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 2 

Abstract 28 

Self-antigens abnormally expressed on tumors, such as MUC1, have been targeted by 29 

therapeutic cancer vaccines.  We recently assessed in two clinical trials in a preventative 30 

setting whether immunity induced with a MUC1 peptide vaccine could reduce high colon 31 

cancer risk in individuals with a history of premalignant colon adenomas.  In both trials, 32 

there were immune responders and non-responders to the vaccine. Here we used PBMC 33 

pre-vaccination and 2 weeks after the first vaccine of responders and non-responders 34 

selected from both trials to identify early biomarkers of immune response involved in long-35 

term memory generation and prevention of adenoma recurrence. We performed flow 36 

cytometry, phosflow, and differential gene expression analyses on PBMCs collected from 37 

MUC1 vaccine responders and non-responders pre-vaccination and two weeks after the 38 

first of three vaccine doses.  MUC1 vaccine responders had higher frequencies of CD4 39 

cells pre-vaccination, increased expression of CD40L on CD8 and CD4 T-cells, and a 40 

greater increase in ICOS expression on CD8 T-cells. Differential gene expression 41 

analysis revealed that iCOSL, PI3K AKT MTOR, and B-cell signaling pathways are 42 

activated early in response to the MUC1 vaccine.  We identified six specific transcripts 43 

involved in elevated antigen presentation, B-cell activation, and NF-kB1 activation that 44 

were directly linked to finding antibody response at week 12. Finally, a model using these 45 

transcripts was able to predict non-responders with accuracy. These findings suggest that 46 

individuals who can be predicted to respond to the MUC1 vaccine, and potentially other 47 

vaccines, have greater readiness in all immune compartments to present and respond to 48 

antigens. Predictive biomarkers of MUC1 vaccine response may lead to more effective 49 

vaccines tailored to individuals with high risk for cancer but with varying immune fitness.  50 
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 3 

Introduction 51 

Self-antigens abnormally expressed in tumors, known as non-viral cancer-associated 52 

antigens, have been extensively tested over the last three decades as antigens in 53 

therapeutic cancer vaccines (1-3).  In preclinical studies, an immune response to these 54 

antigens can prevent cancer growth without causing toxicity. In humans, preexisting 55 

immunity to some such antigens correlates with better disease outcome or reduced risk 56 

of cancer recurrence (4).  Nevertheless, therapeutic vaccines utilizing these antigens 57 

have had low immunogenicity and no clinical efficacy. This has been attributed to the 58 

presence of many immunosuppressive influences in the tumor microenvironment (5, 6). 59 

MUC1 is a cancer-associated antigen that has been effective as a vaccine in preclinical 60 

animal models but showed limited immunogenicity and efficacy as a therapeutic vaccine 61 

in clinical trials in colon, breast, pancreas, prostate and lung cancer (7-11). Hypothesizing 62 

that the major difference between the outcome of the vaccine in preclinical models and 63 

clinical trials is the high level of immune suppression in cancer patients, we began to 64 

develop models and MUC1 vaccines for cancer prevention in patients at risk; before 65 

immune suppression develops. As MUC1 is expressed on early premalignant lesions as 66 

well as cancer, we chose to study immunogenicity, safety and potential efficacy of this 67 

vaccine in the preventative setting in individuals with a history of colonic polyps that 68 

increases their risk of colon cancer (12).  69 

From 2008 to 2012, we conducted a single arm trial (NCT-007773097) (13) in 41  70 

individuals. Forty-three percent (43%) of vaccinated participants responded to the vaccine 71 

as measured by production of anti-MUC1 IgG at week 12 post vaccination (vaccine 72 

responders), and 57% did not respond (vaccine non-responders).  From 2015-2020, we 73 
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conducted the second study, a randomized, double-blind placebo-controlled multi-center 74 

efficacy trial of the same MUC1 vaccine in the setting of newly diagnosed advanced 75 

