 

(Figure 5e, left panel). In contrast, upon normalizing to the OSPP, the differences between 

instruments were largely eliminated, with the biological signal (the COVID-19 treatment 

escalation score) becoming the dominating contributor (22.8% on PC1, Figure 5e, right panel). 

For instance, the peptide GAYPLSIEPIGVR derived from Ceruloplasmin is not identified as 

COVID-19 severity dependent in Zeno MRM-HR without normalizing to OSPP (Figure 5f, left), 30 

with the signal intensities varying greatly across DIA platforms. Upon normalization to the 

OSPP, each of the platforms produces a similar and comparable ratio, and enables 

distinguishing COVID-19 severity across platforms (Figure 5f right, Supplementary Table 6). 
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Estimating absolute peptide quantities and aligning different versions of the 

OSPP through calibration series 

 

One challenge with open standards is the potential for variation when assembled by different 

labs, including customization through the addition or removal of specific peptides, or 5 

adjustments in concentration of individual peptides. Therefore, we investigated whether 

comparable results can be obtained with differently assembled standards. We noted that such 

matching is facilitated upon the inclusion of external calibration series and estimating absolute 

quantities for the peptide measurements. In our test, we measured 45 samples from the 

aforementioned COVID-19 cohort (Figure 3a) on eight distinct LC-MS configurations, using 10 

two versions of the internal standard peptide panel, one with the OSPP, and the the other with 

all peptides equally concentrated (‘Single-conc. Std’).  

 

Eight-point external calibration curves were created for all 211 peptides, with BSA used as a 

surrogate matrix, applied three times on each method before and after sample acquisition. 15 

The limits of quantification (lower and upper: LLOQ and ULOQ) were determined based on 

the accuracy of replicated injection on the same LC-MS platform (Supplementary Table 7). 

114 out of 211 peptide/internal standard pairs (54.0%) show consistent quantification while 

falling within the reliable quantification range (i.e., between ULOQ and LLOQ, Supplementary 

Table 7). The endogenous peptide median normalized signals (“light_norm”) show the highest 20 

CVs with 34% on average across the methods, improved to 23% upon considering the median 

normalized ratio between endogenous peptide and corresponding internal standard 

(“ratio_norm”). Upon introducing the calibration curves to estimate absolute peptide 

concentrations (“calculated concentration”), the median CV across the platform and different 

standard compositions improved further to 18% (Figure 6a).  25 
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Figure 6: Aligning different MS analyses and internal standards through estimating absolute peptide 

concentrations and calibration series 

a) Coefficient of variation (CV) values calculated for each peptide within the cohort plasma samples for all 

normalization strategies (Density plots). Boxplots depict the distribution of CV values median (middle line), upper 5 

and lower quartiles (boxes), 1.5 times of the interquartile range (whiskers) as well as outliers (single points) 

(excluding outliers). 

b) Unsupervised clustering by principal component analysis (PCA) based on the OSPP normalized quantities of 

113 shared peptides falling within quantification limits (i.e., between ULOQ and LLOQ, see Supplementary Table 

7). The clustering of patients by COVID-19 treatment escalation scores improves from mere median normalization 10 

over standard ratio correction to standard calibration curve normalization.  

c) Absolute quantification of Ceruloplasmin-derived peptide GAYPLSIEPIGVR in patients over different severity 

groups on all analytical platforms, when normalized by use of a calibration curve (Boxplots). The box-and-whisker 

plots display 25th, 50th (median), and 75th percentiles in boxes; whiskers display upper/lower limits of data 

(excluding outliers).  15 

d) Quantitative performance during the measurement of the same study of all 45 samples (as in Figure 3a) injected 

throughout the acquisition on different DIA-MS platforms when using different normalization strategies (colors as 

in panel (a)). Shown are the log2 fold-changes of the normalized quantities for each of the 113 quantified peptides 

normalized to the median of the study pool samples for the respective peptide. Boxplot colored as subpanel 

headers in panel (c). 20 
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Similar performance gains were observed upon examining the source of variance via biplots 

when comparing all quantified batches. When comparing raw endogenous signals (Figure 6b, 

left panel), the variance in signals was mainly due to acquisition platforms, notably, even when 

the same sample was measured on the same platforms in different batches. By forming a ratio 

of endogenous peptide signals versus the corresponding spiked-in internal standard (Figure 5 

6b, middle panel), the variance between acquisition platforms was largely mitigated, however, 

technical variance still surpassed biological and was dominated by different versions of the 

peptide standard. When applying calibration curves for correcting the peptide concentration 

values and to estimate absolute values (Figure 6b, right panel), technical differences were 

corrected further, and the biological variance of samples finally dominated the variance, 10 

despite using different versions of the standard.  

