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12 0. Abstract

13 Osteoporotic hip fractures (HFs) in the elderly are a pertinent issue in healthcare, particularly 

14 in developed countries such as Australia. Estimating prognosis following admission remains 

15 a key challenge. Current predictive tools require numerous patient input features including 

16 those unavailable early in admission. Moreover, attempts to explain machine learning [ML]-

17 based predictions are lacking. We developed 7 ML prognostication models to predict in-

18 hospital mortality following minimal trauma HF in those aged ≥ 65 years of age, requiring 

19 only sociodemographic and comorbidity data as input. Hyperparameter tuning was 

20 performed via fractional factorial design of experiments combined with grid search; models 

21 were evaluated with 5-fold cross-validation and area under the receiver operating 

22 characteristic curve (AUROC). For explainability, ML models were directly interpreted as well 

23 as analyzed with SHAP values. Top performing models were random forests, naïve Bayes 

24 [NB], extreme gradient boosting, and logistic regression (AUROCs ranging 0.682 – 0.696, 

25 p>0.05). Interpretation of models found the most important features were chronic kidney 

26 disease, cardiovascular comorbidities and markers of bone metabolism; NB also offers direct 

27 intuitive interpretation. Overall, we conclude that NB has much potential as an algorithm, due 

28 to its simplicity and interpretability whilst maintaining competitive predictive performance.

29 Author Summary

30 Osteoporotic hip fractures are a critical health issue in developed countries. Preventative 

31 measures have ameliorated this issue somewhat, but the problem is expected to remain in 

32 main due to the aging population. Moreover, the mortality rate of patients in-hospital remains 

33 unacceptably high, with estimates ranging from 5- 10%. Thus, a risk stratification tool would 

34 play a critical in optimizing care by facilitating the identification of the susceptible elderly in 

35 the community for prevention measures and the prioritisation of such patients early during 

36 their hospital admission. Unfortunately, such a tool has thus far remained elusive, despite 

37 forays into relatively exotic algorithms in machine learning. There are three major drawbacks 

38 (1) most tools all rely on information typically unavailable in the community and early during 
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39 admission (for example, intra-operative data), limiting their potential use in practice, (2) few 

40 studies compare their trained models with other potential algorithms and (3) machine 

41 learning models are commonly cited as being ‘black boxes’ and uninterpretable. Here we 

42 show that a Naïve Bayes model, trained using only sociodemographic and comorbidity data 

43 of patients, performs on par with the more popular methods lauded in literature. The model is 

44 interpretable through direct analysis; the comorbidities of chronic kidney disease, 

45 cardiovascular, and bone metabolism were identified as being important features 

46 contributing to the likelihood of deaths. We also showcase an algorithm-agnostic approach 

47 to machine learning model interpretation. Our study shows the potential for Naïve Bayes in 

48 predicting elderly patients at risk of death during an admission for hip fracture.

49 1. Introduction

50 The osteoporotic hip fracture (HF) is a global issue with an estimated financial burden of 17 

51 billion USD for the United States in 2002 and projected burden of £3.62 in 2023 for the 

52 United Kingdom [1, 2]. Estimates for short-term (in-hospital) mortality following HF have 

53 been placed in the vicinity of 2 – 10%, with an estimated mortality rate of 2.7% for HF 

54 hospitalisation in Australia [3-5]. In developed countries, though preventative measures 

55 (targeting reduction of hip fracture risk factors such as osteoporosis and falls) have reduced 

56 the age-standardized incidence rate of hip fractures, the absolute rate is increasing due to 

57 the ageing population [6]. In Australia, for instance, hospitalisations for HF in the elderly 

58 increased by almost 20% between 2006-07 and 2015-16 from 15 900 to 18 700 respectively 

59 [5]. With the trend towards an aged population expected to continue, including in Australia, 

60 HFs in the elderly will remain a relevant, and increasingly pressing challenge in healthcare. 

61

62 One key aspect in HF assessment and management challenge is the prognostication of poor 

63 short-term outcomes. There exists a substantial amount of analysis from traditional statistical 

64 methods (such as logistical regression, LR) in identifying key risk factors for predicting poor 
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65 outcomes, notably mortality, following HF and scoring tools that have risen to prominence 

66 are the Nottingham Hip Fracture Score (NHFS) and the orthopaedic- Physiological and 

67 Operative Severity Score for the enUmeration of Mortality and Morbidity (O-POSSUM) [7-

68 10]. Most of these tools require a combination of both clinical, laboratory and intra-operative 

69 data; and the lack of laboratory and intra-operative data early during admission limits the use 

70 of such tools in early risk stratification. 

71 Non-traditional mathematical algorithms, especially those associated with artificial 

72 intelligence (AI) and machine learning (ML), have become increasingly utilized in healthcare. 

73 A variety of ML algorithms, including regression-based methods, decision-tree based 

74 methods (i.e. decision trees [DT], Random Forests [RF], eXtreme Gradient Boosting [XGB] 

75 implementation), neural networks (NN), Naïve Bayes and support vector machines (SVM) 

76 have been used in the prognostication of patients in the general peri-operative [11-16] and 

77 peri-HF [17-20] period with varying degrees of success. However, most of these tools 

78 require data that is not readily available on admission (such as intra-operative data and 

79 laboratory data), much like the tools developed from traditional statistical methods and most 

80 do not predict short-term in-hospital mortality following HF.