adenomas in 110 individuals (NCT-02134925) (14).  Twenty-seven percent (27%) of the 76 

vaccinated participants responded to the vaccine. In addition to the immune response, in 77 

this trial we evaluated adenoma recurrence by follow-up colonoscopy ≥1 year from the 78 

start of vaccination.  In vaccine responders, adenoma recurrence was reduced by 38% 79 

compared to non-responders and placebo controls.  Predictable factors such as gender, 80 

age, and HLA-type were not significantly different between vaccine responders and non-81 

responders.  It became important to understand why some individuals mounted a 82 

potentially protective immune response, while others did not, having the same diagnosis.  83 

In this study, we analyzed PBMC samples collected from both trials at baseline (pre-84 

vaccination) and 2 weeks post-first of 3 vaccines (week 0, week 2 and week 10) from 85 

vaccine responders and non-responders and identified comprehensive gene and 86 

pathway biomarkers related to vaccine response. We discovered that several key T- and 87 

B-cell cellular proliferation and stress pathways were enriched in responders, while 88 

oxidative phosphorylation and DNA damage response and repair pathways were 89 

enriched in non-responders. Responders had higher frequencies of CD4 cells at baseline, 90 

with higher activation and/or costimulatory signaling in CD8 and CD4 T-cells from 91 

baseline to week 2 in CD8 T-cells. Phosflow analysis revealed enhanced phosphorylation 92 

of B-cell signaling molecules and T-cell help targets in responders at baseline and a 93 

significant increase in NFκB phosphorylation in B-cells at week 2. Lastly, we applied 94 

graphical modeling approaches (15-17) to this data and built a regression model to 95 
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discriminate future responders and non-responders via their predicted and actual IgG 96 

response at week 12.  97 

Materials and Methods 98 

PBMC collection 99 

PBMC samples from patients with a history of, or with newly diagnosed, advanced colonic 100 

adenoma and at high risk for colon cancer were collected as part of two clinical trials of a 101 

MUC1 vaccine registered at clinicaltrials.gov (NCT-007773097, NCT-02134925) (13, 14).  102 

The ethics committee/IRB of the following institutions gave ethical approval for this work: 103 

Mayo Clinic, Rochester MN; Kansas City Veterans Affairs Medical Center, Kansas City, 104 

KS; University of Pittsburgh Medical Center, Pittsburgh PA; University of Puerto Rico, 105 

San Juan PR; Thomas Jefferson University Hospital, Philadelphia PA; and 106 

Massachusetts General Hospital, Boston MA. All participants provided written informed 107 

consent. Blood samples were processed within 24 hours by the same individual, using 108 

the same protocol. Heparinized blood was layered on lymphocyte separation medium 109 

(MPbio) and centrifuged at 800 g for 10 min with lowest acceleration and deceleration 110 

speed. PBMC were collected from the interphase, washed twice, resuspended in 80% 111 

human serum and 20% DMSO, and stored in liquid nitrogen. 112 

 113 

RNA-Seq 114 

PBMC samples were thawed, pelleted, and lysed in 350 uL of RLT with beta-115 

mercaptoethanol. RNA was isolated using the RNeasy Mini kit (Qiagen). RNA quality was 116 

assessed with the Fragment Analyzer (Agilent) and its Standard Sensitivity RNA kit. Total 117 

RNA was normalized to 100 ng prior to random hexamer priming and libraries generated 118 
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by the TruSeq Stranded Total RNA – Globin kit (Illumina). The resulting libraries were 119 

assessed on the Fragment Analyzer (Agilent) with the High Sense Large Fragment kit 120 

and quantified using a Qubit 3.0 fluorometer (Life Technologies. Medium depth 121 

sequencing (>30 million reads per sample) was performed with a HiSeq 2500 (Illumina) 122 

on a High Output, 125 base pair, Paired End run. 123 

 124 

Bioinformatic analysis 125 

Raw demultiplexed fastq paired end read files were trimmed of adapters and filtered using 126 

the program skewer (18), discarding those with an average phred quality score <30 or a 127 

length <36.  Trimmed reads were aligned to human reference genome GRCh38 using 128 

