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Abstract 
 
Network hypersynchrony is emerging as an important system-level mechanism 
underlying seizures, as well as cognitive and behavioural impairments, in children 
with structural brain abnormalities. We investigated patterns of single neuron action 
potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers 
and normal looking cortex in 3 children with tuberous sclerosis. The patterns of 
neuronal firing, on a neuron-by-neuron (autocorrelation) basis did not reveal any 
differences as a function of anatomy. However, at the level of functional networks 
(cross-correlation), there is a much larger propensity towards hypersynchrony of 
tuber-tuber neurons that in neurons from any other anatomical site. This suggests 
that tubers are the primary drivers of adverse outcomes in children with tuberous 
sclerosis.  
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Introduction 
 
Tuberous sclerosis complex (TSC) is a common genetic disorder, usually caused by 
loss of function germline mutations in TSC1 or TSC2 genes.1 The phenotype 
includes a range of neurological symptoms including seizures, cognitive 
impairments, and behavioural disorders that are associated with cortical brain 
tubers.1 These tubers share genetic mutations with and are histologically identical to 
focal cortical dysplasia type 2b and consist of a tuber core and transmantle tail in the 
subjacent white matter that often extends towards the ventricular surface.2 The 
seizures, cognitive impairments, and behavioural disorders in TSC are attributed to 
tubers, although the mechanisms by which tubers disrupt function remains uncertain, 
particularly as cells in both the tuber and normal appearing cortex will have the 
germline mutation.1 We suggest that abnormal structural architecture in the tuber 
underlies abnormal neuronal network dynamics that in turn mediate the emergent 
phenotypes, including seizures and the cognitive and behavioural dysfunction 
associated with TSC.  
 
Epilepsy is characterised by spontaneous, unprovoked seizures.3 Seizures are 
characterised by abnormal synchronous firing of cortical areas. Previous studies 
evaluating action potential firing or calcium dynamics in cultured induced pluripotent 
stem cells from patients with TSC have suggested that there is network 
hypersynchrony measured as increased functional connectivity between neurons.4,5 
However, these studies are unable to address whether the level of hypersynchrony 
differs as a function of histological structure in patients. There is therefore a gap in 
our understanding of the basic mechanisms of synchronisation between what 
happens at the level of individual neurons in patient brains and the abnormal 
dynamics supporting hypersynchrony at the level of large volumes of brain tissue. 
Understanding these mechanisms may influence downstream clinical decision-
making including approaches to reduce seizures (eg resective epilepsy surgery) and 
strategies to ameliorate the other co-morbidities associated with TSC.  
 
The processes of synchronisation and de-synchronisation of correlated brain activity 
are fundamental to normal brain functions.6 Excessive synchronization 
characterising seizures has been hypothesised to derive from abnormal network 
properties that constrain the dynamics of the epileptic brain to become paroxysmally 
pathologically hypersynchronous.7 However, there is growing evidence from 
mesoscale dynamics, such as intracranial EEG, that neural activity outside of 
seizures is also abnormal, and specifically implicate a network poised to become 
synchronous.8,9 Because the brain is not hypersynchronous in these inter-ictal 
periods, we must infer the propensity to generate hypersynchronous activity from 
non-hypersynchronous epochs. The ability of correlated brain activity to generate 
hypersynchronous activity is a property we term synchrogenicity.  
 
To examine the relationship between functional connectivity and synchrogenicity, we 
took advantage of recent progress in microelectrode technology, that has facilitated 
the simultaneous recording of clinically relevant local field potential (LFP) and single- 
and multi-unit activity during stereoelectroencephalography (SEEG), which is often 
required in TSC prior to the formulation of a strategy for resective epilepsy surgery.10 
We studied single unit electrophysiological activity in three children with TSC 
undergoing evaluation for epilepsy surgery to examine whether neurons in the in vivo 
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network, outside of the time of seizures, have a propensity for hypersynchrony and, if 
so, whether neurons in specific areas (the tuber core, the tuber tail or radiologically 
unaffected cortex) drive abnormal network dynamics.  
 
