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Abstract 18 

Background: The role of circulating metabolites on child development is understudied. We investigated 19 

associations between children’s serum metabolome and early childhood development (ECD).  20 

Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, 21 

a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was 22 

assessed using the Survey of Well-being of Young Children’s milestones questionnaire. The graded 23 

response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as 24 

the developmental age divided by chronological age. Partial least square regression was used to select 25 

metabolites with a variable importance projection ≥ 1.  26 

Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for 27 

child’s nutritional status, diet quality and age. Interaction between these metabolites and child age was 28 

tested. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), 29 

phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p 30 

= 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ 31 

for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine 32 

(-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).  33 

Conclusion: Serum biomarkers, including dietary and microbial derived metabolites involved in the gut-34 

brain axis, may potentially be used to track children at risk for developmental delays. 35 

Funding: Supported by the Brazilian Ministry of Health and Brazilian National Research Council. 36 
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Introduction 38 

The early years of life are characterized by remarkable growth and neurodevelopment (United Nations 39 

Children’s Fund (UNICEF), 2017). Child development encompasses many dimensions of a child’s well-40 

being. It is generally described into specific streams or domains of development, including motor 41 

development, speech and language progression, cognitive abilities, and socio-emotional skills (Brown et 42 

al., 2020).  43 

Neurogenesis starts in the intrauterine environment, continuing to shape brain morphology and plasticity 44 

after birth (Doi et al., 2022). The interval from birth to eight years represents a unique and critical period 45 

in which the development of a child’s brain can be significantly shaped. This phenomenon encompasses 46 

special sensitivity to experiences that promote cognitive, social, emotional, and physical development 47 

(United Nations Children’s Fund (UNICEF), 2017). The acquisition of developmental skills results from 48 

an interplay between the development of the nervous system and other organ systems (Brown et al., 2020). 49 

Optimal brain development requires a stimulating environment, adequate nutrients, and social interaction 50 

with attentive caregivers (Britto et al., 2017). 51 

The early childhood development (ECD) impacts long-term individual and population health outcomes, 52 

including the ability to learn, achievements in school and later life, citizenship, involvement in community 53 

activities, and overall quality of life (van den Heuvel, 2019). An estimated 250 million children under five 54 

years old in low-income and middle-income countries are at risk of not attaining their developmental 55 

potential, leading to an average deficit of 19.8% in adult annual income (Black et al., 2017). In 2015, the 56 

importance of ECD was recognized and incorporated into the “United Nations Sustainable Development 57 

Goals”.  58 

Studies have demonstrated that early child metabolome disturbances may be implicated in the pathogenesis 59 

of non-typical neurodevelopment, including autism spectrum disorder (ASD) (Sotelo-Orozco et al., 2023; 60 

Zhu et al., 2022), communication skills development (Kelly et al., 2019), and risk of impaired 61 

neurocognitive development (Moreau et al., 2019).  62 

Children diagnosed with neurodevelopmental delays tend to experience more favorable treatment outcomes 63 

when these conditions are identified and addressed earlier (Clark et al., 2018; Li et al., 2023). Therefore, 64 

biomarkers are urgently needed to predict an infant's potential risk for developmental issues while gaining 65 

new insights into underlying disease mechanisms. Although child development has been a focal point of 66 

research for decades, studies in low- to middle-income countries on the potential role of circulating 67 
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metabolites in early childhood development (ECD) remain limited. The present study aims to identify 68 

associations between children’s serum metabolome and ECD. Identifying the relationships between 69 

metabolic phenotypes and ECD outcomes can elucidate pathways and targets for potential interventions, 70 

such as serum metabolites associated with food consumption in infancy (Bruce et al., 2023). 71 

 72 

Results 73 

In total, 14,558 children under five years were evaluated and 12,598 children aged 6-59 months were 74 

eligible for blood collection, of whom 8,829 (70%) had the biological material collected. Infants < 6 months 75 

of age were not included due to the greater difficulty with venipuncture, increased risk of post-blood draw 76 

complications (e.g., bruises), and the lack of reference values for diagnosing micronutrient deficiencies. 77 

Due to the costs involved in the metabolome analysis, it was necessary to further reduce the sample size. 78 

Then, samples were stratified by age groups (6 to 11, 12 to 23, and 24 to 59 months) and health conditions 79 

related to iron metabolism, such as anemia and nutrient deficiencies. The selection process aimed to 80 

represent diverse health statuses, including those with no conditions, with specific deficiencies, or with 81 

combinations of conditions. Ultimately, through a randomized process that ensured a balanced 82 

representation across these groups, a total of 5,004 children were selected for the final sample (Figure 1). 83 

The mean age was 34 months, and 48.9% of the participants were between 36 and 59 months. Most children 84 

were normal weight, and 25% were at risk or with excessive weight. The prevalence of MDD was 40%. 85 

Most children lived in households with a monthly income ≥ the Brazilian minimum wage of USD 248.7 86 

(72.4%) and had mother/caregiver with at least ≥ 11 years of education (51%) (Table 1). The DQ mean 87 

(95% CI) was 0.98 (0.97; 0.99). Overall, children had lower DQs if they were male [t (4970) = 7.61, p < 88 

0.001], older (r = - 0.31; p < 0.001), from the northern region [F (4, 4999) = 17.77, p < 0.001], had a lower 89 

monthly family income (r = 0.05, p < 0.001), and a mother/caregiver with fewer years of education [F (3, 90 

5000) = 30.95, p < 0.001] (Supplementary Table 1).  91 
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 92 

Figure 1. Flow chart of children included in the metabolome analysis of ENANI-2019 (the Brazilian 93 
National Survey on Child Nutrition).  94 
Note: COVID-19, coronavirus disease 2019.  95 
 96 

Table 1. Characteristics of children 6-59 months evaluated in a subset sample of ENANI-2019 (the 97 
Brazilian National Survey on Child Nutrition) (n = 5004). 98 

Variables 
Mean; Frequency 

(%) 
95% CI 

Age (months) 34.0 33.6; 34.5 

Age groups (months)    

6 - 23 29.6 28.3; 30.8 

24 - 35 21.5 20.4; 22.7 

36 - 59 48.9 47.5; 50.3 

Sex   

Male 51.1 49.7; 52.5 

Female 48.9 47.5; 50.3 

Weight for length/height (z-score) 0.3 0.29; 0.36 

Weight for length/height categories 1,2   
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Underweight (z-score < -2)  1.6 1.3; 2.0 