HISAT2(19) and sorted using SAMtools (20). Aligned reads were counted and assigned 129 

to gene meta-features using the program featureCounts (21) as part of the Subread 130 

package. Quality control, normalization and analysis were performed in R, using an in-131 

house pipeline utilizing the limma-trend method for differential gene expression testing 132 

and the GSVA (22) library for gene set sample enrichment. Final differential gene 133 

expression lists were filtered to remove non-coding RNAs as well as LOC features. The 134 

datasets for this study can be found in the Gene Expression Omnibus (GEO) public 135 

database with the accession number pending. 136 

 137 

Flow cytometric analysis 138 

For immune cell phenotyping and assessment of intracellular levels of bcl2, and 139 

phosphorylation of STAT3, erk1/2, NF-kB and MTORC targets, cells were first stained 140 

with Live/Dead Aqua (Invitrogen) followed by cocktails of monoclonal antibodies 141 
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recognizing the following cell surface markers: CD4, CD8, CD45RA, CD27, CCR7, 142 

CD152, CD86, CD275, CD11c, CD56, CD16, CD19, CD3, HLA-DR, CD14, CD40, and 143 

CD11b. Cells were washed, fixed and permeabilized, then stained with antibodies specific 144 

for the following intracellular proteins: NFkB p65, erk1/2 (pT202/pY204), STAT3 (pY705), 145 

Akt1, pS6 (S235/236 & S240) and p4E-BP1 (T36/46). Cells were washed and fixed and 146 

events were collected on a BD ARIA-SORP instrument. A 15-minute incubation at 37C 147 

with recombinant human IL-6 (100ng/mL) (BD Pharmingen) was performed to induce 148 

NFκB signaling. After washing, cells were resuspended in staining buffer and sorted on 149 

an ARIA-SORP. Data was analyzed using FlowJo software (TreeStar). 150 

 151 

Predictive model for post-vaccination immune response 152 

A detailed explanation of computational model development and evaluation can be found 153 

in the supplemental methods. Briefly, a LASSO logistic regression (23) was used to 154 

develop a prediction model for a binary outcome of response defined by the clinical trial 155 

endpoint (≥2-fold increase in IgG from baseline to week 12), using transcriptomic data 156 

measured two-weeks post-vaccination (Week 2 data). A Mixed Graphical Models (MGM) 157 

algorithm was used to infer a unidirectional graphical model followed by FCI-MAX to 158 

determine direction. All statistical analysis was performed in R.  159 

 160 
Statistics 161 

Unless otherwise indicated, the Student’s t-test was used, with p ≤ 0.05 chosen as the 162 

level of significance. 163 

 164 

Results 165 
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Vaccine responders and non-responders show differential gene expression in 166 

PBMCs pre-vaccination 167 

Next-generation RNA-seq analysis was performed on PBMCs from 46 participants of the 168 

two trials, conducted in the same setting of advanced adenoma and with the identical 169 

vaccine and vaccination protocol. The vaccine, composed of 100µg of MUC1 peptide plus 170 

the polyICLC adjuvant HiltonolÒ, was administered at week 0, 2, 10 and 52. We assayed 171 

PBMC samples collected at the time of the first injection (baseline) and 2 weeks later, at 172 

the time of the second injection in order to be able to define preexisting (at baseline) and 173 

early post-vaccination (week 2) signatures of response to MUC1 vaccination. Vaccine 174 

responders (R, n=13) in both trials were defined as having anti-MUC1 IgG levels at week 175 

12 (after all three injections) at least two-fold higher than baseline. For some of our 176 

analyses we also classified responders by antibody levels into high responders (HR, anti-177 