81 Moreover, few studies compared multiple machine learning algorithms of different classes 

82 with each other. An exception to this was work performed by Forssten et al., who trained 

83 SVM, NB, and as well as LR (to be used as a baseline) models to predict the 1-year 

84 mortality post-HF, and found that LR outperformed all other models [17]. To our knowledge 

85 no study has trained a wider array of machine learning algorithms for prediction of short-term 

86 outcome following HFs. Tree-based methods have received the majority of attention. 

87 Another algorithm that has remarkable potential is naïve Bayes which is based on Bayes 

88 theorem, with the additional ‘naïve’ assumption that features are conditionally independent. It 

89 has been applied successfully across a wide variety of tasks in natural language processing 

90 (e.g. detection of spam email [21], text sentiment analysis, text/document classification) as 

91 well as in the medical  field (e.g. the prognostication in cirrhotic patients following TIPS [22], 
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92 prediction of 30-day mortality following HF [23],  prediction of osteonecrosis of femoral head 

93 with cannulated screw fixation [24] and prediction of mortality in post-surgical intensive care 

94 unit patients [25]). 

95 While predictive ability is an important characteristic of any prognostic tool, it is increasingly 

96 recognized that a desirable attribute of machine learning algorithm is that they are 

97 interpretable (or ‘explainable’) especially as ML models become increasingly complex [26, 

98 27]. Recognition of this issue has led to the development of the subfield of ‘interpretable’ ML 

99 and, in particular, the development and application of the SHapley Additive exPlanations 

100 (SHAP), an approach based on cooperative game theory [28-33]. 

101 Our goal, was to train multiple machine learning models, specifically Bernoulli Naïve Bayes 

102 (NB), DT, RF, XGB, SVM, logistic regression (LR) and the multi-layer perceptron (MLP, a 3-

103 layer NN) to predict in-hospital mortality for the elderly admitted with HF. We focus on using 

104 only those patient features that are readily available in the early phases during a hospital 

105 admission, i.e. sociodemographic and comorbidity data. The performances of each model 

106 would be compared to identify the most predictive algorithm. Finally, each predictive tool 

107 would be analyzed via direct interpretation of model and with calculation of SHAP values. 

108 2. Results

109 2.1. Patient cohort characteristics

110 Of the 3625 patients in the cohort, age was distributed non-normally with median age of 84 

111 (interquartile range of 10 years) and 2730 (75.3%) were female; 189 (5.2%) had in-hospital 

112 mortality. The most common comorbidity was hypertension (at 2045 [56.4%]). Details are 

113 present in Table 1 (with abbreviations defined below).

Table 1. Sociodemographic features, outcomes of HF cohort
Variable Total Cohort 

(N=3625)
Female 

(N=2730, 75.31%)
Male 

(N=895, 24.69%)
p value(1)

Sociodemographic features
Age (median [IQR]) 84 [10] 85 [10] 82 [12] <0.001
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Aged > 80 years (n,%) 2457, 67.8% 1937, 71.0% 520, 58.1% <0.001

PRCF resident (n,%) 1208, 33.3% 950, 34.8% 258, 28.8% 0.001

Smoker (n,%) 180, 5.0% 124, 4.5% 56, 6.3% 0.050

Alcohol overuse (n,%)(2) 144, 4.0% 60, 2.2% 84, 9.4% <0.001

Walking aids user (n,%) 1300, 35.9% 999, 36.6% 301, 33.6% 0.116

Comorbidities features
Hypertension, (n,%) 2045, 56.4% 1606, 58.8% 439, 49.1% <0.001

Anaemia (n,%) 1531, 42.2% 1051, 38.5% 480, 53.6% <0.001

CKD (n,%) 1444, 39.9% 1106, 40.5% 338, 37.8% 0.152

Dementia (n,%) 1117, 30.8% 858, 31.4% 259, 28.9% 0.172

CAD (n,%) 1073, 29.6% 750, 27.5% 323, 36.1% <0.001

History of AMI (n,%) 287, 7.9% 191, 7.0% 96, 10.7% <0.001

AF (n,%) 702, 19.4% 513, 18.8% 189, 21.1% 0.139

COPD (n,%) 561, 15.5% 385, 14.1% 176, 19.7% <0.001

T2DM (n,%) 482, 13.3% 325, 11.9% 157, 17.5% <0.001

OP (n,%) 478, 13.2% 410, 15.0% 68, 7.6% <0.001

CVA (n,%) 431, 11.9% 323, 11.8% 108, 12.1% 0.897

TIA (n,%) 309, 8.5% 227, 8.3% 82, 9.2% 0.474

PD (n,%) 172, 4.7% 97, 3.6% 75, 8.4% <0.001

Malignancy (n,%) 82, 2.3% 52, 1.9% 30, 3.4% 0.017

PTH>6.8pmol/L 1684, 46.5% 1275, 46.7% 409, 45.7% 0.628

25(OH)vitamin 
D≤25nmol/L

610, 16.8% 467, 17.1% 143, 16.0% 0.464

25(OH)vitamin 
D≤50nmol/L

1659, 45.8% 1235, 45.2% 424, 47.4% 0.283

Outcome
Died (n,%) 189, 5.2% 130, 4.8% 59, 6.6% 0.040

114 1Pearson’s Chi-squaerr test (Yates corrected).