Normal (-2 ≤ z-score ≤ 1) 73.3 72.1; 74.5 

Overweight risk (1 < z-score ≤ 2) 17.3 16.3; 18.4 

Excessive weight (z-score > 2) 7.3 6.6; 8.0 

Mother/caregiver education (years)   

0 to 7 25.5 24.4; 26.8 

8 to 10 23.5 22.3; 24.7 

≥ 11 51.0 49.6; 52.4 

Mode of delivery   

Vaginal 53.7 52.3; 55.1 

Elective c-section 19.0 18.0; 20.2 

Non-elective c-section 27.3 26.1; 28.5 

Monthly family income (USD) 3   

< 62.20  3.8 3.3; 4.4 

62.20 to 124.40  4.5 4.0; 5.1 

124.50 to 248.70 19.2 18.2; 20.3 

> 248.70 72.4 71.2; 73.7 

Minimum dietary diversity (MDD) 4   

≥ 5 food groups 59.3 39.4; 42.1 

< 5 food groups 40.7 57.9; 60.6 

Note: CI: Confidence interval; USD: United States dollar. 99 
1 24 missing values; 2 Reference WHO child growth standards, 2006 (World Health Organization (WHO), 100 
2006); 3 Estimated from the Brazilian minimum wage (R$ 998.00) and converted to the USD exchange rate 101 
(R$ 4.013 = USD 1) in 2019 (Brazilian minimum wage = USD 248.70). 4 MDD:  frequency of children 102 
who received ≥ 5 or < 5 out of eight food groups on the day before the interview, [food groups: (1) breast 103 
milk; (2) grains, roots and tubers; (3) beans, nuts and seeds; (4) dairy products; (5) flesh foods; (6) eggs; 104 
(7) vitamin A-rich fruits and vegetables; and (8) fruits and vegetables] (World and Health Organization, 105 
2021) (World health Organization (WHO) & United Nations Children’s Fund (UNICEF), 2021). 106 
 107 

Supplementary Table 1. Means and confidence intervals (CI) for developmental quotient (DQ) by 108 
sociodemographic variables. 109 
 110 

Variables Mean 95% CI 

Region    

North 0.91 0.89; 0.93 

Midwest 1.00 0.98; 1.02 

Southeast 1.00 0.98; 1.02 

Northeast 1.01 0.99; 1.04 

South 1.02 0.99; 1.04 

Sex   

Male 0.95 0.93; 0.96 

Female 1.02 1.01; 1.04 
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Age quartiles (months)   

6 - 21  1.14 1.12; 1.16 

22 - 35 0.99 0.97; 1.01 

36 - 47 0.91 0.90; 0.93 

47 - 59 0.88 0.86; 0.89 

Maternal/caregiver education (years)   

0 to 7 0.92 0.90; 0.94 

8 to 10 0.98 0.96; 1.00 

≥ 11 1.07 1.00; 1.03 

Monthly family income (USD) 1   

< 62.2 0.97 0.92; 1.02 

62.2 - 124.4 0.92 0.88; 0.97 

124.4 - 248.7 0.94 0.91; 0.96 

> 248.7 1.00 0.99; 1.01 
Note: CI: Confidence interval; USD: United States dollar. 111 
1 Estimated from the Brazilian minimum wage (R$ 998.00) and converted to the USD exchange rate (R$ 112 
4.013 = USD 1) in 2019. 113 
 114 

 115 

Pearson´s correlation between serum metabolites and DQ indicated 26 negative and 2 positive statistically 116 

significant correlations (Supplementary Figure 1). Correlations were found for phenylacetylglutamine 117 

(PAG, r = -0.16; p < 0.001), cresol sulfate (CS, r = -0.15; p < 0.001), hippuric acid (HA, r = -0.14; p < 118 

0.001), creatinine (Crtn, r = -0.13; p < 0.001), trimethylamine-N-oxide (TMAO, r = -0.10; p < 0.001), 119 

citrulline (Cit, r = -0.09; p < 0.001), deoxycarnitine or g-butyrobetaine (dC0, r = -0.09; p < 0.001), and 120 

methylhistidine (MeHis, r = -0.07; p < 0.001).  121 

 122 
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 123 
 124 

 125 

Supplementary Figure 1.  Volcano plot for Pearson correlations between serum metabolome and 126 
developmental quotients of children 6-59 months evaluated in ENANI-2019 (the Brazilian National 127 
Survey on Child Nutrition) (n = 5004).  128 
 129 
Note: The Y-axis and X-axis represent the negative logarithm (base-10) of adjusted-p-values of each 130 
correlation coefficient and the correlation coefficient, respectively. Dashed line is the Benjamini-Hochberg 131 
adjusted-p-value for 72 metabolites comparisons. Statistically significant metabolites are labeled on plots. 132 
 133 

In the PLSR, the training data suggested that 3 components best predicted the data, while the test data 134 

showed a slightly more predictive model with 4 components (Supplementary Figure 2). The model with 135 

3 components was used for parsimony and to avoid overfitting. The serum metabolites that had the highest 136 

loads on the components were the branched-chain amino acids, including leucine (Leu), isoleucine (Ile), 137 

and valine (Val) on component 1, the uremic toxins, CS and PAG on component 2 and betaine and amino 138 

acids, mainly glutamine (Gln) and asparagine (Asn) on component 3 (Supplementary Figure 3). The 3 139 

components accounted for 39.8% of total metabolite variance (Supplementary Figure 4) and 4.3% of the 140 
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DQ variance (Supplementary Figure 2). Twenty-eight metabolites showed a VIP ≥ 1 (Figure 2). These 141 

metabolites were entered into the multiple linear regression adjusted for the child's diet quality (MDD), 142 

nutritional status (w/h z-score), and age (months).  143 

 144 

 145 
 146 
 147 
Supplementary Figure 2. Residual means squared error (RMSEP) and R squared across Partial Least 148 
Square Regression (PLSR) models with different numbers of components.  149 
 150 
Note: Training and test datasets were done with 80% (n = 4003) and 20% (n = 1001) of observations, 151 
respectively.  152 
 153 
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 154 
 155 
 156 

Supplementary Figure 3. Partial Least Square Regression (PLSR) loading plots for components 1, 2, and 157 
3. 158 
 159 
Note: Labeled points are metabolites with loading greater than 0.2 or lower than -0.2 on any of the 160 
components in the plot. 161 
 162 
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 163 