 

For instance, the peptide GAYPLSIEPIGVR derived from Ceruloplasmin (Figure 6c) exhibits 

consistent trends with COVID-19 disease severity and also demonstrates similar and 

comparable absolute concentration values across platforms, methods, and concentrations of 15 

the internal standard. Improved quantitative performance is underscored when assessing the 

log2 fold change (log2FC) to the median of each peptide in the sample (Figure 6d): 

Endogenous analyte signal normalization reveals distinct peptide quantities between 

acquisition batches and platforms while using OSPP and calibration curves to estimate 

absolute concentrations, effectively limited all possible technical variance from sample 20 

preparation to data acquisition.  
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Discussion 

 

With the increased focus on plasma and serum proteomics, the demand for workflows allowing 

cross-platform and cross-study comparisons is increasing. While the ultimate goal is to 

develop analytical technologies that are absolutely quantitative at the protein level, achieving 5 

accurate absolute quantitation in large proteomic sample series routinely and at reasonable 

cost currently remains a challenge. However, some key elements of absolute quantitation, 

such as those enabled by the use of stable isotope-labeled internal standards, can be 

implemented in routine workflows without a major increase in effort. While the use of an 

internal standard on its own does not control all steps in the workflow, it can substantially 10 

enhance analytical precision, and accuracy, and be used to estimate absolute peptide 

concentrations, to achieve cross-platform comparability of the generated data 16,21,26,29,33,34,43. 

 

In our study, we generate a concentration-adjusted internal standard, the OSPP, with the aim 

of making an internal standard panel that is cost-effective and easily accessible by the 15 

community for conducting plasma and serum proteomic experiments, in both targeted and 

untargeted proteomic investigations. We achieve cost-effectiveness and versatility both by 

selecting peptides that are consistently detected and quantified with low variance, and that 

have properties that make their synthesis efficient.  

 20 

The 211 peptides included in the OSPP are derived from proteins that function in the blood as 

part of key biological processes including metabolism, the innate and adaptive immune 

system, and the coagulation system, that are changed in a number of diseases (Figure 2b). 

Indeed, many of these proteins are already established markers in clinical routine, and several 

of the included proteins are targets of FDA-approved drugs (Figure 2b). For this reason, the 25 

OSPP can be used for targeted proteomics to obtain a broad plasma proteome signature, 

based on the proteins covered. We demonstrate the utility of this approach in the use case of 

a well-balanced COVID-19 patient cohort, on which we detect biologically meaningful signals 

within the proteins that are directly covered by the peptides that are represented in the OSPP. 

For example, the peptide quantities classified the patients according to the disease severity 30 

and consequently required treatment according to the WHO ordinal scale, with individual 

peptides distinguishing different treatment escalations, for example, healthy individuals from 

mild but hospitalized COVID-19 patients, while other peptides classified moderate from critical 

patients.  

One limitation of any SIS is that a targeted peptide panel does not cover all potential protein 35 

biomarkers. However, due to its open nature, the OSPP can be customized, for instance, 
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through adding disease-specific peptides. In theory, the OSPP can also be mixed with other 

SIS panels, such as PQ500 40, which would increase the number of peptides for a broader 

targeted analysis. Moreover, when combined with discovery proteomic methods, the use of 

the OSPP or any other SIS does not restrict protein quantification to those for which peptides 

are present in the standard. Indeed, the use of an internal standard can be helpful to improve 5 

the quantification of peptides that are not covered by the standard, for instance, upon applying 

cross-normalization strategies. In any case, an internal standard is a helpful tool for batch 

normalization and quality control, and to achieve cross-platform compatibility. Accordingly, 

easing data analysis is an underestimated benefit of SIS panels. In our experience, the hands-

on time of bioinformaticians and computational biologists can be a limiting factor in proteome 10 

studies. Specifically, the correction for complex batch effects and achieving cross-study 

comparisons requires specific skills, can be study-specific, and is time-consuming. Herein, we 

have shown that even a simple strategy of data normalization, like forming of a ratio between 

endogenous peptides and matching OSPP standard, improves data consistency and mitigates 

batch effects. Thus, a beneficial side effect of the use of an internal standard is that it can save 15 

hands-on data analysis time.  

 

Furthermore, we noted that the technical factors and variance across platforms could be 

further reduced upon estimating absolute peptide quantities on the basis of an 8-point 

calibration curve, and extended to data recorded with different concentrations of the standard 20 

with estimated absolute quantities. Thus, even though the estimation of absolute peptide 

quantities might not suffice to obtain absolute protein quantities, estimating absolute peptide 

quantities improves data quality and renders proteomic data more comparable. 