115 2Use>3 times a week.

116 Abbreviations: PRCF, permanent residential care facility; CKD, chronic kidney disease; 
117 CAD, coronary artery disease; AMI, acute myocardial infarction; AF,  atrial fibrillation; COPD, 
118 chronic obstructive pulmonary disease; T2DM, type 2 diabetes mellitus; OP, osteoporosis; 
119 CVA, cerebrovascular accident; TIA, transient ischaemic attack; PD, Parkinson’s disease; 
120 PTH, parathyroid hormone

121 2.2. Model Performance – Training

122 The model with the highest area under the receiver operating characteristic (AUROC) was 

123 MLP (AUROC 0.828) followed by LR, RF, XGB and NB (0.733, 0.730, 0.726 and 0.725 

124 respectively, all p>0.05), then DT (AUROC of 0.697) and finally SVM (AUROC 0.533). 

125 The model with greatest area under the precision-recall curve (AUPRC) was MLP (AUPRC 

126 0.245), followed by LR, XGB and RF (AUPRCs of 0.134, 0.133 and 0.130 respectively, 
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127 p>0.05), NB (AUPRC 0.124), DT (AUPRC of 0.094) and finally SVM (AUPRC of 0.058). 

128 Details are present in Table 2 and Table 3.

129

Table 2. Model performance (training phase)
AUROC AUPRC 

Mean STD 95%CI Mean STD 95%CI
SVM 0.533 0.029 0.475 - 0.591 0.058 0.004 0.050 - 0.067

NB 0.725 0.007 0.711 - 0.739 0.124 0.003 0.117 - 0.131

LR 0.733 0.008 0.717 - 0.750 0.134 0.004 0.127 - 0.141

DT 0.697 0.004 0.690 - 0.704 0.094 0.001 0.093 - 0.095

RF 0.730 0.007 0.716 - 0.745 0.130 0.003 0.125 - 0.136

XGB 0.726 0.007 0.711 - 0.741 0.133 0.005 0.122 - 0.144

MLP 0.828 0.008 0.813 - 0.844 0.245 0.030 0.186 - 0.305

130

Table 3. Comparison of model performance during training. (A) – AUROC (B) – AUPRC
(A) AUROC

t-test statistic  t-test p-value 

models SVM NB LR DT RF XGB MLP SVM NB LR DT RF XGB MLP

SVM - -
14.391

-
14.866

-
12.527

-
14.766

-
14.466

-
21.927

- 0.000 0.000 0.000 0.000 0.000 0.000

NB - - -1.683 7.766 -1.129 -0.226 -
21.666

- - 0.131 0.000 0.291 0.827 0.000

LR - - - 9.000 0.631 1.472 -
18.776

- - - 0.000 0.546 0.179 0.000

DT - - - - -9.153 -8.043 -
32.750

- - - - 0.000 0.000 0.000

RF - - - - - 0.904 -
20.614

- - - - - 0.393 0.000

XGB - - - - - - -
21.456

- - - - - - 0.000

MLP - - - - - - - - - - - - - -

(B)  AUPRC

t-test statistic t-test p-value

models SVM NB LR DT RF XGB MLP SVM NB LR DT RF XGB MLP

SVM - -
29.516

-
30.042

-
19.524

-
40.249

-
26.191

-
13.816

- 0.000 0.000 0.000 0.000 0.000 0.000

NB - - -4.472 21.213 -4.472 -3.451 -8.974 - - 0.002 0.000 0.002 0.009 0.000

LR - - - 21.693 2.236 0.349 -8.201 - - - 0.000 0.056 0.736 0.000

DT - - - - -
80.498

-
17.103

-
11.249

- - - - 0.000 0.000 0.000

RF - - - - - -1.342 -8.572 - - - - - 0.217 0.000

XGB - - - - - - -8.234 - - - - - - 0.000

MLP - - - - - - - - - - - - - -

131

132 2.3. Model  Performance – Test
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133 The models with highest AUROC were RF, NB, XGB and LR (AUROCs of 0.696, 0.694, 

134 0.689 and 0.682 respectively, all p>0.05;) followed by MLP and DT (AUROCs of 0.618, 

135 0.616 respectively, p>0.05) and finally SVM (AUROC of 0.499). 

136 The model(s) with highest AUPRC were NB, XGB, RF and LR (AUPRCs of 0.113, 0.113, 

137 0.112, 0.112 respectively, p>0.05), MLP and DT (AUPRCs of 0.077, 0.070 respectively, 

138 p>0.05), and SVM (AUPRC of 0.054) – see Table 4, Table 5 and Figure 1. 