 164 

Supplementary Figure 4. Partial Least Square Regression (PLSR) score scatterplots for components 1, 165 
2, and 3.  166 
 167 
Note: Percentages in parentheses indicate the total metabolite variance explained by each component. Dots 168 
were colored according to the developmental quotient. The child development was based on the Survey of 169 
Well-being of Young Children – the Brazilian version of the milestones questionnaire which estimates the 170 
child’s developmental age considering developmental milestones achieved. The developmental quotient 171 
(DQ) was calculated as the child’s developmental age divided by the chronological age (Sheldrick & Perrin, 172 
2013). DQ = 1 indicates that expected age milestones have been attained; DQ <1 and > 1 suggest that the 173 
attainment of specific age milestones occurred below or above expectations, respectively. 174 
 175 
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176 
Figure 2. Variable importance projection (VIP) ranking scores from Partial Least Squares Regression 177 
(PLSR) analysis were performed to select the most relevant metabolites that explain the developmental 178 
quotient variability. 179 
 180 
Note: Metabolites with higher VIP scores are the most contributory variables, whereas smaller VIP scores 181 
provide less contribution to explain the developmental quotient variability. Only metabolites with VIP 182 
scores higher than one are displayed.   183 
 184 

We found inverse associations for serum concentrations of CS (β = -0.07; adjusted-p < 0.001), HA (β = -185 

0.06; adjusted-p < 0.001), PAG (β = -0.06; adjusted-p < 0.001), and TMAO (β = -0.05; adjusted-p = 0.002) 186 

with the DQ of children, even after including the interaction between child age and the metabolite in the 187 

regression analysis (Table 2). Considering the interactions between serum metabolites and child age, we 188 

observed associations for Crtn (β-interaction = 0.05; adjusted-p = 0.003), HA (β-interaction = 0.04; 189 

adjusted-p = 0.041), MeHis (β-interaction = 0.04; adjusted-p = 0.018), PAG (β-interaction = 0.04; adjusted-190 
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p = 0.018), TMAO (β-interaction = 0.05; adjusted-p  = 0.003), and Val (β-interaction = 0.04; adjusted-p = 191 

0.039) (Table 2).  192 

  193 
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Table 2. Association between serum metabolites and developmental quotient (DQ) of children with and without child age interaction term for children 6–59 

months evaluated in a subset sample of ENANI-2019 (the Brazilian National Survey on Child Nutrition) (n = 5004). 

Serum Metabolites 

Main effect without child age 
interaction term1 

Main effect with child age 
interaction term1, 2 

Interaction term 
(Metabolites: Child age)1, 2 

β 95% CI 
adjusted-p-

value β 95% CI 
adjusted-
p-value β 95% CI 

adjusted-
p-value 

Asymmetric 
dimethylarginine 

< 0.01 -0.03; 0.02 0.942 < 0.01 -0.03; 0.02 0.984 < 0.01 -0.02; 0.03 0.965 

Alanine -0.02 -0.04; 0.01 0.431 -0.02 -0.04; 0.01 0.414 < 0.01 -0.03; 0.02 0.928 

Carnitine < 0.01 -0.03; 0.03 0.954 < 0.01 -0.03; 0.03 0.985 < 0.01 -0.02; 0.03 0.965 

Citrulline -0.03 -0.05; 0.00 0.164 -0.03 -0.05; 0.00 0.176 0.02 0.00; 0.05 0.186 

Creatinine -0.01 -0.03; 0.02 0.935 < 0.01 -0.03; 0.03 0.985 0.05 0.02; 0.08 0.003 

Cresol sulfate -0.07 -0.10; -0.04 < 0.001 -0.06 -0.09; -0.03 < 0.001 0.03 0.01; 0.06 0.059 

Deoxycarnitine -0.03 -0.06; -0.01 0.065 -0.03 -0.06; -0.01 0.073 0.02 -0.01; 0.05 0.227 

Hippuric acid -0.06 -0.09; -0.04 < 0.001 -0.06 -0.09; -0.03 < 0.001 0.04 0.01; 0.06 0.041 

Histidine -0.02 -0.05; 0.00 0.183 -0.02 -0.05; 0.00 0.183 0.02 0.00; 0.05 0.156 

Hydroxyproline -0.01 -0.03; 0.02 0.912 -0.01 -0.03; 0.02 0.976 -0.02 -0.05; 0.01 0.227 

Isoleucine -0.03 -0.05; 0.00 0.164 -0.03 -0.05; 0.00 0.176 0.02 -0.01; 0.04 0.312 

Leucine -0.02 -0.05; 0.00 0.183 -0.02 -0.05; 0.00 0.203 0.03 0.00; 0.05 0.144 

Lysine < 0.01 -0.03; 0.02 0.935 < 0.01 -0.03; 0.02 0.984 0.02 0.00; 0.05 0.194 

Methionine -0.03 -0.05; 0.00 0.164 -0.03 -0.05; 0.00 0.176 0.02 -0.01; 0.05 0.227 

Methylhistidine < 0.01 -0.02; 0.03 0.952 < 0.01 -0.03; 0.03 0.985 0.04 0.02; 0.07 0.018 

Phenylacetylglutamine -0.06 -0.09; -0.04 < 0.001 -0.06 -0.09; -0.03 0.001 0.04 0.01; 0.07 0.018 

Phenylalanine -0.03 -0.06; 0.00 0.164 -0.03 -0.05; 0.00 0.176 0.03 0.00; 0.05 0.129 

Threonine < 0.01 -0.03; 0.02 0.953 < 0.01 -0.03; 0.02 0.985 0.01 -0.02; 0.03 0.836 

TMAO -0.05 -0.08; -0.02 0.002 -0.04 -0.07; -0.02 0.010 0.05 0.02; 0.07 0.003 

Tyrosine -0.01 -0.04; 0.02 0.816 -0.01 -0.04; 0.02 0.810 0.02 0.00; 0.05 0.194 
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 194 
 195 
 196 
 197 
 198 
 199 
 200 
 201 
 202 
 203 
 204 
 205 

Note: CI: Confidence interval; DQ: Developmental quotient; TMAO: Trimethylamine N-oxide. 206 
1 Multiple linear regression adjusted for child’s diet quality (minimum dietary diversity), child nutritional status (w/h score), and child age (in months).  207 
2 Child age (in months) was used as interaction in the regression models. 208 
Only metabolites with variable importance projection (VIP) scores > 1 were entered in the regressions (29 metabolites). Adjusted-p-values refer to p-values adjusted for multiple 209 
comparisons by the Benjamini-Hochberg method. The child development was based on the Survey of Well-being of Young Children - the Brazilian version of the milestones 210 
questionnaire, which estimates the child’s developmental age considering developmental milestones achieved. The developmental quotient was calculated as the child’s 211 
developmental age divided by the chronological age (Sheldrick & Perrin, 2013). All variables were scaled before running the regression models. Bold values indicate statistically 212 
significant adjusted-p-values. 213 
 214 