 

In conclusion, with the Charité Open Peptide Standard for Plasma Proteomics (OSPP), we 25 

present a highly optimized human SIS panel to be used as an internal standard in plasma and 

serum proteomics. We have shown the standard panel functions in combination with a wide 

range of analytical platforms and acquisition techniques including targeted, and data-

independent acquisition methods on different platforms. In the presented use case, a COVID-

19 in-patient cohort, the OSPP produced meaningful proteomic signatures that were 30 

comparably obtained on different instruments and acquisition methods. We also noticed a 

flexible usage of the peptides with the addition of external calibration curves and the estimation 

of absolute peptide quantities in discovery proteomic experiments, which enables modification 

of individual peptide concentration and the addition or removal of peptides to suit specific 

research needs. We would like to highlight that custom synthesis and concentration matching 35 

of OSPP peptides provides a highly versatile and cost-effective peptide panel, and offers 

flexibility and precision in high-throughput plasma proteomics with low additional cost per 
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sample for inclusion. In order to ease the implementation and adoption of OSPP in research 

applications, we have provided open access to not only the information of peptide standards, 

but also to details on acquisition methods, data processing pipeline, and spectral libraries for 

DIA proteomics. 

 5 

 

Data Availability 

LC-MS acquisition schemes, data analysis pipeline, spectral library as well as dataset used 

for data analysis and visualization are available online in Mendeley data 62  
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Materials and Methods: 30 

Reagents 

Water was from Merck (LiChrosolv LC-MS grade; Cat# 115333), acetonitrile from Biosolve 

(LC-MS grade; Cat# 012078), trypsin (Sequence grade; Cat# V511X) from Promega, 1,4-
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Dithiothreitol (DTT; Cat#6908.2) from Carl-Roth, iodoacetamide (IAA; Bioultra; Cat# I1149) 

and urea (puriss. P.a., reag. Ph. Eur.; Cat#33247) were from Sigma-Aldrich, ammonium 

bicarbonate (Eluent additive for LC-MS; Cat# 40867) and Dimethyl sulfoxide (DMSO; Cat# 

41648) were from Fluka, formic acid (LC-MS Grade; Eluent additive for LC-MS; Cat# 85178) 

was from Thermo Scientific™, bovine serum albumin (BSA; Albumin Bovine Fraction V, Very 5 

Low Endotoxin, Fatty Acid-free; Cat# 47299) was from Serva., commercial human plasma 

samples (Human Source Plasma, LOT# 20CILP1034) was from zenbio. 

 

Peptide Selection and Synthesis 

To prioritize the most reliably quantified precursors and minimize the influence of such factors 10 

as precursor abundance, study cohort, MS setups, LC separations, and sample preparation 

procedures, we introduced a relative rank metric, which was defined as following. First, we 

defined precursor weight as a ratio of a precursor’s % presence 𝑃𝑃𝑟𝑒𝑠, to the coefficient of 

variation %𝐶𝑉 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑝, 𝑛) = 𝑃𝑃𝑟𝑒𝑠(𝑝, 𝑛)/𝐶𝑉(𝑝, 𝑛) 15 

and a weight-based rank 𝑅𝑎𝑛𝑘(𝑝, 𝑛) = 𝑟𝑎𝑛𝑘{𝑊𝑒𝑖𝑔ℎ𝑡(𝑝, 𝑛)}. Here, p stands for precursor and 

n for a study pool series. The weight thus corresponds to a precursor’s signal-to-noise ratio 

(𝑆/𝑁 =  1/𝐶𝑉) multiplied by its presence. To minimize the influence of the total number of 

precursors on the ranking, we introduced relative rank 𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝, 𝑛), defined as the ratio of 

the precursors rank to the maximum rank value in a study 20 

𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝, 𝑛) = 𝑅𝑎𝑛𝑘(𝑝, 𝑛)/𝑚𝑎𝑥 {𝑅𝑎𝑛𝑘(𝑝, 𝑛)} 

Finally, the precursor’s average (over considered studies) relative rank 𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝) was used 

to select the best „global“ (i.e. non-project specific) precursors for every protein while we also 

required that the lower cutoff of the relative rank be set as 0.6. 

𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝)  =  𝑚𝑒𝑎𝑛 {𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝, 𝑛)} 25 

𝑅𝑒𝑙𝑅𝑎𝑛𝑘(𝑝)  ≥  0.6 

Additionally, we only consider proteotypic peptides in our panel and for more reliable 

quantification require those peptides quantified in at least half of the projects: 

𝑃𝑟𝑜𝑡𝑒𝑜𝑡𝑦𝑝𝑖𝑐(𝑝) == 1 
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𝑃𝑟𝑒𝑠𝐼𝑛𝑁𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠(𝑝)  ≥  4 

To avoid all peptides coming from those top abundant proteins in plasma and to allow covering 

a larger dynamic concentration range of proteins, only the top 3 peptides are selected for each 

protein. 

 5 

Further selection based on physical-chemical-and analytical properties  

The chemical properties of each peptide are calculated by the R package “Peptides v2.4.6”. 

The hydrophobicity of each peptide is calculated by function “hydrophobicity_kyte” 63, the 

hydrophobicity scales run from -2 to 2 where 94 peptides are hydrophobic (>0) and 117 are 

hydrophilic (<0); net charge is calculated with function “charge”; high missed cleavage is 10 

considered and excluded when "KK|KR|RR|RK|KP|RP" appears in the peptide sequence, with 

the exception of peptide “ANRPFLVFIR” (SERPINC1) which we previously found to be of 

interest and with good performance across large numbers of samples 16. Peptides containing 

cysteine and N terminal glutamine that are easily modified are excluded except 

“IC(Carboxymethylated)LDLQAPLYK” which is the only selected peptide for protein “PF4”. An 15 

additional 24 peptides (30 peptides, 6 of which are also selected from previously mentioned 

study pools selection) from the previous MRM panel 16 were included in the list. For checking 

the synthesis possibility of peptides, the Peptide Synthesis and Proteotypic Peptide Analyzing 

software tool (Thermo, [34]) was used with synthesis.  

 20 

A pool of all the study pools used for the initial selection was prepared and analyzed on a 20-

min water-to-acetonitrile 5µl/min microflow-rate chromatographic gradient analyzed by high-

resolution multiple reaction monitoring (Zeno MRM-HR) on a ZenoTOF 7600 instrument 

(SCIEX) to check the analytical performance of all shortlisted peptides. Nearly all peptides 

were well identified with a charge state mostly 2 or 3. One peptide 25 

EGPYSISVLYGDEEVPRSPFK from protein FLNA failed to be identified on µflow, however, it 

has a good identification on the analytical flow LC attached MS instrument with a charge state 

of 4.  

 

All the above criteria are listed in Supplementary Table 1. 30 

Peptide Synthesis and validation 

Reference peptide standards were custom synthesized by Pepmic Co., Ltd (Suzhou, China) 

where native peptides (natural, light [NAT]) were obtained at ≥95% purity and stable isotope-

labeled heavy labeled peptides (labeled on C-terminal lysine (K) or arginine (R) with stable 
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isotopes (K(U-13C6,15N2) or R(U-13C6,15N4))) - at ≥70% purity. Validation of the synthesized 

peptides involved initial assessment via LC-UV/VIS and LC-MS analysis. 

 

All peptide stock solutions were prepared at 1 mg/ml in 50:50 (v/v) ddH2O: acetonitrile mix. 

The peptides were batch-pooled in groups of 11 (~20 peptides per group) of each native and 5 

isotopic labeled standard, based on their endogenous abundance in the EDTA plasma pool of 

all the study pools acquired by µ-flow DIA MS. The peptide pools were further analyzed on the 

same LC-MS method. The validation of peptide synthesis is considered in two aspects: all 

isotopically labeled peptides should coelute with their corresponding native forms in 

chromatograms, and no native peptide was identified in isotopically-labeled-only pools, 10 

confirming the satisfactory purity of approximately 70% and affirming their successful 

synthesis and compatibility with our analytical platform. All synthesis peptide standards 

passed the above criteria and are aliquoted and stored in 96-well plates in a -80°C freezer for 

future preparation. 

  15 

Generation of the OSPP mixture 

We first mixed all isotopically labeled heavy peptide standards to reach a final concentration 

of 1 µg/µl and conducted dilution series w. 1/10/100/300/900 pg/µl of each peptide. The signal 

ratio (native endogenous peptide signal / heavy isotope labeled peptide signal) is calculated 

for each peptide in each concentration. For selecting an appropriate concentration of each 20 

peptide, we first calculate the linearity range of each peptide within 1-900 pg/µl of 

concentration. Among the linear concentrations, only the concentrations where heavy peptide 

quantities closely match their native counterparts within a 2x log10 difference were chosen. 