We hypothesised that functional firing patterns analysed on a neuron-by-neuron 
basis would be similar across histological regions given that TSC is a germline 
disorder, likely affecting the biophysical properties of each neuron equally, but that 
correlated firing in tuber cores would be markedly abnormal when compared to other 
regions due to the disrupted network structure. We studied functional firing patterns 
using a statistical model for neural spike trains,11,12 which we used to define two 
novel, network-based, interictal measures of synchrogenicity: autonomous 
synchrogenicity and network synchrogenicity (Figure 1). These properties define 
how the single-unit network is expected to respond to synchronous inputs, by either 
propagating them or suppressing them as a function of either neuron-autonomous or 
network-based functional firing characteristics, respectively. We study the 
synchrogenicity of histologically distinct brain regions within and around cortical 
tubers, which are strongly correlated with abnormal firing and are thought to be a 
major driver of hypersynchrony. We show that network synchrogenicity is driven by 
interaction between neurons within and between tubers, demonstrating that these 
histologically disordered regions have a high level of influence on the 
synchronization of neuronal networks. This supports the view that both seizures and 
the other neurological symptoms in TSC are driven by abnormal neural dynamics 
that arise from disrupted structural architecture within tubers.13  
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Figure 1: Schematic of analytic techniques for assessment of autonomous and 
network synchrogenicity (propensity to generate hypersynchronous activity) 
from single unit spike trains. It involves the modelling of single unit spike trains to 
generate post-spike filters (PSF) and coupling filters (CFs). The correlations of these 

can assess autonomous and network synchrogenicity respectively and building 
networks from these can assess drivers of synchrogenicity.  
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Methods 
 
This prospective study was approved by the London-Brent Research Ethics 
Committee on behalf of the UK Health Research Authority (IRAS ID 255823). In line 
with UK law, the parents of all included patients provided informed consent for study 
participation.  
 
Participants 
 
Three patients with TSC were included in the study (Table 1). All were selected to 
undergo stereoelectroencephalography (SEEG) as part of their clinical work-up for 
drug resistant epilepsy. Clinical decision making, including decision to undergo 
SEEG and the number and location of electrodes were not affected by involvement 
in the study. All underwent predominantly frontal explorations with some electrodes 
extending into the insula and parietal cortices.  
 

Patient 

Age 
categ
ory at 
SEEG 
(yrs) 

Sex 
TSC 

Mutatio
n 

Age at 
Seizure 
Onset 
(yrs) 

Onset 
with 

Spasms
? 

Exploratio
n 

Treatment offered 
following SEEG 

1 0-5 M TSC1 0.7 Y Right 
Frontal 

Right frontal tuber 
resection 

2 10-15 F TSC1 0.3 Y Bilateral 
Frontal 

Right insula laser 
ablation 

3 0-5 M TSC2 0.3 N Right 
Frontal 

Right frontal tuber 
(x2) resection 

Table 1: Demographic details of the 3 included patients.  
 
Microelectrode Recording and Data Processing 
 
Enrolled patients underwent insertion of three (NNAIS05), two (NNAIS06) and 5 
(NNAIS07) hybrid micro-macro electrodes (AdTech MM16A-SP05X-000), each with 
10 microelectrode contacts along the shaft (Figure 2a). Hybrid electrodes replaced 
existing planned macroelectrode trajectories and were chosen based on the length 
of the planned electrode trajectories; the hybrid micro-macro electrodes had a fixed 
active length of 28mm and it was therefore not possible to specifically target the 
purported epileptogenic tubers. Post hoc, it was revealed that none of the isolated 
neurons were from putative epileptogenic tubers that were subsequently resected or 
ablated. Macro channels were connected to the clinical system (Natus Quantum) to 
record at 2kHz whilst micro channels were connected to a research system with pre-
amplification (Ripple Summit) to record at 30kHz. The same white matter macro 
contacts were chosen as ground and reference for both systems and connected to 
each other to reduce noise.  
 