Table 4. Model performance during testing (5-fold cross-validation)
AUROC AUPRC - Average precision
Mean STD 95%CI Mean STD 95%CI

SVM 0.499 0.048 0.404 - 
0.594

0.054 0.006 0.041 - 0.067

NB 0.694 0.024 0.646 - 
0.742

0.113 0.019 0.076 - 0.151

LR 0.682 0.034 0.614 - 
0.750

0.112 0.019 0.074 - 0.150

DT 0.616 0.028 0.560 - 
0.671

0.070 0.006 0.058 - 0.081

RF 0.696 0.030 0.636 - 
0.756

0.112 0.024 0.064 - 0.161

XGB 0.689 0.025 0.640 - 
0.738

0.113 0.024 0.065 - 0.160

MLP 0.618 0.027 0.565 - 
0.671

0.077 0.007 0.063 - 0.090

139

Table 5. Comparison of model performance on testing. (A) – AUROC (B) – AUPRC. 
(A) AUROC

t-test statistic t-test p-value
models SV

M
NB LR DT RF XGB MLP SVM NB LR DT RF XGB MLP

SVM - -
8.125

-
6.957

-
4.708

-
7.782

-
7.850

-
4.832

- 0.000 0.000 0.002 0.000 0.000 0.001

NB - - 0.645 4.729 -
0.116

0.323 4.704 - - 0.537 0.001 0.910 0.755 0.002

LR - - - 3.351 -
0.690

-
0.371

3.296 - - - 0.010 0.509 0.720 0.011

DT - - - - -
4.359

-
4.349

-
0.115

- - - - 0.002 0.002 0.911

RF - - - - - 0.401 4.321 - - - - - 0.699 0.003
XGB - - - - - - 4.315 - - - - - - 0.003
MLP - - - - - - - - - - - - - -

(B)  AUPRC
t-test statistic t-test p-value

models SV
M

NB LR DT RF XGB MLP SVM NB LR DT RF XGB MLP

SVM - -
6.621

-
6.509

-
4.216

-
5.242

-
5.333

-
5.578

- 0.000 0.002 0.003 0.001 0.001 0.001

NB - - 0.083 4.826 0.073 0.000 3.976 - - 0.936 0.001 0.944 1.000 0.004
LR - - - 4.713 0.000 -

0.073
3.865 - - - 0.002 1.000 0.944 0.005
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DT - - - - -
3.796

-
3.887

-
1.698

- - - - 0.005 0.005 0.128

RF - - - - - -
0.066

3.130 - - - - - 0.949 0.014

XGB - - - - - - 3.220 - - - - - - 0.012
MLP - - - - - - - - - - - - - -

140

141 2.4. Feature importance – Model interpretation

142 Feature importance rankings (1 being the most important) according to each model can be 

143 found in Table 6. Corresponding coefficients for NB, LR, XGB and RF can be found in Table 

144 7.

145 For the LR model, the 5 most important patient features in prediction of mortality were 

146 presence of CKD, vitamin D deficiency (≤25nmol/L), advanced age (>80 years), COPD, and 

147 AF. In the SVM model the 5 most important patients features in prediction of mortality were 

148 advanced age (>80 years), CKD, vitamin D insufficiency (≤50nmol/L), anaemia, and use of 

149 walking aids. For the NB model, the 5 most important features in mortality prediction were 

150 history of MI, AF, CKD and CAD. For the DT model the 5 most important features in mortality 

151 prediction were presence of CKD, hyperparathyroidism (PTH>6.8pmol/L), CAD, dementia 

152 and advanced age (>80 years). For the RF model the 5 most important features in mortality 

153 prediction were CKD, hyperparathyroidism (PTH>6.8pmol/L), CAD, dementia and advanced 

154 age (>80 years). For the XGB model the 5 most important features in mortality prediction 

155 were CKD, CAD, advanced age (>80 years), PTH>6.8pmol/L and AF. Finally, for the MLP 

156 model the 5 most important features in mortality prediction were AF, CKD, male sex, 

157 dementia, and MI.

Table 6. Feature importance rankings.
Feature importance rankings*Feature

LR SVM NB DT RF XGB MLP

Male 9 6 13 12 12 12 3

Aged > 80 3 1 12 5 5 3 14

Resident of PRCF 10 20 7 7 7 6 13

Smoking 13 17 20 15 15 19 23

Alcohol overuse 22 22 23 16 16 20 21

Walking aids use 16 5 14 17 17 13 6
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HT 18 7 19 18 18 22 20

CAD 8 14 4 3 3 2 19

MI 7 8 1 8 8 7 5

AF 5 15 2 13 13 5 1

CVA 20 11 16 19 19 16 22

TIA 15 13 11 20 20 15 10

dementia 12 10 8 4 4 9 4

PD 14 19 18 21 21 17 18

COPD 4 12 6 11 11 11 12

T2DM 17 16 15 10 10 14 11

CKD 1 2 3 1 1 1 2

Anaemia 11 4 10 9 9 10 8

Malignancy 23 23 22 22 22 23 17

Osteoporosis 21 21 21 23 23 18 16

PTH>6.8pmol/L 6 18 9 2 2 4 7

25(OH)vitamin D≤25nmol/L 2 9 5 6 6 8 9

25(OH)vitamin D≤50nmol/L 19 3 17 14 14 21 15

158 *In descending order of importance.