MUC1 IgG OD450 at 1:80 plasma dilution ≥0.4), low responders (LR, OD450 at 1:80 178 

plasma dilution <0.4), and non-responders (NR) (no difference from baseline).   179 

RNA-seq performed on PBMCs collected immediately pre-vaccination (baseline) 180 

revealed a total of 2,321 genes that were differentially expressed between all responders 181 

and all non-responders at baseline (Fig 1A). Within these genes, 1,337 showed increased 182 

transcript levels and 984 showed decreased levels. Among the top 50 differentially 183 

expressed genes by p-value (Fig 1B), 47 genes were upregulated in responders 184 

compared to non-responders. The upregulated genes were involved in transcriptional and 185 

epigenetic regulation, including multiple subunits of the SWI/SNF chromatin remodeling 186 

complex (ARID1A, ARID1B, and SMARCC2), as well as NCOA6, a multifunctional 187 
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transcriptional coactivator and component of the Set1-like H3K4-methyltransferase 188 

complex ASCOM, all of which have been shown to play a role in the pathogenesis of 189 

cancer (24).  Additional cancer-relevant transcriptional regulators higher in responders 190 

before vaccination include SP2, NFYC, AKNA, MYPOP, and ZNF652. CUX1 is a subunit 191 

of the NF-muNR repressor that binds to the matrix attachment regions of the 192 

immunoglobulin heavy chain enhancer and the TCR enhancer. The epigenetic regulator 193 

HCFC1 tethers Set and Sin3 histone modifying complexes together and was also higher 194 

in responders at baseline (25). We observed an increase in TRAPPC9, an activator of 195 

NFκB, and FAM168A, which is involved in the PI3K/AKT/NFκB signaling pathway. 196 

RRAGA was one of 3 downregulated genes among the top differentially expressed genes 197 

in responders and plays a role in regulating the mTORC1 complex (26). The presence of 198 

transcriptional and epigenetic regulators within the list of upregulated genes could explain 199 

the large number of significant changes in steady-state RNA levels we observed and 200 

suggests a differing global transcriptional program between responders and non-201 

responders before vaccination. As these upstream regulators have the potential to 202 

broadly remodel the transcriptome, they may represent potent therapeutic targets.  203 

Vaccine responders and non-responders show differences in gene expression in 204 

PBMCs at week 2 post-vaccination  205 

At two weeks post-first injection, we found 1,887 genes differentially expressed in 206 

responders vs. non-responders, 934 genes upregulated and 953 genes downregulated 207 

(Fig 1C). The top 50 genes arranged by p-value are shown in Figure 1D. Among the 208 

upregulated genes are several cancer-related transcriptional regulators including PPARD 209 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24305336doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24305336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

(27) and HMGA1 (28), key regulators of lipid pathways (29), transcription elongation 210 

factor SPT6 (SUPT6H), SOAT2, an enzyme involved in lipoprotein and cholesterol 211 

regulation, and GPD1, an enzyme that plays a key role in lipid metabolism, are also 212 

upregulated in responders. Among the downregulated cancer-related genes we found 213 

five involved in mitosis and G2/M DNA replication checkpoint, the kinesin-like proteins 214 

KIF11 and KIF15 (30), centromere/centrosome proteins CENPF and CEP55 (31), and the 215 

cell cycle regulator protein DLGAP5 (32). Importantly, CEP55 and DLGAP5 are key 216 

predictors of antibody response in our graphical model discussed below.  217 

We then performed double contrast analysis of the genes that were significantly 218 

differentially changed from baseline to week 2 in the responders vs. non-responders (Fig 219 

1E). The top 50 genes by p-value (Fig 1F) are enriched in immune-related genes. IFNL1 220 

is upregulated in contrast to CD38 and IL12RB2, which are downregulated in responders. 221 