Microelectrode recordings were conducted for up to 30 mins per day for each 
recording day possible. This was in the awake state during the day whilst the child 
was sitting in bed, either watching the television or playing puzzle/activity games. 
Recordings were performed before the first recorded seizure in all patients.  
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Microelectrode recordings (Figure 2b) were processed using Matlab R2020b, 
FieldTrip & WaveClus3.14,15 On channels with acceptable impedances on impedance 
testing (50-400 kOhms) and local field potential (LFP) visible at low frequencies, a 
discrete fourier transform filter (at 50,100 and 150Hz) was applied to reduce line 
noise. Spikes were extracted using positive and negative detection at a 4 standard 
deviation above the noise threshold and subsequently sorted using WaveClus3 and 
manually selected based on a combination of the temperature plots and firing rate. 
Putative units were excluded if >2% of the inter spike intervals (ISIs) were <2ms and 
their firing rates were less than 0.5Hz. As we wanted to sample all interictal 
connectivity, interictal epileptiform discharges (IEDs) were not sought out and 
continuous data was used.16  
 
Each spike train was assigned a location based on the fusion of the post-operative 
CT to MRI as either within the tuber, in the transmantle tail or in radiologically 
unaffected cortex (Figure 2c).  This was possible as the predominant SEEG 
implantation strategy at our institute is to sample putative tubers, the depths reaching 
the white matter tails, with occasional electrodes in normal areas of cortex guided by 
the non-invasive presurgical evaluation data. Spike properties were assessed using 
the frequency, the spike half width and coefficient of variance of the ISIs (standard 
deviation of ISIs / mean ISI).17 
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Figure 2: Summary of methods. (a) Schematic of AdTech hybrid micro-macro 

SEEG electrodes used in this study. (b) Raw traces of recordings from single 
microelectrode channel showing LFP (1-100 Hz, upper) and high frequency (500+ 

Hz, lower) traces. The top panel shows a 10s montage whilst the lower panel shows 
a 1s montage. (c) Fused coronal T1-weighted MRI & post-operative CT scan in one 
patient showing examples of contact locations labelled as cortex, tuber and tail. The 
microelectrode contacts (yellow arrow) are adjacent to the macroelectrode contacts 
(green/blue dots). (d) Example of an inter-spike interval (ISI) histogram, post spike 

filter and coupling-adjusted post spike filter from a neuron on the same channel 
shown in b. 

 
Generalised linear models were used to generate post-spike filters (PSFs) and 
coupling filters (CFs) for each neuron within each recording session (Figure 1). 
These filters are statistically robust models of auto- and cross-correlation properties 
of the spike trains, allowing an assessment of the statistical influence of past firing 
(PSF) and the past firing of other neurons (CF) on future firing.11,12,18 The GLM has a 
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baseline firing rate parameter controlling the average propensity of a neuron to fire 
and all other effects are encoded as a time-varying gain functions called filters that 
multiplicatively modulate the firing rate. The PSF encodes the modulation of a 
neuron’s firing rate given it has just fired, whilst the CF encodes the modulation of a 
neuron’s firing rate given that another neuron has just fired (Figure 1). The CF 
therefore acts as a directed connectivity measure between the influencing neuron 
and target neuron. Following normalisation of the filters to enable shape 
comparisons, two main analyses were performed as follows. 
 
First, to quantify variation in auto- or cross-correlation structures defined by the PSF 
and CFs, we decomposed the filter time series using principal component analysis 
(PCA). Differences in the first 2 principal components were compared between 
histological regions (3 groups for PSFs and 9 groups for CFs).  
 
Second, we developed novel, network-based measures to assess autonomous 
synchrogenicity and network synchrogenicity (Figure 1). Because healthy brains 
must constantly switch between synchronous and asynchronous states, we 
hypothesised that the mechanisms of hypersynchrony are due to abnormal 
responses to synchronous inputs. When a region of brain tissue receives inputs that 
drive neurons to fire at the same time, the dynamical response to those inputs will 
produce outputs that can either be synchronous or asynchronous. During interictal, 
asynchronous activity, we cannot directly observe the drive toward synchrony, but 
we can estimate this response using the fitted GLMs from above.  
 