  215 

Unknown 117.0552:1.67:N; 
C5H10O3 

-0.02 -0.05; 0.01 0.317 -0.02 -0.05; 0.01 0.322 < 0.01 -0.03; 0.03 0.965 

Unknown 135.0293:1.71:N; 
C4H8O5 

0.01 -0.02; 0.04 0.721 0.01 -0.02; 0.04 0.653 -0.01 -0.04; 0.01 0.524 

Uric acid -0.01 -0.03; 0.02 0.924 < 0.01 -0.03; 0.02 0.984 0.02 0.00; 0.05 0.150 

Valine -0.03 -0.05; 0.00 0.164 -0.02 -0.05; 0.00 0.183 0.04 0.01; 0.06 0.039 

2-Hydroxybutyric acid -0.01 -0.04; 0.02 0.800 -0.01 -0.04; 0.02 0.653 0.03 0.00; 0.06 0.129 

3-Hydroxybutyric acid -0.03 -0.05; 0.00 0.164 -0.03 -0.05; 0.00 0.176 < 0.01 -0.03; 0.03 0.965 

3-Methyl-2-oxovaleric acid < 0.01 -0.03; 0.03 0.957 < 0.01 -0.03; 0.03 0.985 < 0.01 -0.02; 0.03 0.965 

Xanthine < 0.01 -0.02; 0.03 0.954 < 0.01 -0.03; 0.03 0.985 < 0.01 -0.03; 0.03 0.965 
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Comparing children one standard deviation (SD) above the mean child age with those one standard 216 

deviation below (49 months vs. 19 months), we observed opposite directions for the association with DQ 217 

for serum Crtn (for children aged - 1 SD: β = - 0.05; p = 0.01; + 1 SD: β = 0.05; p = 0.02) and for MeHis (- 218 

1 SD: β = - 0.04; p = 0.04; + 1 SD: β = 0.04; p = 0.03) (Figure 3). For TMAO, PAG, Val, and HA, the 219 

effect size went from a negative value for younger children to a non-significant value for older children 220 

(Figure 3). No association were found for interactions between child sex and each metabolite on DQ (data 221 

not shown). 222 

 223 
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 224 
Figure 3. Association between serum metabolites with child age interaction and developmental quotient of 225 
children from 6 to 59 months from ENANI-2019 (the Brazilian National Survey on Child Nutrition, 2019) 226 
(n = 5004).  227 
 228 
Note: SD: standard deviation; TMAO: Trimethylamine N-oxide. 229 
Only statistically significant interactions at an adjusted p-value for multiple comparisons < 0.05 were 230 
decomposed into their simple slopes. ** refers to simple slopes with p-value < 0.001; * refers to simple 231 
slopes with p-value < 0.05; “NS” refers to “not statistically significant”. Regression adjustments used in 232 
the models: child diet quality, child age (months), and child nutritional status (w/h score). Mean of children 233 
age = 34 months and standard deviation = 15 months. The child development was based on the Survey of 234 
Well-being of Young Children - the Brazilian version of milestones questionnaire, which estimates the 235 
child’s developmental age considering developmental milestones achieved. The developmental quotient 236 
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(DQ) was calculated as the child’s developmental age divided by the chronological age (Sheldrick and 237 
Perrin, 2013). All variables’ data were auto-scaled, before running the regression models. 238 
 239 

Mediation analysis identified that PAG was a mediator for the relationship between mode of delivery 240 

(ACME = 0.003, p < 0.001), child's diet quality (ACME = 0.002, p = 0.019), and child fiber intake (ACME 241 

= - 0.002; p = 0.034) and DQ (Supplementary Figure 5). Serum HA (ACME = - 0.004, p < 0.001) and 242 

TMAO (ACME = - 0.002, p = 0.022) were also mediators for the relationship between child fiber intake 243 

and DQ (Supplementary Figure 5). According to the mediation analysis, having a vaginal delivery (β = -244 

0.05; p < 0.001), not achieving MDD (β = -0.03; p = 0.019), and greater total fiber intake (β = 0.03; p = 245 

0.031) increased the serum PAG concentration, that in turn was inversely associated with DQ. Moreover, 246 

a higher fiber intake was directly associated with HA (β = 0.06; p < 0.001) and TMAO (β = 0.03; p = 0.018), 247 

which also was inversely associated with DQ.  248 

 249 

 250 
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Supplementary Figure 5.  Effect decomposition plots for mediation analysis of mode of delivery (A), 251 
child’s diet quality (B), and child fiber intake (C) on child’s developmental quotient considering metabolites 252 
as mediators. 253 
 254 
Notes: Dots and lines represent the point estimated and 95% confidence interval based upon the quantiles 255 
of bootstrapped distribution. Lines that are across the vertical dashed indicate the absence of statistical 256 
significance. ACME = Average causal mediation effect; ADE = Average direct effect; Total effect = the 257 
total effect. Only metabolites that showed statistically significant association with a child's developmental 258 
quotient were tested in the mediation models. The linear regression models were adjusted for child 259 
nutritional status (w/h z-score) and child age (in months). Data were auto-scaled before running the models. 260 
The mode of delivery was evaluated as vaginal or c-section; child’s diet quality as ≥ 5 or < 5 food groups 261 
(minimum dietary diversity), and child fiber intake was given in grams. 262 

 263 

Discussion 264 

A limited number of investigations have examined the link between blood, urine or stool metabolites and 265 

child development, with most studies focusing on comparing the metabolic profile of patients with 266 

developmental disorders against healthy controls (Brydges et al., 2021; Moreau et al., 2019; Needham et 267 

al., 2021; Ruggeri et al., 2014; Sotelo-Orozco et al., 2019). This is the first study to explore the association 268 

between child serum metabolome and ECD on a population-based level. According to our results, serum 269 

concentrations of PAG, CS, HA and TMAO were inversely associated with child DQ. The associations of 270 

PAG, HA, TMAO, and Val on DQ were also age-dependent and showed stronger associations for children 271 

< 34 months. In addition, inverse associations were found for serum levels of MeHis and Crtn with DQ for 272 

children < 34 months, whereas direct associations were found for children > 34 months. 273 