Again, selective upregulation of transcriptional and epigenetic regulators in responders is 222 

evident; examples include PRDM5, ZNF230, ZCCHC9, ZKSCAN4, and the epigenetic 223 

regulator ALKBH3, which demethylates DNA and RNA in cancer cells (33).   224 

ICOS/ICOSL signaling is differentially associated with response to the MUC1 225 

vaccine  226 

We performed gene set variation analysis (GSVA) of the baseline gene expression data 227 

to identify biological pathways regulating the response to vaccination. Vaccine 228 

responders displayed significant upregulation of genes involved in the ICOS-ICOSL 229 

pathway in T-helper Cells signaling pathway, with increased expression of multiple genes 230 

both at baseline and week 2 post-vaccination (Fig 2A and 2B, respectively). At baseline, 231 
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responders expressed higher levels of ICOSL, IL2RB, and CD4 coreceptor genes, while 232 

at week 2 post-vaccination higher levels of the downstream NFKB pathway genes 233 

including NFKB2, RELB and RELA were evident.  234 

By flow cytometry, we determined that higher frequencies of CD4 T-cells were present in 235 

responders at baseline, potentially related to enhanced ICOSL signaling (Fig 2C). We 236 

also detected differences in expression levels of key proteins in this pathway. Higher 237 

levels of expression of CD40L were evident in CD4 and CD8 cells (Fig 2D and 2E 238 

respectively). Greater increases in ICOS expression were detected post-vaccination 239 

inCD8 T-cells of responders. (Fig 2F).  240 

mTOR signaling is upregulated in responders to MUC1 vaccination 241 

As many components of the ICOS/ICOSL pathway were significantly higher in the 242 

responders vs. non-responders, we focused on differences in the mTOR signaling 243 

pathway which lies directly downstream of ICOS/ICOSL engagement. Top enriched 244 

pathways in high responders vs. non-responder comparisons included PI3K/AKT/MTOR 245 

signaling, WNT/beta-catenin signaling and hedgehog signaling (Fig 3A). In contrast, the 246 

Myc targets V1 pathway and DNA repair were negatively associated in high responders.  247 

To validate enhanced mTOR signaling in responders, we developed a phosflow-based 248 

panel of antibodies (see Materials and Methods) to measure the phosphorylation levels 249 

of RPS6, a commonly used readout of mTORC1 activity. There was a greater increase in 250 

RPS6 phosphorylation in CD4 and CD8 T-cells, B-cells (CD19), and monocytes (CD14) 251 

of responders, an observation validating our finding at the phosphoprotein level (Fig 3B). 252 
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We also performed intracellular staining targeting the phosphorylated AKT1 kinase 253 

upstream of the MTORC1 signaling complex. Similarly, we found a greater increase in 254 

AKT1 phosphorylation in responders compared to non-responders.  255 

B-cell signaling and enhanced antigen presentation signatures are positively 256 

associated with response to MUC1 vaccination 257 

As ICOS/ICOSL-mediated signaling promotes fitness of the T lymphocyte compartment, 258 

we hypothesized that signaling from the T-cells to the B-cell and APC compartment was 259 

also differentially induced. Pathway enrichment analysis of the transcriptomic data 260 

revealed significant enrichment of B-Cell Receptor Signaling and PI3K Signaling in B 261 

Lymphocytes pathways at baseline (Fig 4A and 4B) and NFκB and CD40 Signaling 262 

pathways at baseline and at week 2 post-vaccination (Fig 4C and 4D). CD40 receptor 263 

engagement on the surface of antigen presenting cells, such as B-cells, leads to 264 

activation of NFκB signaling and enhanced cellular survival and function. Notably, multiple 265 

signaling component genes (MAP kinases and Jak3) are significantly upregulated in 266 

responders at baseline, followed by upregulation of additional signaling molecules at 267 

week two (TRAF1, TRAF3, NFKB1, NFKB2, RELA and RELB).  268 

We validated increased expression of CD40 and HLA-DR on B-cells (CD19+) in 269 

responders (Fig 4E) using flow cytometric analyses. We used an intracellular phosflow 270 

panel to detect phosphorylation of the p65 subunit of NFκB. We found increased IL6-271 

induced NFκB signaling via phosphoryation of p65 in T-cells, HLA-DR+ non-B/non-DC 272 