Autonomous synchrogenicity: Given two neurons with normalised PSFs, 𝑓!(𝑡) and 
𝑓"(𝑡), we define the dot product of their PSFs as 

𝑊!" =< 𝑓! , 𝑓" >	= 	
1
𝑇, ⬚

#

0
𝑓!(𝑡)𝑓"(𝑡)𝑑𝑡 

where T is duration of the PSFs. 𝑊!" measures the similarity of the predicted future 
firing of neurons i and j given that they fired simultaneously. For n neurons, this n x n 
matrix of pairwise dot products 𝑊 = /𝑊!"0⬚can be viewed as a weighted adjacency 
matrix for an abstract network among neurons from which we computed the following 
three common network measures using the Brain Connectivity Toolbox19: 
 

- Strength (i.e., weighted degree): Node strength is the sum of weights of edges 
connected to the node. High strength implies a densely connected node. 

- Eigenvector Centrality: Eigenvector centrality is a self-referential measure of 
centrality; nodes have high eigenvector centrality if they connect to other 
nodes that have high eigenvector centrality. A high eigenvector centrality 
implies a high level of influence on the network. 

- Clustering Coefficient: The clustering coefficient is the weight of triangles 
around a node and is equivalent to the weight of node’s neighbours that are 
neighbours of each other. A high clustering coefficient implies that a node’s 
neighbours are all densely connected to each other, while a low clustering 
coefficient indicates that a node’s neighbours are spread out across the 
network. 

 
Each abstract network measure separately encapsulates the idea that some nodes 
are more tightly interconnected within the abstract network. Functionally, neurons 
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with high values for strength and eigenvector centrality and low values for clustering 
coefficient are predicted by the GLM to produce time-correlated outputs with many 
other neurons in the ensemble, provided their inputs cause them to spike at the 
same time. This could happen, for example, if a subset of neurons had highly 
stereotyped oscillatory PSFs. Thus, these network measures capture our notion of 
autonomous synchrogenicity and comparing between histological regions facilitates 
an assessment of which regions drive the synchrogenicity of the network.  
 
Network synchrogenicity: Given two pairs of neurons with normalised CFs, 𝑓!"(𝑡) and 
𝑓%&(𝑡), we define the dot product of their CFs as 

𝑊(!,")(%,&) =< 𝑓!" , 𝑓%& >	= 	
1
𝑇, ⬚

#

0
𝑓!"(𝑡)𝑓%&(𝑡)𝑑𝑡 

where T is duration of the CFs. 𝑊(!,")(%,&) measures the similarity of predicted future 
firing of neurons j and k given that neurons i and l fired simultaneously. The complete 
matrix of pairwise dot products 𝑊 = /𝑊(!,")(%,&)0⬚can be viewed as a weighted 
adjacency matrix for an abstract network. Note that the neurons i, j, k, and l need not 
be distinct. 
 
For n neurons, this n2 x n2 matrix of pairwise dot products 𝑊 = /𝑊(!,")(%,&)0⬚can be 
viewed as a weighted adjacency matrix for an abstract network among pairs of 
neurons, from which we can compute strength, clustering coefficient, and 
eigenvector centrality, as above. Analogous to autonomous synchrogencity above, 
neuron pairs with high values for strength and eigenvector centrality and low values 
for clustering coefficient are predicted by the GLM to produce time-correlated outputs 
with many other neurons in the ensemble, provided their inputs cause them to spike 
at the same time, this time based on their cross-correlation patterns. The important 
distinction in this case is that, unlike autonomous synchrogenicity, the inputs and 
outputs can be different neurons, so synchronous inputs in one part of the network 
can propagate to generate synchronous outputs at another part of the network. 
Thus, these network measures capture our notion of network synchrogenicity. Again, 
comparing between histological regions facilitates an assessment of which regions 
drive the synchrogenicity of the network.  
 
To compare network measures between the different histological regions, we used 
standard linear models. To adjust for networks of different sizes, we compared the 
ranks of the network measures within each subject and each recording session, 
normalised to a scale between 0 and 1. Statistical analyses were performed using 
parametric tests. P-values <0.05 were considered statistically significant.  
 