PAG is the glutamine conjugate of phenylacetic acid generated from the gut microbial dependent 274 

metabolism of phenylalanine (Krishnamoorthy et al., 2023; Poesen et al., 2016). As circulating 275 

concentrations of the essential amino acid, phenylalanine, were not directly associated with DQ in our 276 

study, this suggests that differences in gut microbiome composition impacting PAG formation among 277 

children are likely a major determinant of DQ rather than dietary protein intake. Similarly to our findings, 278 

a previous study involving 76 patients with Attention-Deficit/Hyperactivity Disorder (ADHD) and 363 279 

healthy children aged 1–18 years identified an inverse relationship between urinary PAG and ADHD (Tian 280 

et al., 2022). While the specific pathways contributing to such disorders remain to be fully elucidated, it is 281 

known that PAG is structurally similar to catecholamines and can activate adrenergic receptors (Huynh, 282 

2020). The stimuli of adrenergic receptors may have broader implications on behavioral responses, 283 

potentially influencing neurological activities (Connors et al., 2005; Pliszka et al., 1996). 284 

Likewise, in our study, circulating TMAO levels were inversely associated with child DQ. Elevated 285 

concentrations of TMAO in plasma and cerebrospinal fluid are also implicated in age-related cognitive 286 
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dysfunction, neuronal senescence, and synaptic damage in the brain (Praveenraj et al., 2022). In addition, 287 

its increased levels have been associated with activation of inflammatory pathways (Seldin et al., 2016) and 288 

neurodegenerative diseases (Mudimela et al., 2022). Previous studies reported that TMAO can activate 289 

astrocytes and microglia and trigger a cascade of inflammatory responses in the brain, induce oxidative 290 

stress, superoxide production, and mitochondrial impairment, and cause inhibition of mTOR signaling in 291 

the brain (Mudimela et al., 2022; Praveenraj et al., 2022). In this context, dysregulation of the mTOR 292 

signaling pathway may lead to substantial abnormalities in brain development, contributing to a wide array 293 

of neurological disorders, including ASD, seizure, learning impairments, and intellectual disabilities 294 

(Altomare & Gitto, 2015; Lee, 2015). 295 

HA is a glycine conjugate derived from exposure to benzoic acid (i.e., preservative in processed foods), or 296 

generated via intestinal microbial fermentation of dietary polyphenols and phenylalanine (Assem et al., 297 

2018). Similar to other co-metabolized species, circulating HA concentrations depend on dietary exposures, 298 

host metabolism, and early life gut microbiota colonization and maturation in young children from in utero 299 

to after birth (Jian et al., 2021). Khan et al. (Khan et al., 2022) in a case-control study involving 65 children 300 

with ASD and 20 children with typical development, reported that urinary HA was significantly higher in 301 

the ASD group, which corroborates with the inverse association found with DQ in our study. However, the 302 

effect of HA on metabolic health is still controversial as it has been proposed as a potential dietary 303 

biomarker for fruit and vegetable consumption in healthy children and adolescents (Krupp et al., 2012; 304 

Pallister et al., 2017). HA also inhibits the Organic Anion Transporter (OAT) 3 function and contribute to 305 

the toxic action of other compounds, including indoxyl sulfate (Ticinesi et al., 2023), which may affect 306 

cognitive function by disrupting the brain barrier (Lin et al., 2019). 307 

CS is a product of tyrosine fermentation in the gut involving more than 55 p-cresol producing bacteria prior 308 

to hepatic sulfate conjugation (Saito et al., 2018). CS was inversely associated with DQ in our study, and it 309 

has been studied in the early stages of life, particularly concerning conditions such as ASD (Guzmán-Salas 310 

et al., 2022; Persico & Napolioni, 2012). Urinary p-cresol and CS have been found elevated in ASD-311 

diagnosed children < 8 years (Altieri et al., 2011; Persico & Napolioni, 2012). Animal models have shown 312 

that CS is a gut derived neurotoxin that can impact neuronal cell structural remodeling even at low doses 313 

via oxidative stress and secretion of brain-derived neurotrophic factor (Tevzadze et al., 2022). Indeed, p-314 

cresol might impact developmental processes since it is related to impaired dendritic development, 315 
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synaptogenesis, and synapse function in hippocampal neurons, which are crucial for cognitive and neural 316 

development in children (Guzmán-Salas et al., 2022). 317 

Prior investigations have identified PAG, CS, HA, and TMAO as products of gut microbiota metabolism 318 

(Pallister et al., 2017; Reichard et al., 2022). Specifically, dietary aromatic amino acids are metabolized by 319 

gut microbiota in the large intestine, converting phenylalanine into PAG and HA and tyrosine into CS 320 

(Reichard et al., 2022; Ticinesi et al., 2023). In contrast, TMAO originates from trimethylamine (TMA), 321 

which is produced from betaine compounds, including g-butyrobetaine (dC0), choline, and carnitine via 322 

gut microbiota co-metabolism that is subsequently oxidized to TMAO in the liver (Reichard et al., 2022).  323 

Once these microbiota-derived compounds enter the bloodstream, they may elicit physiological responses 324 

influencing the central nervous system through direct passage across the blood-brain barrier or indirectly 325 

through vagus nerve stimulation (Morais et al., 2021). Such dynamics underscore the complex interactions 326 

within the microbiota-gut-brain axis (Carabotti et al., 2015; Connell et al., 2022) that can be mediated by 327 

environmental exposures early in life, such as mode of birth and child’s diet (Azad et al., 2018). 328 

Overall, PAG, HA, and TMAO showed a significant average causal mediation effect with dietary fiber 329 

intake that was inversely associated with DQ. However, the interpretation of mediation effects is limited 330 

by the observational nature of the data and third variables may explain unexpected relationships between 331 

the variables in the analysis. Mediation analysis cannot determine causality or rule out spurious effects and 332 

measurement procedures, such as a single measure of dietary intake. These analyses only provide context 333 

for the main findings and point to potential future directions. 334 

The age-dependent associations observed in our study are consistent with the age-related changes in 335 

metabolic profile reported by previous studies (Chiu et al., 2016; Gu et al., 2009; Psihogios et al., 2008; 336 

Tian et al., 2022). Increased urinary TMAO and betaine levels were found in children aged six months, 337 

whereas creatine and Crtn levels increased significantly after six months (Chiu et al., 2016). Similar 338 

findings were reported by Gu et al. in a study including children from newborn to 12 years of age. The 339 

urinary Crtn increased with age, whereas glycine, betaine/TMAO, citrate, succinate, and acetone decreased 340 