APCs and B-cells of responders (Fig 4F), and B-cells of high responders expressing 273 

significantly higher levels of HLADR compared to non-responders (Fig 4E).  274 
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Finally, we performed gene set variation analysis using the Nakaya et al. vaccine 275 

immunogenicity pathway database (34) and determined that a plasmacytoid dendritic cell 276 

(DC) signature was already enriched in the PBMCs of responders at baseline (Fig 5A) 277 

and further enriched at week 2 post-vaccination (Fig 5B). Vaccine responders showed 278 

increased HLA-DR levels on DCs (CD3-, CD19-, HLA-DR+, CD11c+) at baseline (Fig 279 

5C). Responders also showed a greater relative change in CD86 and CD40 expression 280 

from baseline to two weeks (Fig 5D-E). Altogether, these results indicate that additional 281 

signatures of enhanced antigen presentation are associated with enhance response to 282 

MUC1 vaccination. 283 

Six differentially expressed transcripts 2 weeks post-vaccination predict week 12 284 

IgG response to the MUC1 vaccine 285 

Based on evidence of key differences in cell populations and molecular pathways 286 

between responders and non-responders at baseline and post-vaccination, we 287 

hypothesized that some differentially expressed genes may be useful for patient selection 288 

and outcome prediction. We tested this hypothesis by applying LASSO regression and 289 

MGM-FCI-MAX (17), a graphical modeling algorithm, to 7,968 transcripts meeting a 290 

minimal variance threshold. We first performed a cross-validation experiment (see 291 

Supplemental Methods) to assess the ability to predict antibody response to the vaccine 292 

at week 12, using the transcriptomic signatures at week 2 post-vaccination. Our model 293 

achieved an area under the receiver operating characteristic curve (AUROC) value of 294 

0.741 to predict response vs. non-response (Fig 6A). At a predicted probability threshold 295 

of 0.5, the model achieved a sensitivity of 91.7% (22 predicted responders / 24 true 296 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24305336doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24305336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

responders) and a specificity of 36.8% (7 predicted non-responders / 19 true non-297 

responders). Predicted response odds were correlated with the magnitude of antibody 298 

titer at week 12 (R2 = 0.209, p<0.001) (Fig 6B), and with the ratio of IgG titer at week 12 299 

versus baseline (R2 = 0.147, p=0.015).  300 

Next, we used graphical models to determine the variables directly linked to week 12 301 

antibody titer and distinguish them from simple correlates. We produced a full model with 302 

all genes selected in the previous cross-validation experiments, which were learned using 303 

the entire week 2 dataset (Fig 6C). Finally, we identified 6 genes that are directly linked 304 

to week 12 antibody titer: RP11.81H14.2, CEP55, and TNFSF14 (negatively associated) 305 

and C22orf29, DDX12P, and HLA-DQA2 (positively associated) (Fig 6D). The role of 306 

these transcripts and how they may contribute to the induction of immune response and 307 

vaccine efficacy (discussed below) warrants further investigation. 308 

Discussion 309 

Therapeutic cancer vaccines, tested in numerous clinical trials over several decades, 310 

failed to realize the promise generated by the discovery of tumor antigens capable of 311 

eliciting humoral and cellular immunity.  In most cases, vaccines administered after 312 

primary tumor removal failed to boost anti-tumor immunity and prevent tumor recurrence. 313 