Code and Data Availability 
 
Code used for this study is available at 
https://github.com/aswinchari/SingleUnitConnectivity/ and data (the single unit spike 
trains after spike sorting, subsequent filters and networks) are available at 
https://osf.io/ab39m/.   
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Results 
 
In total, 206 units were isolated across 7 recording sessions (total 3h and 5 mins) in 
the 3 patients, all performed within the first three days (day 0, day 1 and day 2) of 
SEEG implantation. Of these, 79 were in normal cortex, 53 were in the body of a 
tuber and 74 were in the tail of the tuber.  
 
Isolated neurons show largely typical features of pyramidal cells with only subtle 
behavioural differences between the groups. 
 
Across all units, the neurons showed features of typical pyramidal cells with mean 
firing rate of 1.7Hz (SD 1.8) and mean spike half width of 0.18ms (SD 0.02) (Figure 
3a). There was no separate cluster of smaller spike half width and higher frequency 
cells to indicate interneurons. There were no differences in spike frequency (one-way 
ANOVA, f(2,203)=0.01, p=0.99) and spike half width (one-way ANOVA, 
f(2,203)=1.86, p=0.16) by location Figure 3b). The coefficient of variation of ISIs was 
different (one-way ANOVA, f(2,203)=6.64, p=0.002), with pairwise comparison using 
Tukey’s method showing that the coefficient of variation was higher in the normal 
cortex compared to both the tuber (p=0.003) and tail (p=0.01). This suggests a more 
stereotyped pattern of firing of the tuber & tail neurons compared to normal cortical 
neurons.  
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Figure 3: Spike properties of isolated single units. (a) 3D plot of three common 
spike properties used to sort between cell types, coded by location of the cells. (b) 
2D plots of each combination of properties. Both illustrate that (i) there are no clear 
clusters of different cell types to indicate pyramidal cells and interneurons and (ii) 

there are no differences in spike frequency and half-width between cell types, but the 
cortical spikes have a higher coefficient of variation of ISIs compared to spikes in the 

cortex and tail.  
 
Post spike filter properties indicate similar neuron autocorrelation structure across 
regions 
 
To ascertain whether there were differences in firing patterns of individual neurons in 
the different locations, the post-spike filters (PSFs) for each of the 206 neurons were 
decomposed using principal component analysis (PCA), of which the first 2 principal 
components explained 63% of variability in the data (Figure 4a). The first principal 
component describes a bursting neuron with bursts occurring approximately every 
120ms. The second principal component describes initial bursting preceding a 
refractory period lasting about 150ms followed by no further autocorrelation 
structure. The scores for PC1 and PC2 are a measure of similarity between an 
individual neuron’s PSF shape and the canonical shapes shown (Figure 4c). There 
were no differences between neurons in different histological areas, indicating that 
neurons in the tuber core, tail and radiologically unaffected cortex all have similar 
auto-correlation structure (Figure 4b).  
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Figure 4: Principal component analysis of post spike filters. PCA was performed 
to decompose PSFs from 206 neurons. (a) 3D plot of the first 3 PC scores, coded by 

location of the cells. (b) Scores of the first 2 PCs (which explained 63% of the 
variance) by location of the cells. There were no significant differences in the PC 
scores across groups. Black bars indicate means. (c) Coefficients of these first 2 

PCs indicating the nature of the modulation conferred by each PC. 
 
 
Coupling filter properties indicate dynamic non-stereotyped interactions between 
neurons which are not different between groups 
 
Next, we built coupling filters (CFs) to quantify neuronal firing co-modulation between 
pairs of simultaneously recorded neurons in our dataset and similarly decomposed 
the CFs of the 9302 pairs of neurons using PCA, of which the first 2 principal 
components explained 25% of the variability in the data (Figure 5). The CF describes 
cross-correlation structure after autocorrelation structure has been subtracted. 
Therefore, this provides different information to correlation between PSFs and is a 
more direct measure of how neurons influence each other. PC1 describes an initial 
burst of firing followed by modulation of firing at alpha frequencies (increased 
propensity to fire 200 and 350 ms after the initial action potential) (Figure 5c). The 
scores for PC1 (one-way ANOVA, f(8,9293)=2.84, p=0.004) were statistically 
significantly different between groups (Figure 5b). Pairwise comparisons using 
Tukey’s method showing lower PC1 score in ‘tuber-cortex’ filters compared to ‘tuber-
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tuber’ (p=0.03) and ‘cortex-cortex’ (p=0.006), indicating lower alpha modulation in 
tuber-cortex coupling filters compared to the 2 other types of filters. There were no 
differences between PC2 scores as a function of the histological region (Figure 5b).  
 