(Gu et al., 2009). These changes may reflect a physiological age-dependent process related to the rapid 341 

growth occurring in early life (Chiu et al., 2016), besides the dynamic process of gut microbiota maturation 342 

during the first years of life (Derrien et al., 2019).  343 

Interestingly, we observed that the child’s age changed the direction of the association between Crtn and 344 

MeHis with DQ. Crtn is generated non-enzymatically from creatine, and is related to energy production 345 
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within skeletal muscle tissue, whereas MeHis is related to protein turn-over and has been evaluated as a 346 

biomarker for the rate of skeletal muscle breakdown (Kreider & Stout, 2021; Wang et al., 2012). For 347 

example, plasma and urinary MeHis are temporally associated with changes to a health-promoting Prudent 348 

diet in contrast to a Western diet, whose concentrations are positively correlated with greater self-reported 349 

daily intake of protein (Wellington et al., 2019). We hypothesize that higher serum concentrations of Crtn 350 

and MeHis in older children (> 49 months) may be due to the greater physical activity/mobility needed 351 

through the first years (Chiu et al., 2016). 352 

Our study provided valuable insights into the potential role of serum metabolome on ECD for children aged 353 

6-59 months. One of the strengths of this study is the large sample size, which allows for a more 354 

comprehensive representation of the population on a national level. Furthermore, our study employed a 355 

quantitative targeted and exploratory untargeted metabolomics method. This high-throughput 356 

metabolomics platform is strengthened by implementing rigorous quality control measures and batch-357 

correction algorithms, ensuring the high accuracy and reproducibility needed for large-scale 358 

epidemiological studies. We used the DQ as a variable for evaluating ECD, which consists of a continuous 359 

parameter that integrates developmental milestones attained with the child’s chronological age at its 360 

achievement. Some limitations are worth mentioning. First, the analysis of hydrophobic/water-insoluble 361 

lipids was not included in this study limiting overall metabolome coverage. Also, the inherent limitations 362 

of a cross-sectional study prevent us from making causal inferences concerning the temporal relationship 363 

between serum metabolic phenotypes and ECD trajectories. Moreover, birth weight and breastfeeding 364 

practices were available only for a limited number of participants and were not included in the regression 365 

adjustments. Concerning the child’s diet assessment, we estimated dietary diversity and fiber intake based 366 

on one-day food intake reports, with the MDD specifically measuring dietary diversity within diet quality. 367 

In conclusion, this manuscript represents a pioneering effort in Brazil, a population-based survey targeting 368 

children from 6-59 months of age that incorporated metabolome and ECD analysis. We found that serum 369 

PAG, HA, CS, and TMAO were inversely associated with ECD and that age can modify the effect of PAG, 370 

HA, TMAO, Crtn, and MeHis on development. These results suggest that a panel of circulating metabolites 371 

might offer a preliminary warning of developmental risk and potentially be used as a screening tool to help 372 

identify children at risk for developmental delays at early stages of life.  373 
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Further prospective longitudinal studies, including microbiome analysis, are warranted to validate our 374 

findings and establish targeted intervention biomarkers besides providing further insights into possible 375 

mechanistic pathways. 376 

 377 

Materials and Methods 378 

Study design and participants 379 

This cross-sectional study uses data from the Brazilian National Survey on Child Nutrition (ENANI-2019). 380 

ENANI-2019 is a population-based household survey with national coverage and representativeness of 381 

children aged < 5 years that has investigated dietary intake, anthropometric status, and micronutrient 382 

deficiency. Details of the ENANI-2019 sample design, study completion, and methodology have been 383 

published previously (Alves-Santos et al., 2021; Castro et al., 2021; Vasconcellos et al., 2021). ENANI-384 

2019 data collection took place from February 2019 and ended in March 2020 due to the COVID-19 385 

pandemic.  386 

 387 

Covariates 388 

Trained interviewers administered a structured questionnaire to collect socio-demographic, health and 389 

anthropometric data (Alves-Santos et al., 2021). The variables included in this study were: the child’s age 390 

(in months), sex (male or female), educational level of the mother/caregiver of the child (0–7, 8–10, and ≥ 391 

11 completed years of education), mode of delivery (vaginal or c-section), monthly familiar income (< 62.2, 392 

62.2- 24.4, 124.5-248.7, > 248.7 USD). Body weight (kg) and length or height (m) were used to calculate 393 

the weight for length/height z-scores (w/h z-scores). Also, the w/h z-scores were classified considering the 394 

age and sex of the child, according to World Health Organization (WHO) standards (World Health 395 

Organization (WHO), 2006). 396 

The child's diet quality was assessed using the minimum dietary diversity (MDD) indicator proposed by 397 

the WHO (World health Organization (WHO) & United Nations Children’s Fund (UNICEF), 2021). MDD 398 

requires consumption of foods from at least five of eight food groups during the previous day. The eight 399 

food groups are 1) breast milk; 2) grains, roots, tubers, and plantains; 3) pulses (beans, peas, lentils), nuts, 400 

and seeds; 4) dairy products (milk, infant formula, yogurt, cheese); 5) flesh foods (meat, fish, poultry, organ 401 

meats); 6) eggs; 7) vitamin-A rich fruits and vegetables; and 8) other fruits and vegetables. The variable 402 

was dichotomized as children who had consumed ≥ 5 or < 5 food groups. Data to produce this indicator 403 
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was derived from the ENANI’s structured questionnaire related to foods consumed the day before the first 404 

interview (Lacerda et al., 2021) Furthermore, in ENANI-2019 caregivers fulfilled one 24-hour food recall 405 

(R24h) reporting all children’s food and beverage intake in the day before the interview. Child fiber intake 406 

(grams) was obtained from the R24h. 407 

 408 

Assessment of ECD 409 

The Survey of Well-being of Young Children (SWYC) milestones questionnaire was used to assess ECD. 410 

This questionnaire inquiries about motor, language, and cognitive milestones appropriate for the age range 411 

of the form (Whitesell et al., 2015). It is recognized by the American Academy of Pediatrics and is a widely 412 

disseminated screening tool for identifying developmental delays in children aged 1 to 65 months (Lipkin 413 

et al., 2020). 414 

The SWYC milestones questionnaire was developed and validated by Sheldrick and Perrin (Sheldrick & 415 