The concentration of each peptide was further adjusted and calculated to make sure all heavy 

peptides’ signals were the same or at most within a log10 difference from their endogenous 25 

counterparts. Next, we categorized all peptides into four distinct concentration tiers, mixing to 

establish a comprehensive concentration range of 10 pg/µl to 2 ng/µl of each peptide within 

the OSPP mixture(Supplementary Table 2). To avoid possible evaporation, the OSPP are 

dilated in 10% w/v acetonitrile, exhibiting no discernible evaporation effects when mixed with 

digested plasma samples in 384-well plates. We also tested the performance of the OSPP by 30 

spiking 1 µl (40.4 ng for all 211 peptides) into every 1.5 µg of digested plasma pool; signals of 

all peptides fell within log10 difference to their respective endogenous signals. 
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Equally-concentrated (“Single-conc. Std”) 

“Single-conc. Std” was prepared by pooling the same amount of each peptide. In the mixture, 

all peptides are equally concentrated with 600 pg/µl of each, and housed in 50% Acetonitrile. 

For matrix performance tests, the single-conc. Std was in 100 pg/µl as diluted in 10% 

Acetonitrile. 5 

Sample Preparation 

Plasma Samples & BSA 

Samples were prepared with minor modifications as described previously 58. Briefly, 

plasma/serum samples were stored at -80°C for 11-12 months prior to preparation, and clinical 

samples and calibration series were prepared as follows: 5 µl of citrate plasma were added to 10 

55 µl of denaturation buffer, composed of 50 µl 8 M Urea, 100 mM ammonium bicarbonate, 5 

µl 50 mM dithiothreitol (DTT) and internal standard mix. The samples were incubated for 1 h 

at room temperature (RT) before the addition of 5 µl of 100 mM iodoacetamide (IAA). After a 

30 min incubation at RT, the samples were diluted with 340 µl of 100 mM ammonium 

bicarbonate and digested overnight with 22.5 µl of 0.1 µg/µl trypsin (ca. 1:150 (m/m) Trypsin: 15 

Substrate ratio) at 37°C. The digestion was quenched by adding 50 µl of 10% v/v formic acid. 

The resulting tryptic peptides were purified on a 96-well C18-based solid phase extraction 

(SPE) plate (BioPureSPE Macro 96-well, 100 mg PROTO C18, The Nest Group). The purified 

samples were resuspended in 120 µl of 0.1% formic acid. 1 µl of OSPP was spiked to 1.5 µg 

of digested plasma and injected on LC-MS/MS platforms (ZenoTOF 7600, timsTOF, 20 

Exploris480) at customized volumes. 

 

Calibration Curves 

We introduce an 8-point calibration curve with BSA as a surrogate matrix. For the seven non-

zero calibration samples, 10 µl of the OSPP mixture (same as what the sample are used) was 25 

mixed with 10 µl of a dilution series of the native peptide standard pool ranging from 1000 to 

0.064 pg/µl; 20 µl of BSA tryptic digest was then added as a surrogate matrix. The last sample 

of the calibration series used 10% (v/v) acetonitrile buffer instead of the light peptide standard 

(see details in Supplementary Table 7).  
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Liquid chromatography Mass spectrometry 

Micro-flow-rate (µflow) LC attached ZenoTOF 7600 (Zeno SWATH DIA, Zeno MRM-HR) 

All samples were acquired on an ACQUITY UPLC M-Class system (Waters) coupled to a 

ZenoTOF 7600 mass spectrometer with an Optiflow source (SCIEX). Prior to MS analysis, 

250 ng samples were loaded onto LC and chromatographically separated with a 20 min 5 

gradient (time, % of mobile phase B: 0 min, 3%; 0.86 min, 7.1%; 2.42 min, 11.2%; 5.53 min 

15.3%; 9.38 min, 19.4%; 13.02 min, 23.6%; 15.48 min, 27.7%;17.27 min, 31.8%; 19 min, 40%; 

20 min, 80% followed by re-equilibration for 10 min before the next injection) on a HSS T3 

column (300 µm×150 mm, 1.8 µm, Waters) heated to 35°C, using a flow rate of 5 µl/min where 

mobile phases A and B are 0.1% formic acid in water and 0.1% formic acid in acetonitrile, 10 

respectively. To avoid introducing technical variance due to differences in injection volumes, 

we always injected a constant volume of the plasma sample or calibration series samples.  

 

Zeno SWATH DIA 

A Zeno SWATH acquisition scheme with 85 variable-sized windows and 11 ms MS2 15 

accumulation time was used. Ion source gases 1 and 2 were set to 12 and 60 psi, respectively. 

Curtain gas was at 25 psi, CAD gas at 7 psi, and source temperature was set to 300°C; spray 

voltage was set to 4500 V. 