Overall, the low variance explained by the first 2 PCs indicate a wide range of ways 
in which pairs of neurons influence each other, reflecting the dynamic nature of these 
interactions that facilitate diverse functions. The fact that there are only subtle 
differences in the PC1 scores indicates that there are no specific stereotyped cross-
correlation phenotypes that seem to drive network dysfunction in TSC.  
 
 

 
Figure 5: Principal component analysis of coupling filters. PCA was performed 
to decompose CFs from 9301 pairs of neurons. (a) 3D plot of the first 3 PC scores, 
coded by nature of the CFs. (b) Scores of the first 2 PCs (which explained 25% of 

the variance) by nature of the CFs. Black bars indicate means. There were 
significant differences (*) between PC1 scores between the denoted groups. (c) 

Coefficients of these first 2 PCs indicating the nature of the modulation conferred by 
each PC. 

 
 
Hypersynchrony may be driven by high network synchrogenicity of tuber-tuber 
interactions 
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The previous analyses evaluated single neuron and pairwise firing behaviours in 
isolation, showing, at most, modest differences in firing properties during interictal 
brain activity between groups. However, because of prior findings showing subtle 
functional network differences in interictal recordings at other spatial scales8,9, we 
extended our approach to evaluate the expected dynamical response to 
synchronous inputs. 
 
Specifically, we constructed two types of abstract networks. The first was among 
PSFs encoding synchronous output firing due to synchronous input spikes, which we 
termed autonomous synchrogenicity.  The second was among CFs encoding the 
propagation of synchronous activity due to synchronous inputs, which we termed 
network synchrogenicity. We analysed network properties of nodes within these 
networks and assessed whether abstract network properties differed between 
groups. Both network types and the rationale for these analyses are explained in 
more detail in the methods. 
 
Networks constructed from PSFs in individual recording sessions revealed no 
difference in 3 network measures, namely strength (one-way ANOVA, f(2,203)=1.75, 
p=0.18), clustering coefficient (one-way ANOVA, f(2,203)=0.17, p=0.84), and 
eigenvector centrality (one-way ANOVA, f(2,203)=1.76, p=0.18) between units that 
were in tuber, tail and cortex. This indicates no inherent differences in autonomous 
synchrogenicity between neurons in the tuber, tail and cortex.  
 
However, when similar networks were constructed for CFs, there were significant 
differences across all 3 graph metrics; strength (one-way ANOVA, f(8,9293)=27.5, 
p=1x10-42), clustering coefficient (one-way ANOVA, f(8,9293)=7.1, p=2x10-9) and 
eigenvector centrality (one-way ANOVA, f(8,9293)=16.8, p=5x10-25) (Figure 6a-c, left 
panel). Pairwise comparisons using Tukey’s method revealed multiple differences 
(Figure 6a-c, right panel). The most robust changes across the groups were 
increased strength (p<3x10-4 compared to all other groups), decreased clustering 
coefficient (p<5x10-3 compared to all other groups) and increased eigenvector 
centrality (p<9x10-5 compared to all other groups) for the tuber-tuber CFs, indicating 
increased network synchrogenicity being driven by tuber-tuber interactions. 
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Figure 6: Properties of the networks derived from coupling filters differ by type 

of edge. Node (a) strength, (b) clustering coefficient and (c) eigenvector centrality 
vary by type of coupling filter in eFC networks across sessions. Black bars indicate 

means. The panels on the right show pairwise comparisons, indicating that the most 
striking features are increased strength, decreased clustering coefficient and 
increased eigenvector centrality of the tuber-tuber filters compared to all other 

groups. (co = cortex, tu = tuber, ta = tail). 
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Discussion 
 