Perrin, 2013), and a version of the SWYC (SWYC-BR) has been translated, cross-culturally adapted, and 416 

validated for use in Brazilian children (Moreira et al., 2019). A recently published study evaluated the 417 

internal consistency of the SWYC-BR milestones questionnaire using the ENANI-2019 data and 418 

Cronbach’s alpha, which showed adequate performance (0.965; 95% CI: 0.963–0.968) (Freitas-Costa et al., 419 

2023). SWYC-BR comprises 12 distinct forms, each aligned with the recommended age for routine 420 

pediatric wellness visits from 1 to 65 months (specifically at 1–3, 4–5, 6–8, 9–11, 12–14, 15–17, 18–22, 421 

23–28, 29–34, 35–46, 47–58, and 59–65 months). Each form is a 10-item questionnaire. For each item, a 422 

parent/caregiver can choose one of three answers that best describe their child (“not yet”, “somewhat”, or 423 

“very much”).  424 

The ENANI-2019 data collection system automatically selected the appropriate set of developmental 425 

milestones according to the child’s age. The corrected age was used to select the proper set of developmental 426 

milestones for children under two years who were born preterm (< 37 gestational weeks) (Gould et al., 427 

2021). 428 

 429 

Developmental quotient 430 

The item response theory and graded response models were used to estimate development age (Samejima, 431 

1997). The analysis used the full information method and incorporated the complex sample design in the 432 

Mplus software version 7 (Los Angeles, EUA) (Muthén & Muthén, n.d.). The estimated model allowed the 433 
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construction of an item characteristic curve (ICC) for each milestone, representing the change in the 434 

probability of a given response (sometimes or always) and the discrimination of each milestone 435 

development by age, estimating the development age (Freitas-Costa et al., 2023). The ICC and its 436 

coefficients were used to estimate developmental age according to the developmental milestones reached 437 

by each child. This methodology has been previously used to assess ECD with the SWYC (Freitas-Costa 438 

et al., 2023; Sheldrick et al., 2019; Sheldrick & Perrin, 2013) and the Denver Test (Drachler et al., 2007). 439 

The developmental quotient (DQ) was calculated by dividing the developmental age by the chronological 440 

age (Freitas-Costa et al., 2023; Sheldrick & Perrin, 2013). DQ equals to 1 indicates that the expected age 441 

milestones are attained. DQ values < 1 or > 1 suggest attaining age milestones below or above expectations, 442 

respectively. This method allows analyzing the outcome as a continuous variable. 443 

 444 

Blood collection 445 

Details of the procedures adopted for blood collection and laboratory analyses have been previously 446 

described (Castro et al., 2021). Fasting was not required, and changes in medication were not necessary to 447 

draw the blood sample. Briefly, 8 mL of blood sample were drawn and distributed in a trace tube (6 mL) 448 

and EDTA tube (2 mL) and transported in a cooler with a controlled temperature (from 2 ºC to 8 ºC) to a 449 

partner laboratory. Aliquots from the trace tube were centrifugated and the serum was transferred to a 450 

second trace tube and stored at freezing temperature (–20 °C) until laboratory analyses were performed. 451 

Serum samples with sufficient volume were stored in a biorepository (–80 ºC) prior to untargeted 452 

metabolome analysis. 453 

 454 

Serum processing and metabolome analysis 455 

Untargeted metabolomic analysis was performed on serum samples using a high-throughput platform based 456 

on multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). Samples were first 457 

thawed slowly on ice, where 50 µL were aliquoted and then diluted four-fold to a final volume of 200 µL 458 

in deionized water with an internal standard mix containing 40 µM 3-chlorotyrosine, 3-fluorophenylalanine, 459 

2-fluorotyrosine, trimethylamine-N-oxide[D9], g-amino butyrate[D6], choline[D9], creatinine[D3], 460 

ornithine [15N2], histidine[15Na], carnitine[D3], 3-methylhistidine[D3] and 2 mM glucose[13C6]. Diluted 461 

serum samples were then transferred to pre-rinsed Nanosep ultracentrifuge devices with a molecular weight 462 

cutoff of 3 kDa (Cytiva Life Sciences, Malborough, USA), and centrifuged at 10,000 g for 15 min to remove 463 
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proteins. Following ultrafiltration, 20 µL of diluted serum filtrate samples were transferred to CE-464 

compatible polypropylene vials and analyzed using MSI-CE-MS. A pooled QC was also prepared to 465 

evaluate technical precision throughput the study using 50 µL aliquots collected from the first batch of 979 466 

serum samples processed. Overall, serum specimens were prepared and run as three separate batches of 467 

979, 1990, and 2035 samples over an eighteen-month period. A QC-based batch correction algorithm was 468 

applied to reduce long-term system drift and improve reproducibility with QC samples analyzed in a 469 

randomized position within each analytical run (Wehrens et al., 2016). 470 

MSI-CE-MS was performed using an Agilent 6230B time-of-flight mass spectrometer (Agilent, Santa 471 

Clara, USA) with an electrospray ion source coupled to an Agilent G7100A capillary electrophoresis (CE) 472 

instrument (Agilent, Santa Clara, USA). The metabolome coverage comprises primarily 473 

cationic/zwitterionic and anionic polar metabolites when using full-scan data acquisition under positive and 474 

negative ionization modes. Given the isocratic separation conditions with steady-state ionization via a 475 

sheath liquid interface, MSI-CE-MS increases sample throughput using a serial injection format where 12 476 

samples and a pooled QC are analyzed within a single analytical run. Instrumental and data preprocessing 477 

parameters have been previously described (Saoi et al., 2019; Shanmuganathan et al., 2021). 478 

The technical precision for serum metabolites measured in pooled QC samples had a median CV of 10.5% 479 

with a range from 2.7 to 31% (n=422), which were analyzed in every run throughout data acquisition by 480 

MSI-CE-MS following batch correction. Overall, seventy-five circulating polar metabolites were measured 481 

in most samples (frequency > 50%) with adequate technical precision (CV < 30%) with the exception of 482 

symmetric dimethylarginine that was removed. Most metabolites were identified by spiking (i.e., co-483 

migration with low mass error < 5 ppm) and quantified with authentic standards, except for 13 unknown 484 

metabolites that were annotated based on their accurate mass (m/z), relative migration time (RMT), 485 

ionization mode (N or P), and most likely molecular formula. The metabolite distributions were severely 486 

asymmetric (average skewness = 40) and leptokurtic (average kurtosis = 1810). Therefore, a log 487 

transformation was performed on each metabolite, which reduced average skewness to 2.4 and kurtosis to 488 