 

Multiple Reaction Monitoring - High resolution (Zeno MRM-HR) 20 

A scheduled Zeno MRM-HR method with identical instrument setting parameters as for Zeno 

SWATH was developed and used. The choice of precursor and selection of retention time was 

adopted based on triplicate injections of EDTA plasma sample on the microflow attached Zeno 

SWATH DIA. The Zeno threshold was set to 20,000 cps and for all peptides, the TOF MS2-

scan range was from 200 to 1500 m/z, respectively. MS2 accumulation time was set to 13 ms. 25 

Retention time tolerance was set as +/- 20 seconds. Collision energies were defined based 

on the following formula: CE = slope * m/z + intercept, Supplementary Table 8).  

 

Supplementary Table 8 calculation formula for Zeno MRM-HR method 

Charge State Slope Intercept 

1 0.05 5 

2 0.049 -1 

3 0.048 -2 
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4 0.05 -2 

 

Analytical flow-rate system LC attached ZenoTOF 7600 (Zeno SWATH DIA MS, scanning 

DIA) 

Samples were acquired on a 1290 Infinity II UHPLC system (Agilent) coupled to a ZenoTOF 

7600 mass spectrometer with a DuoSpray TurboV source (SCIEX). Prior to MS analysis, 5 

samples were chromatographically separated on an Agilent InfinityLab Poroshell 120 EC-C18 

1.9 µm, 2.1 mm × 50 mm column heated to 50°C. A gradient was applied that ramps from 3 

to 36% buffer B in 3 min (buffer A: 1% acetonitrile and 0.1% formic acid; buffer B: acetonitrile 

and 0.1% formic acid) with a flow rate of 800 µl /min. For washing the column, the flow rate 

was increased to 1.2 ml /min and the organic solvent was increased to 80% buffer B in 0.1 min 10 

and was maintained for 1.4 min at this composition before reverting to 3% buffer B in 0.1 min. 

1.5 µg of the plasma sample or calibration series sample was loaded prior to cohort samples 

entering MS. 

 

Zeno SWATH DIA acquisition scheme with 60 variable-sized windows and 13 ms MS2 15 

accumulation time was used. Ion source gas 1 (nebulizer gas), ion source gas 2 (heater gas), 

and curtain gas were set to 60, 65, and 55 psi, respectively; CAD gas was set to 7 psi, source 

temperature to 600°C, and spray voltage to 4000 V.  

 

The scanning DIA method used the same instrumental source setup parameters as Zeno 20 

SWATH DIA. The method consisted of an MS1 scan from m/z 100 to m/z 1000 and 25 MS2 

scans (25 ms accumulation time) with variable precursor isolation width covering the mass 

range from m/z 400 to m/z 910. Q1 mass width is set as 2.5 Da with a scan speed of 750 

Da/Sec. The applied collision energies were as for Zeno SWATH (derived from a linear 

equation, see above). 25 

Analytical flow-rate system LC attached timsTOF HT 

Samples were analyzed on a Bruker timsTOF HT mass spectrometer coupled to a 1290 Infinity 

II LC system (Agilent). Before MS detection, 5 µg of the sample were chromatographically 

separated on a Phenomenex Luna®Omega column (1.6 μm C18 100A, 64 30 × 2.1 mm) heated 

to 50°C, using a flow rate of 0.5 ml/min where mobile phase A & B were 0.1% formic acid in 30 

water and 0.1% formic acid in acetonitrile, respectively. The LC gradient ran as follows: 1% to 

36% B in 5 min, increase to 80% B at 0.8 mL over 0.5 min, which was maintained for 0.2 min 

and followed by equilibration with starting conditions for 2 min. 
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For diaPASEF MS acquisition, the electrospray source (Bruker VIP-HESI, Bruker Daltonics) 

was operated at 3000 V of capillary voltage, 10.0 l/min of drying gas, and 240 °C drying 

temperature. The diaPASEF windows scheme was as follows: we sampled an ion mobility 

range from 1/K0 = 1.30 to 0.7 Vs/cm2 using ion accumulation times of 100ms and ramp times 5 

of 133ms in the dual TIMS analyzer, each cycle times of 1.25 s. The collision energy was 

lowered as a function of increasing ion mobility from 59 eV at 1/K0 = 1.6 Vs/cm2 to 20 eV at 

1/K0 = 0.6 Vs/cm2. For all experiments, TIMS elution voltages were calibrated linearly to 

obtain the reduced ion mobility coefficients (1/K0) using three Agilent ESI-L Tuning Mix ions 

(m/z, 1/K0: 622.0289, 0.9848 Vs/cm2; 922.0097, 1.1895 Vs/cm2; and 1221.9906, 1.3820 10 

Vs/cm2). 