159 2.5. Feature importance – SHAP analysis

160 Features were also ranked by the mean absolute SHAP values as displayed in summary 

161 below (Figure 2).

162 For the LR model, the 5 most predictive patient features for mortality in order from highest 

163 magnitude to lowest, based on mean SHAP values, were CKD, advanced age (>80 years), 

164 hyperparathyroidism (PTH>6.8pmol/L), CAD, and residency from PRCF. Absence of any of 

165 these features had a negative SHAP value (i.e. a negative contribution) on the model 

166 outcome (in-hospital mortality); the magnitude of this impact was consistent across all 

167 patients. Likewise, the presence of any of these features always had a positive SHAP value 

168 (i.e. an additive contribution) on in-hospital mortality. The magnitude of this effect was again 

169 consistent across all patients. 

170 For NB model, the 5 most predictive features were CKD, AF, MI, residency from PRCF, 

171 CAD. Again, absence of any of these features most commonly had a negative impact on in-

172 hospital mortality; the magnitude of this effect varied among patients. The presence of any of 
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173 the above 5 features had a positive contribution to the prediction of in-hospital mortality; 

174 similarly, the magnitude of this effect varied significantly among patients. 

175 For the DT model, the 5 most predictive features were CKD, hyperparathyroidism 

176 (PTH>6.8pmol/L), advanced age (>80 years), presence of CAD and vitamin D deficiency 

177 (≤25nmol/L). Presence of these five comorbidities had a positive contribution to prediction of 

178 in-hospital mortality and, conversely their absence had a negative contributory effect on 

179 prediction. Interestingly, absence of T2DM had an additive effect and presence of T2DM had 

180 a negative effect on mortality prediction. The magnitude of contributions that each of the 5 

181 variables had varied among different patients. Finally, it is noteworthy that all other 

182 comorbidities had little to no influence on patient outcomes. 

183 For the RF model, the 5 most predictive features were CKD, hyperparathyroidism 

184 (PTH>6.8pmol/L), CAD, advanced age (>80 years) and residence from PRCF. The presence 

185 of these features increased likelihood of mortality and conversely absence decreased the 

186 likelihood of mortality; there was only a minor variation of contribution from each feature for 

187 each patient.

188 For the XGB model, the 5 most predictive patient features were advanced age (>80 

189 years), vitamin D deficiency (≤25nmol/L), CKD, CAD and hyperparathyroidism 

190 (PTH>6.8pmol/L). The presence (and absence) of any of these features increased (or 

191 decreased) the likelihood of mortality. For each feature, there was only mild variation in the 

192 magnitude of contributions among patients.

193 Finally, from the MLP model, the 5 most predictive patient features were male sex, 

194 advanced age (>80 years), CVA, HTN and TIA. The presence (or, conversely, the absence) 

195 of any of these features except for HTN were associated with an increased (decreased) 

196 likelihood of mortality; presence (or absence) of HTN appeared to decrease (increase) the 

197 likelihood of mortality. 
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198 Across all models, the 5 comorbidities most consistently with the greatest influence on 

199 mortality prediction were: CKD, advanced age (>80 years), elevated PTH (>6.8pmol/L), 

200 cardiovascular disease (CAD, MI, AF or HTN) and PRCF residence.

201 3. Discussion

202 We have trained and compared the performances of 7 machine learning models to predict 

203 in-hospital mortality for hospitalized elderly minimal trauma HF patients using only 

204 categorical data. Overall, the models had reasonable to good performance. We also 

205 performed an analysis of each model and applied SHAP analysis to gain insight into feature 

206 importance

207 3.1. Model performance – Training and Test

208 Notably, but unsurprisingly, classification performance showed some variation among 

209 algorithms. The trained models, ordered in decreasing performance (based on both test 

210 AUROCs and test AUPRCs), were RF, NB, XGB and LR (all with no statistically significant 

211 difference in performance – see Table 4, 5 and Figure 1) followed by MLP and DT (no 

212 statistically significant difference in performance) and finally SVM. AUROCs ranged from 

213 0.500 (SVM) to almost 0.700 (good performance), while AUPRC values ranged from 0.050 

214 (SVM) to 0.115; a reflection of using a simplified model (with binary input data) to perform 

215 predictions on a minority class in this imbalanced dataset. There was minimal difference 

216 between the training and cross-validation performance for the top 4 models (RF, NB, XGB 

217 and LR). A greater variation in training and cross-validation performance scores was noted 

218 for DT and MLP, an indicator of overtraining (an infamous tendency in machine learning). 

219 That overtraining has occurred despite systematic and meticulous hyperparameter tuning, is 

220 strongly suggestive of insufficient data.