In this single-unit electrophysiology study in 3 children with TSC, we reveal that 
individual neuronal firing properties, as modelled through the shapes of their 
statistically robust post spike and coupling filters, are similar in different histological 
regions. Using novel network analyses in interictal periods, we show that the 
autonomous synchrogenicity of these neurons is also not different between regions 
but, when assessing network synchrogenicity, we identify that the propensity for 
network hypersynchrony, which may underlie the seizures and associated 
comorbidities, is driven by tuber-tuber interactions in abnormally connected 
functional networks.  
 
Post-spike and coupling filters shapes are not different between regions 
 
There are at least two potential explanations for why we fail to see differences in the 
shapes of the post-spike and coupling filters between regions when deconstructed 
using principal component analysis. The first is that all neurons have the mutation, 
similar biophysical properties and thus respond similarly to inputs. This is consistent 
with cell culture and in-vitro experiments in animal models of TSC that neurons have 
abnormal shape and electrophysiological properties even when there is no overt 
histological malformation.4,5 Therefore, the similarity in autocorrelated firing patterns 
may not be surprising as the germline mutation in TSC likely affects all neurons, 
even those outside tubers. The second is that the brain regions being sampled 
simply do not have differences in firing patterns similar to the lack of difference 
between normal and abnormally structured cortical firing.18  
 
The first two principal components explain only a small proportion of the variance in 
the filters (63% for PSFs and 25% for CFs), underscoring the importance of varied, 
non-stereotyped responses of neurons to inputs that facilitate the emergence of 
varied and adaptable phenotypes which can be both functional (e.g. cognitive 
processes) and dysfunctional (e.g. seizures). 
 
Abstract networks reveal differences in network synchrogenicity but not autonomous 
synchrogenicity 
 
When we constructed networks that model the responses to simultaneous inputs, we 
identified no differences in network properties between histological regions when 
assessing autonomous synchrogenicity. However, we showed differences in network 
properties of networks constructed from CFs, indicating that network synchrogenicity 
was driven by tuber-tuber interactions. These findings indicate that the propensity to 
hypersynchrony is not driven by a specific group of neurons in the tuber, tail or 
cortex but instead by a complex functional organization wherein the co-firing of 
neurons throughout the ensemble is more similar to the co-firing of pairs of neurons 
within or between tubers.  
 
Action potential firing dynamics are fundamental to brain function, and it is widely 
accepted that phenotypes are mediated through neural network activities.13 
Therefore, evaluating how neural dynamics are altered in disease can lead to 
improved understanding of disease pathogenesis and subsequently to development 
of novel therapies. There is a large literature on action potential dynamics in animal 
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models confirming that dynamical patterns are abnormal across a range of insults 
and that the nature of the alterations can predict phenotypes.13,18,20 However, the 
translation of these techniques to humans has been limited and to our knowledge 
this is the first time that these approaches have been evaluated in children.  
Furthermore, rodent models of TSC lack the histological features of TSC, namely 
tubers, making questions about connectivity within tubers and between tuber and 
adjacent tissue impossible to address pre-clinically.21 Indeed, many studies have 
explored TSC firing abnormalities using iPSCs from patients, but these studies also 
cannot address tuber-specific alterations in network properties.  
 
Importantly, this study uses only TSC patient data and therefore, we cannot infer that 
the network is inherently prone to hypersynchrony compared to a healthy brain but 
that, within the observed single-unit functional network, the tuber-tuber interactions 
drive the propensity for hypersynchrony through their network functional connectivity 
rather than inherent differences in firing properties of individual neurons.  
 
Implications of tuber-tuber interactions driving hypersynchrony 
 
The network dynamics identified in this study have implications in a number of 
domains. Firstly, in terms of identifying tubers and networks responsible for seizures 
in TSC, there may be a complex interplay between multiple tubers driving 
hypersynchrony and therefore, highlight the need to rethink the paradigm of 
identifying specific epileptogenic tubers. Indeed, clinical evidence suggests that 
seizures often arise from multiple tubers and require more complex resection 
strategies.22,23 Further evidence may be gained from linking tuber connectivity 
metrics to epileptogenicity and associating these with post-resection outcomes.  
 