Nanoflow rate LC attached Exploris 480 (Thermo Scientific) 

Samples were analyzed on an Exploris 480 (Thermo Scientific) coupled to a Vanquish Neo 

UHPLC-System (Thermo Scientific) utilizing a 22-minute gradient in nanoflow (0.25µl/min). 

For LC separation, the attached column was an in-house packed 20 cm long 1.9 µm column. 15 

A shortened gradient time was used with the published acquisition method 65 where mobile 

phases A & B were 0.1% formic acid plus 3% acetonitrile in water and 0.1% formic acid in 

90% acetonitrile, respectively. The LC gradient ran as follows: increased from 2% buffer B to 

30% buffer B over the course of the first 14.5 minutes and increased to 60% buffer B within 

the next 1.5 minutes. Finally, buffer B concentration increased to 90% for one minute and was 20 

held for 5 minutes to flush the column.  

 

For Orbitrap acquisition, full scans were acquired between 350-1650 m/z with a resolution of 

120,000. For MS2 scans, the maximum injection time was set to 54 ms, and scans were made 

over 40 variable-sized isolation windows. 25 

 

Generation of OSPP-specific Human Spectral Library  

A comprehensive spectral library for human Stable Isotope Labeling was constructed through 

a multistep process using DIA-NN and a custom R script. For all the experiments, we used a 

project-independent public spectral library DiOGenes 47 reannotated by Human UniProt 66 30 

(UniProt Consortium, 2019) isoform sequence database (3AUP000005640, [27 March 2023] ). 

The library was first automatically refined based on the dataset at 0.01 global q-value (using 

the “Generate spectral library” option in DIA-NN). DIA-NN was employed with specific 

commands to enhance the library's accuracy and utility and label all Arginines and Lysines in 

the existing spectral library: --fixed-mod SILAC,0.0,KR, label --lib-fixed-mod SILAC --channels 35 
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SILAC,L,KR,0:0; SILAC,H,KR,8.014199:10.008269 --peak-translation --original-mods --

matrix-ch-qvalue 0.01 

 

This set of commands facilitated the automatic segregation of the spectral library into multiple 

channels, particularly for precursors associated with the Lysine and Arginine label group 5 

modification. To improve precision and accuracy during quantification, this heavily labeled 

spectral library was further refined. This refinement involved only keeping the label for peptides 

from OSPP with only the C terminal Lysine or Arginine labeled; and for quantification accuracy, 

all b-ions were excluded from quantification by labeling b-ions as “T” in the 

"ExcludeFromAssay" category. 10 

 

Data Acquisition & Processing 

All raw data from the ZenoTOF 7600 system were acquired by SCIEX OS (v. 3.0). All raw data 

from timsTOF HT were acquired with timsControl (v.5.1.8) and HyStar (v.6.3.1.8). All raw data 

from Exploris 480 (Thermo) were acquired using Xcalibur. 15 

Discovery proteomics 

The raw proteomics data from all DIA methods was processed using DIA‐NN, 1.8.1, available 

on GitHub (DIA‐NN GitHub repository 67). The MS2 and MS1 mass accuracies were set to 20 

and 12 ppm (ZenoTOF 7600 data) or 15 and 15 ppm (timsTOF and Exploris 480 data), and 

the scan window to 7. The aforementioned OSPP-specific Human Spectral Library is used for 20 

data processing with additional commands: --fixed-mod SILAC,0.0,KR,label --channels 

SILAC,L,KR,0:0; SILAC,H,KR,8.014199:10.008269 --peak-translation --original-mods --

matrix-ch-qvalue 0.01 --restrict-fr --report-lib-info 

 

Specifically, following a two-step MBR approach 46, an in silico spectral library is first generated 25 

by DIA-NN from the FASTA file(s); this library is then refined based on the DIA dataset and 

subsequently used to reanalyze the dataset, to obtain the final results. 

 

The data were filtered in the following way. First, a 1% run-specific q-value filter per isotope 

channel was automatically applied at the precursor level by DIA-NN (--matrix-ch-qvalue 0.01). 30 

We note that in any experiment processed using the MBR mode in DIA-NN, 1% global 

precursor q-value filtering is also applied automatically 46. 
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For quantification, we used “Precursor.Translated” value as quantities for each precursor in 

MS2 quantification. For Exploris 480 data, since orbitraps are sensitive in MS1, we also used 

“Ms1.Translated” was used. 

Targeted proteomics 

Zeno MRM-HR data were processed using Skyline (64-bit, v.23.1.0.268). No blinding was 5 

performed during peak integration. The quantity of each peptide is calculated by the 

summation of peak areas of each selected fragment of a peptide (list of fragments used for 

quantification in Supplement Table 4). 