221 To our knowledge, most studies have focused on only training and applying one class of 

222 machine learning algorithm. Often there is no baseline model trained using traditional 

223 statistics (e.g. LR). Indeed, most studies have solely utilized tree-based methods (e.g. 
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224 applying DT, XGB and RF methods) and this is reflected in a scoping study of ML usage in 

225 health economics and research (on 805 studies) which found the most frequent algorithms  

226 used were tree-based methods followed by regression-based (linear/logistic) methods, SVM, 

227 NN and finally NB [37]. However, it is known that performance on various tasks varies with 

228 different ML algorithms [38] and our finding that predictive performance varies among 

229 machine learning algorithms (for the same problem, using the same data) is consistent with 

230 this. It is thus ideal that in future applications of machine learning, a more comprehensive set 

231 of algorithms are trained, or some justification should be provided if possible when certain 

232 algorithms are not included. 

233 The performance of NB in predicting mortality is on par with RF, XGB and LR which warrants 

234 further discussion here as it has received relatively little attention in the literature. Key to its 

235 success is the simplifying assumption of conditional independence among all patient input 

236 features. The most obvious advantage from this is that, by virtue of such a simplification, it is 

237 computationally inexpensive and is fast to train and run. However, with such a large 

238 seemingly excessive, simplifying assumption (not strictly satisfied in our current database), it 

239 may seem surprising that this model performs so well. Contrary to intuition, its good 

240 performance is not a coincidental or even unexpected phenomenon; formal analysis of NBs 

241 has established it performs well because the interdependencies, when they do exist, occur in 

242 a manner which results in them ‘cancel[ling] each other out’ [39].

243 3.2. Feature importance – Model interpretation and SHAP analysis

244 Rankings of patient comorbidity importance in their role in mortality prediction were 

245 determined from all models from direct interpretation of feature coefficients (see Table 6 and 

246 Table 7). CKD was most consistently ranked as one of the 5 most important patient 

247 comorbidities in predicting mortality. The other most important patient features included 

248 markers reflective of bone metabolism (PTH, vitamin D levels) and cardiovascular disease 

249 (presence of either one of CAD, MI, AF). Similar trends were found via SHAP value analyses 

250 for each model, i.e. CKD, bone metabolism markers and presence of cardiovascular 
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251 diseases had the strongest influence on prediction of mortality based on mean SHAP values 

252 (Figure 2). It is recognized in the literature that cardiovascular comorbidities and renal 

253 function are important for prognostication which is reflected in their inclusion as input 

254 parameters for non-cardiac surgery risk assessment tools such as the Revised Cardiac Risk 

255 Index and the American College of Surgeons - surgical risk calculator [40-44]. However, 

256 these features are not explicitly included in HF-specific risk assessment tools (e.g. in O-

257 POSSUM only symptoms and clinical findings suggestive of cardiovascular disease are 

258 included and NHFS only the number of comorbidities is included as an input parameter) [7-

259 10]. Moreover, neither PTH or vitamin D levels are included in any of the current tools, 

260 despite an increasing number of studies supporting the key role they play in bone 

261 metabolism and prevention of fracture [45-57] and, potentially, with increasing recognition of 

262 their importance in the immunity [58-60] prevention of post-operative complications such as 

263 hospital acquired infections.

264 3.3. Further insights from model analysis

265 Of the four most predictive models, NB and LR models offer intuitive, quantifiable insights 

266 into feature contributions to prediction: in LR, the odds ratio can be taken by calculating the 

267 exponent of the coefficients, while in NB, from our method of scoring input features (see 

268 Appendix A), each coefficient corresponds to the ratio of the rate of the comorbidity in those 

269 who experienced in-hospital mortality compared to the comorbidity rate in those who 

270 survived. So, for example, in predicting mortality, we can see from the LR model that CAD, 

271 with a score of 0.319 (95%CI 0.180 – 0.458) increased mortality risk by 37% (OR 1.37; 

272 95%CI 1.20 – 1.58) and CKD, with a score of 0.711 (95%CI 0.505 – 0.918) increased 

273 mortality risk by 2.03 (95%CI 1.66 – 2.50). From the NB model, a score of 1.62 (for CAD), 

274 and a score of 1.67 (for CKD) indicated that the rate of each comorbidity was greater in 

275 mortality than in survival by 62% and 67% respectively. 

276 For the other top predictive models, insights gained from direct interpretation of RF and XGB 

277 is not so straightforward. Both these methods are based on DTs, which is itself an 
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278 interpretable and intuitive model. However, a major drawback of DTs is that they are very 

279 prone to bias and variance (overfitting). RF and XGB address this issue by constructing 

280 multiple DTs and the overall prediction is then made from an ensemble/collection of multiple 

281 trees (numbering in the hundreds) and, hence, increased predictive performance is obtained 

282 at the expense of interpretability. In our study, the coefficients for each feature correspond to 

283 the relatively abstract concept of mean decrease in (Gini) impurity (see Appendix A).