The findings from this network approach are unique and build upon work from other 
studies in TSC. Using SEEG, Alexander et al found increased inter- and intra-tuberal 
connectivity in the beta and gamma bands during seizures.22  Similarly, Yu et al 
found increased proportion of positive cortico-cortical evoked potentials (CCEPs) 
between tubers compared to tuber-cortex and cortex-tuber, implying enhanced 
connectivity between cortical tubers.24 They further linked the strength of these 
connections to the epileptogencity of the tubers, with more positive CCEPs between 
epileptogenic and early propagation tubers. They also found that the CCEP positivity 
rate was highest in the centre of the tubers, suggesting a gradient of epileptogenicity 
within tubers, with a peak in the cores. This concept of the tuber core driving the 
dynamics has also been shown in a dynamic causal modelling study, which showed 
that ictal and interictal dynamics were best supported by a model where an impulse 
was triggered at the tuber core.25 This is supported by another single patient single 
unit study which showed a gradient of epileptogenicity within tubers, with more 
neurons being modulated by interictal epileptiform discharges in the tuber compared 
to the periphery.26 Together, these works support a complex interaction within and 
between tubers that needs to be considered before deciding on treatment strategies 
including surgical resection of potentially epileptogenic tubers.  
 
These findings may also be of interest in non-TS contexts. If other epileptogenic 
lesions such as focal cortical dysplasia have similar pathophysiological mechanisms 
and EEG signatures,27–29 it may allow better localisation of epileptogenic lesions 
using interictal data. This is particularly important as a recent study has shown that 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.09.24306995doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24306995
http://creativecommons.org/licenses/by-nc-nd/4.0/


current neurophysiological definitions of the seizure onset zone may be deficient as 
the proportion of these contacts resected during SEEG-guided resection does not 
correlate with outcome; in that study, post-operative identification of pathological 
tissue was the only predictive factor.30 
 
Does microelectrode data have a role in the future of invasive presurgical 
evaluation? 
 
The findings of this and other recent studies showcase the technical ability to extract 
single unit data from microelectrodes embedded into clinically used SEEG 
electrodes.10,26,31 They provide a proof of principle that such recordings may hold 
promise for understanding epileptic and malformed cortex. As outlined in an earlier 
review, there are a number of ways such recordings could help, including improving 
the localisation of the epileptogenic zone, allowing localisation using interictal 
recordings and providing a substrate for closed loop neuromodulation 
technologies.10 
 
Current barriers to such clinical translation include technical difficulty, processing 
power and a currently rudimentary understanding of the interpretation of the data. In 
terms of technical difficulty, this study (and other similar ones32,33) have highlighted 
difficulties in optimising recording conditions and equipment for single unit recordings 
from human brains. Improvements in technology, both at the electrode and recording 
amplifier stages will facilitate robust recordings that are reliable and have good 
signal-to-noise ratios. This study requires hours of post-recording processing to 
generate the networks and improvements in computational power will aid almost 
real-time processing of such metrics, that may then facilitate their clinical utility. 
Lastly, more work in this area will elucidate clinically important biomarkers of the 
epileptogenic zone (or other metrics) that can then be used to guide surgical 
management and/or neuromodulation to optimise patient outcomes. 
 
Conclusion 
 
In this study of 3 patients with TSC, we show using microelectrode recordings, 
robust filters and functional connectivity networks from single unit spike trains that 
there is a propensity to hypersynchrony across the TSC brain, driven not by 
abnormal neuronal firing but by functional interactions of neuronal firing within and 
between tubers within the functional connectivity network. This provides a proof of 
principle that microelectrode recordings can be used to construct networks and 
analysis of these networks may be helpful in increasing our understanding of the 
pathophysiological mechanisms in TSC and related disorders and ultimately could 
be useful to guide clinical management.  
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