Calibration curve 

The calibration curve for each of the 211 peptides was either accepted or rejected based on 10 

a set of rules and criteria: the limit of quantification (-LLOQ and –ULOQ) was determined 

based on the accuracy of replicated injection on the same LC-MS platform (Supplementary 

Table 6). Peptide concentration (expressed in pg/µl) was determined from calibration curves, 

constructed with native and isotopic labeled peptide standards in the surrogate matrix (4 ng/µl 

BSA), and manually inspected and validated. Peptides with > 40% of values below the lowest 15 

or above the highest detected calibrant concentration across all samples were removed from 

the analysis. Linear regression analysis of each calibration curve was performed using custom 

R code (with 1/x weighting). 

 

Data Analysis 20 

Data Completeness 

The completeness of data for each peptide was evaluated based on its frequency of detection 

across all biological samples. Peptides were considered if they were detected in more than 

66.7% (⅔) of the samples. We calculated the percentage of each peptide measured on each 

LC-MS platform/method and used only the peptides with a completeness value exceeding 25 

66.7% for subsequent analysis. 

Data Normalisation 

Two normalizing strategies to evaluate the quantification consistency were applied. The first 

approach was a normalization by median division of all endogenous peptide quantities in the 

study pools (except in the Thermo instrument, replicate 04 is excluded due to acquisition 30 

failure) measured on each platform. All peptides in each platform were applied with this factor, 

referred to as "norm_light".  
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𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑆)  =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑙𝑖𝑔ℎ𝑡(𝑀𝑆), 𝑛𝑎. 𝑟𝑚 =  𝑇) 

𝑛𝑜𝑟𝑚_𝑙𝑖𝑔ℎ𝑡 =  
𝑙𝑖𝑔ℎ𝑡

𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑆)
 

 

In addition, with the spiked OSPP mixture, we use the heavy isotope-labeled spiked peptide 

standard in each sample to normalize the corresponding endogenous peptide levels in the 5 

sample (endogenous peptide quantitym (light) /quantity of correspondent heavy labeled 

peptide quantity (SIS)), termed as "ratio".  

𝑟𝑎𝑡𝑖𝑜 =  
𝑙𝑖𝑔ℎ𝑡

𝑆𝐼𝑆
 

 

Precursor Selection 10 

As several precursors (charge state of +1 to +4) from the same peptide are quantified on 

different platforms, several criteria should be fulfilled to choose the best precursor used for 

follow-up quantification and cross-method / cross-platform comparison: a) Due to the 

difference in analyte ionization ability on various MS platforms, different precursors from the 

same peptide will show various abundances, the most abundant one shall be the charge state 15 

with the best ionization efficiency. b) Moreover, the abundance will also affect the 

reproducibility of the performance of isotopically labeled peptide standards. For replicate 

injections of study pool samples on each platform, we filtered for precursors with CV less than 

40% to guarantee reproducibility. c) Additionally, for precursors of different peptides from the 

same protein, we checked the behavior of isotopic labeled peptide standards throughout all 20 

study samples and only chose the precursor that showed the same trend. The precursors 

used for quantification on different MS platforms are listed in Supplementary Table 6. 

 

A coefficient of variation (CV) was calculated for each precursor as its median absolute 

deviation (R “stats v4.2.2” - function “mad()”) divided by its empirical median and multiplied by 25 

100 to report in percentages.  

Statistical analysis and visualization 

Significance testing of the trend between absolute peptide concentrations and the ordinal 

classification as provided by the WHO disease severity(levels as indicated) was performed 

using Kendall's tau (KT) statistics as implemented in the “EnvStats v2.8.1” R package 30 

“kendallTrendTest” function. For cohort 2 the KT statistics were calculated as the trend of 

absolute peptide concentrations against the following WHO groups: 0, 3, 4, 5, 6, and 7; 

selected peptides in each comparison were used for data analysis, without imputation. Where 
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indicated, multiple testing correction was performed by controlling for false discovery rate 

using the Benjamini-Hochberg procedure 1 as provided by the R package “stats v4.2.2” - 

“p.adjust” function. A full summary of these statistical test results is provided in respective 

Supplementary Tables. (Adjusted) P values were considered significant when p < 0.05.  

 5 

The upset plot is visualized using “UpSetR v.1.4.0” - function “upset”; the Venn diagram is 

visualized using “ggvenn v0.1.10”. Principal component analysis was performed and 

visualized using the R function “fviz_pca_biplot” from package “factoextra v1.0.7”. All other 

visualization is performed using “ggplot2 v.3.4.4” 

 10 
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