284 3.4. Further insights from SHAP values

285 SHAP values revealed that the presence of more ‘severe’ comorbidities in each ML model 

286 had a more important additive effect on mortality risk than less severe comorbidities, as one 

287 might expect. For instance, patients with a history of acute MI (a higher severity subcohort of 

288 CAD patients) typically had the greatest SHAP value indicating that the presence of history 

289 of past MI had the greatest additive effect on mortality prediction. Similarly, the presence of 

290 vitamin D deficiency (≤25nmol/L) was correlated with greater SHAP values compared to 

291 vitamin D insufficiency (≤50nmol/L) (see Figure 2). In contrast, the absence of both MI and 

292 vitamin D deficiency in patients had less of a negative effect on mortality prediction 

293 compared to the other comorbidities (and hence was why they had a lower overall 

294 importance based on mean SHAP values). This reflects their relatively low prevalence in the 

295 cohort (Table 1).

296 For LR, RF, and XGB the SHAP values had low variability and were highly concentrated – 

297 an indication that the corresponding input patient features were consistently strong 

298 contributors to mortality prediction; a corollary of this was that these models offered good 

299 population level insight into mortality risk. Of the top four models, NB was the only model in 

300 which the SHAP values themselves varied among individuals. This variability in SHAP 

301 values among patients suggested that the influence of each singular comorbidity was not 

302 constant, and that each prediction appeared to be tailored toward individual.

303 3.5. Limitations
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304 We note limitations to our study. Firstly, this was a study on a retrospective cohort, and all 

305 members of cohort were from a single-centre study. We recognize internal nested cross-

306 validation, though relatively rigorous, is no substitute for external validation of our findings 

307 and that our tools need to be tested on external cohorts. Importantly, though the dataset 

308 used here is not of unreasonable size, we acknowledge that it may still be insufficient: firstly, 

309 because of the overfitting noted in MLP models and secondly because of the imbalance 

310 inherent to the issue class imbalance of mortality in HF – reflected in our dataset with a 5% 

311 mortality rate (and with only 191 cases the mortality population may be under-represented 

312 from a machine-learning perspective which typically requires cohort sizes numbering in the 

313 1000s or greater  to be trained effectively). We have restrained ourselves to conducting 

314 analysis using only categorical features. Model predictions were not calibrated, and it is 

315 known that certain machine learning models, particularly NB are notoriously poor at 

316 estimating probabilities despite being good classifiers.

317 3.6. Conclusion and final comments.

318 In summary, NB was the most optimal ML model having the optimal virtues of strong 

319 predictive performance, model interpretability and potential for making individualized 

320 predictions. While RF, XGB and LR had similar performance capabilities, by nature they are 

321 not readily interpretable (i.e. RF and XGB) or are not optimal for individualized predictions 

322 (i.e. LR).

323 With ongoing development of digital infrastructure in the healthcare industry it is inevitable 

324 that machine learning algorithms will only become increasingly powerful and commonplace. 

325 As we await this reality, we hope that the findings here will provide physicians and clinicians 

326 with a tool that can be used to rapidly identify patients at higher risk of mortality early by 

327 knowledge of patient comorbidities; currently most prognostication tools can only be applied 

328 later in the admission.  Moreover, we hope to provide valuable insights in applying machine 

329 learning models in healthcare for clinicians and researchers, in particular the advantages of 
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330 the computationally inexpensive NB models highlighting its simplicity and interpretability with 

331 negligible compromise in performance.

332 4. Materials and Methods

333 4.1. Ethics Statement

334 The study was conducted in accordance with the Declaration of Helsinki (1964) and the 

335 Council for International Organisations of Medical Sciences International Ethic Guidelines 

336 and approved by the Australian Capital Territory Human Research Ethics Committee 

337 (reference number: 2023.LRE.00063). Because the analysis was based on a digital 

338 anonymized database, the patients’ written informed consent was waived. 

339 4.2. Data Collection

340 Our cohort comprised 3625 elderly (i.e. aged ≥ 65 years of age) patients consecutively 

341 admitted to the Department of Orthopaedic Surgery at the Canberra Hospital between 1999 

342 – 2019 with osteoporotic hip fracture. Patients admitted with hip fracture secondary to 

343 moderate-high energy trauma, or secondary to minimal trauma but with malignancy 

344 associated pathological fracture were excluded. Data on in-hospital mortality,  

345 sociodemographics (age, sex, smoking status, active history of overuse of alcohol, use of 

346 walking aids, and if the patient was a resident of an permanent residential care facility 

347 [PRCF]) and comorbidities (presence of hypertension [HT], coronary artery disease [CAD], 

348 previous history of acute myocardial infarction [MI], atrial fibrillation [AF], past history of 

349 stroke [cerebrovascular accident, CVA], transient ischaemic attack [TIA], dementia, 

350 Parkinson’s disease [PD], chronic obstructive pulmonary disease [COPD], type 2 diabetes 

351 mellitus [T2DM], chronic kidney disease [CKD], anaemia, history of solid organ malignancy, 

352 osteoporosis and hyperparathyroidism [parathyroid hormone/PTH>6.8pmol/L] and vitamin D 

353 insufficiency/deficiency; (25)OH vitamin D ≤ 50/25nmol/L) were collected.