20.8. Metabolite z-scores > 5 or < -5 were considered outliers and were removed (0.12% of the data). 489 

Missing data were treated following the procedures recommended by Wei et al. (Wei et al., 2018) with one 490 

modification. Instead of using the “80% rule” of excluding metabolites with < 80% non-missing cases (> 491 

20% missing cases) in all dependent variable categories, a less stringent 50% rule was applied to reduce the 492 

risk of excluding relevant serum metabolites. For the sole purpose of performing the exclusions, the DQ 493 
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was recoded as a categorical variable (DQ ≥ 1 as “within or above expectations”, and DQ < 1 as “below 494 

expectations”) to avoid removing metabolites that had a missingness pattern associated with DQ. Cysteine-495 

S-sulfate and an unknown anionic metabolite (209.030:3.04:N; C6H10O8) had > 50% missing cases in both 496 

DQ categories and were thus excluded. 497 

Of the remaining seventy-two serum metabolites that satisfied the above selection criteria, 12.5% of the 498 

data were missing due to matrix interferences, and 1.5% were missing due to non-detection (i.e., below 499 

method detection limit). Missing data due to matrix interference were imputed using the random forest (RF) 500 

method, and non-detection missing data were imputed using quantile regression imputation of left-censored 501 

data (QRILC) (Wei et al., 2018).  The RF method used all serum metabolome data to predict what value 502 

the missing cases would likely have taken. 503 

 504 

Statistical analysis 505 

We carried out descriptive and inferential analyses. The descriptive analyses were based on frequency with 506 

a 95% confidence interval (95% CI) and Student t-test or ANOVA were used to compare DQ in groups. 507 

The Pearson correlation was first used to explore the correlations between circulating metabolites 508 

(exposure) and DQ (outcome). We employed partial least squares regression (PLSR) analysis to compare 509 

the metabolites within a single model (Worley & Powers, 2013). The PLSR reduces the metabolites to 510 

orthogonal components, which are maximally predictive of the outcome and generate an indicator of how 511 

much each metabolite contributes to predicting the outcome, called the variable importance projection 512 

(VIP). Because our goal was not to determine the components that are maximally predictive of DQ but to 513 

rank the metabolites on their contribution to predicting the outcome, we only used the VIPs from this 514 

analysis. 515 

The PLSR was trained on 80% of the data, and the remaining 20% were used as test data. Training and test 516 

data were randomly allocated. The model with the optimal number of components considering predictive 517 

value and parsimony was used to generate VIP values. Metabolites were selected if they had a VIP ≥ 1.  518 

The subsequent step was to disentangle the selected metabolites from confounding variables. A Directed 519 

Acyclic Graph (DAG) was used to identify potential confounding variables of the association between 520 

metabolites and DQ (Breitling et al., 2021). The DAG was produced considering variables related to the 521 

exposure (metabolome) and outcome (DQ) based on evidence reported by systematic reviews or meta-522 

analysis (Figure 4). Birth weight, breastfeeding, child's diet quality, the child's nutritional status, and the 523 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24307119doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24307119
http://creativecommons.org/licenses/by/4.0/


 

13 
 

child's age were the minimal adjustments suggested by the DAG. Birth weight was a variable with high 524 

missing data, and indicators of breastfeeding practice data (referring to exclusive breastfeeding until 6 525 

months and/or complemented until 2 years) were collected only for children aged 0–23 months. Therefore, 526 

those confounders were not included as adjustments. Child's diet quality was evaluated as MDD, the child's 527 

nutritional status as w/h z-score, and the child's age in months. 528 

 529 

 530 

Figure 4. Directed acyclic graph (DAG) of the association between child metabolome and early childhood 531 
development.  532 

Note: IUGR: intrauterine growth restriction. 533 
Breastfeeding refers to breastfeeding practice exclusively until 6 months and/or complemented until 2 534 
years. Minimum adjustments suggested by the DAG: Birth weight, breastfeeding, child age, child diet 535 
quality, child nutritional status (w/h z-score). Blue rectangles: ancestor of the outcome; pink rectangles: 536 
ancestor of exposure and outcome; white circles: non observed variables in the ENANI-2019. 537 
 538 

Multiple linear regression between each metabolite and DQ were performed and adjusted for the 539 

confounders. Since the child diet and metabolism may change by child’s age and that neurodevelopmental 540 

disorders occur more frequently in boys than in girls, interactions between serum metabolites and child age 541 

(in months) and between metabolites and child sex were also tested to evaluate a possible modification 542 

effect of these variables in the models.  543 

We employed mediation analyses to explore the potential role of serum metabolites as mediators in the 544 

relationship between certain exposure variables related to the microbiome establishment in early life, such 545 
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as mode of delivery (Reyman et al., 2019), child's diet quality (Baldeon et al., 2023), as well as child fiber 546 

intake (Cronin et al., 2021) and DQ. We adopted the approach proposed by Tingley et al. (Tingley et al., 547 

2014) which provides independent estimates for the average causal mediation effect (ACME - the effect of 548 

the exposure variable on DQ that is mediated by the metabolite), the average direct effect (ADE - controlling 549 

for metabolite concentrations) of the exposure variable on DQ, and the total effect of the exposure variable 550 

on DQ (mediation plus direct effect). Bootstrap tests using 5,000 iterations evaluated whether the effects 551 

were statistically significant. Due to the exploratory nature of the mediation analysis, significance was not 552 

corrected for multiple testing. The child´s age (in months) and w/h z-score were entered as covariates. 553 

Results were considered statistically significant at an adjusted-p ≤ 0.05 after the Benjamini-Hochberg 554 

correction for multiple comparisons. Statistical analyses were carried out using the R programming 555 

language (R Core Team; http://www.R-project.org), through JupyterLab, using the following packages: 556 

ggplot2 (http://ggplot2.org), interactions (https://cran.r-project.org), dplyr (https://cran.r-project.org), 557 

tidyverse (www.tidyverse.org), pls (Mevik & Wehrens, 2007), plsVarSel 558 

(https://github.com/khliland/plsVarSel), mediation (Tingley et al., 2014). 559 

 560 

Ethical aspects 561 

The ENANI-2019 was approved by the Research Ethics Committee of the Clementino Fraga Filho 562 

University Hospital of the Federal University of Rio de Janeiro (UFRJ) under the number CAAE 563 

89798718.7.0000.5257. Data were collected after a parent/caregiver of the child authorized participation in 564 

the study through an informed consent form and following the principles of the Declaration of Helsinki. 565 

  566 
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