354 4.2. Model Development
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355 Seven machine learning algorithms, LR (as the baseline), SVM, NB, DT, RF, XGB, and the 

356 multi-layer perceptron (MLP, a 3-layer NN) were trained to predict mortality. For each 

357 algorithm the following steps were taken: identification of key hyperparameters to be trained 

358 (using a fractional factorial design of experiments approach), tuning of these key 

359 hyperparameters (using an inner 3-fold cross-validation to identify optimal hyperparameter 

360 and an outer 5-fold cross-validation to evaluate performance). Computations were performed 

361 using the Python packages, sklearn and pandas [34, 35].

362 4.3. Model Performance (and comparisons)

363 Performance was measured using the area under the receiver operating curve (AUROC) 

364 and the area under the precision-recall curve (AUPRC). Respective scores for each model 

365 were evaluated with 5-fold cross-validation; the mean and standard deviation of these scores 

366 was taken, and the 95% confidence interval was calculated. The student t-test was used to 

367 compare the mean performance scores. Computations were performed using the Python 

368 package SciPy (in particular ‘scipy.stats’ routines) [36].

369 4.4. Feature importance – Model Interpretation

370 Each trained model was analyzed directly. In general, the training of each model involved 

371 optimization of coefficients corresponding to each patient feature (comorbidity). The trained 

372 models were analyzed; for each patient comorbidity a corresponding coefficient or score was 

373 computed (see Appendix A). Features were ranked by importance based on the values of 

374 these scores.

375 4.5. Feature importance – SHAP analysis

376 For each patient, the SHAP value allocates a quantifiable credit to each variable (i.e. patient 

377 comorbidity) in its contribution to the model output (i.e. the final prediction). Feature 

378 importance analysis with SHAP was performed using the Python implementation [30, 33]. 

379 Features were ranked based on the mean SHAP values for each comorbidity.
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471 6. Appendix A

472  In the following section we give some mathematical context to the models used and show 
473 how the most predictive models (RF, XGB, NB and LR) were used to direct obtain feature 
474 importance coefficient/scores for each evaluation in the 5-fold cross validation. The average 
475 of these scores was used as the final feature score. The feature scores for NB and LR have 
476 the added benefit of offering intuitive insight as noted above in the discussion.

477 6.1. LR (logistic regression). 

478 The LR predicts a probability using the function:

479 𝑓(𝑥) =  
1

1 + 𝑒𝑥𝑝( ― 𝒙 ∙ 𝜷 ― 𝛽)

480 where 𝒙 = [𝑥1,𝑥2,…,𝑥𝑛] is a vector for a patient encoding the presence or absence of a 
481 comorbidity (values of ‘1’ and ‘0’ respectively), 𝜷 = [𝛽𝟏,𝛽𝟐,𝛽𝟑,...,𝛽𝒏] is a vector containing the 
482 coefficient weights (corresponding, in this study, to each patient comorbidity) and  β the 
483 intercept value. 

484

485

486 6.2. (Bernoulli) Naïve Bayes (NB). 

487 Naïve Bayes uses the following classification rule:

488 𝑦 = argmax
𝑦

𝑃(𝑦)
𝑛

𝑖=1
𝑃(𝑥𝑖|𝑦)

489 In Bernoulli Naïve Bayes (i.e. for binary classification, using binarized input): 

490 𝑃(𝑥𝑖│𝑦) = 𝑃(𝑥𝑖 = 1│𝑦)𝑥𝑖 + (1 ― 𝑃(𝑥𝑖 = 1│𝑦))(1 ― 𝑥𝑖)

491 For each patient comorbidity 𝑥𝑖, the model coefficient (i.e. the feature importance score) was 
492 computed as:

493 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  
𝑃(𝑥𝑖|𝑦 = 1)
𝑃(𝑥𝑖|𝑦 = 0)

494 where 𝑃(𝑥𝑖|𝑦 = 1) and 𝑃(𝑥𝑖|𝑦 = 0) is the probability of the  𝑖𝑡ℎ comorbidity occurring given 
495 they experienced in-hospital mortality (𝑦 = 1) and survived to discharge (𝑦 = 0) respectively.

496

497 6.3. Tree-based methods (DT, RF, XGB). 

498 In developing a single decision tree, the features are recursively partitioned to group patients 
499 by outcome (mortality). At each step (or ‘node’) the feature that results in the greatest 
500 reduction in ‘impurity’, or conversely the greatest increase in ‘purity’ is chosen. The 
501 measured used in this paper for all tree based methods (DT, XGB and RF) was the Gini 
502 impurity which is given by the formula: 

503  
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504 𝐻(𝑄𝑚) =
𝑘

𝑝𝑚𝑘(1 ― 𝑝𝑚𝑘)

505 Where 𝑝𝑚𝑘 is the proportion of those who died (k=1) or survived (k=0) at decision step (or 
506 node) number 𝑚 and subsequently simplifies to:

507

508 𝐻(𝑄𝑚) = 𝑝𝑚1(1 ― 𝑝𝑚1) + 𝑝𝑚0(1 ― 𝑝𝑚0)

509

510 For RFs and XGBs where features may be used more than once (multiple trees are trained) 
511 the mean decrease in impurity across all nodes and trees is computed.

512
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