Ultimately, a greater understanding of the many immunosuppressive forces in the tumor 314 

microenvironment helped to explain the reduced efficacy of therapeutic vaccines. These 315 

discoveries support preventative vaccines as an alternative approach to cancer 316 

vaccination to reduce cancer risk and incidence as they could be applied in the absence 317 

of cancer and cancer-induced immunosuppression. The two clinical trials from which we 318 
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derived the PBMCs, applied this preventative approach by vaccinating individuals without 319 

cancer but at high risk for colon cancer due to advanced colonic adenoma diagnosis (13, 320 

14). We expected a vaccine response from most individuals, measured by the production 321 

of anti-MUC1 IgG antibodies. It came as a surprise, therefore, that the majority did not 322 

respond.  However, those who responded had high levels of anti-MUC1 antibodies and 323 

established a long-lasting memory response, showing that the vaccine was capable of 324 

inducing immunity and response was determined by the individuals receiving the vaccine.  325 

Mechanisms underlying this variable response to an apparently efficacious vaccine were 326 

not clear.  327 

To address this major knowledge gap with an unbiassed approach, we performed RNA-328 

seq on total PBMCs from participants in the two MUC1 peptide vaccine trials to identify 329 

genes and pathways differentially regulated at baseline as well as post-vaccination in the 330 

participants that responded versus those that failed to respond to the vaccine. The 331 

analysis revealed that vaccine responders at baseline exhibited an enrichment of key 332 

pathways governing survival and proliferation in immune cells, such as mTOR and NFKB 333 

signaling, as well as increased frequencies of CD4 and CD8 T-cells. There were more 334 

memory CD8 T-cells at baseline and week 2 (post MUC1 vaccine) in responders (Fig 2A 335 

and 2E). Responders also had more CD4 T-cells at baseline and higher frequencies of 336 

memory CD4 T-cells at week 2 (Fig 2A, 2C, 2D). Other immune compartments appeared 337 

to differ in favor of responders with higher levels of BCL2 expression at baseline in CD14+ 338 

and greater increases in BCL2 expression at week 2 post-vaccination (data not shown). 339 

The control of DC longevity by the regulation of BCL2 directly impacts immune responses. 340 
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Higher levels of BCL2 suggest enhanced survival in the myeloid compartment and 341 

consequently better antigen presentation.  342 

The differentially expressed genes and pathways that we have identified in vaccine 343 

responders and non-responders pre-vaccination and two weeks post-vaccination are top 344 

candidates for early biomarkers of vaccine immunogenicity at week 12. Among the six 345 

genes directly linked to MUC1 antibody production at week 12, some have already been 346 

identified as diagnostic biomarkers (CEP55, TNFSF14) while the others merit deeper 347 

investigation as they hold the potential to enhance our understanding of vaccine 348 

response. Overexpression of CEP55 has been observed in numerous cancer cell types, 349 

including premalignant lesions of the colon (35), and is a known correlate of poor 350 

prognosis (36). Notably, a CEP55 peptide vaccine was proposed for breast and colorectal 351 

carcinoma immunotherapy as CEP55 is involved in the PI3K/Akt signaling pathway. 352 

TNFSF14, also known as LIGHT, functions as a co-stimulatory factor for the activation of 353 

lymphoid cells and modulates T-cell proliferation (37, 38). HLA-DQA2 codes for the alpha 354 

chain of the HLA-DQ complex and is primarily involved in antigen presentation (37). 355 

Interestingly, HLA-DQ phenotypes have been linked with non-responsiveness to hepatitis 356 

B vaccination (39). DDX12P is an m6A-associated prognostic pseudogene, correlated 357 

with favorable outcomes in patients with head and neck squamous cell carcinoma (40). 358 

Furthermore, expression patterns of DDX12P were correlated with anti-tumor response 359 

and may regulate immune-involved genes through miRNA targeting. RP11-81H14.2 360 

(LINC02384) is a long intergenic non-coding RNA primarily expressed in TH1 cells (41). 361 

Little is known about the function of LINC02384; however, it has been proposed to act as 362 

a competitive endogenous RNA of IL2RA and IL7R by reducing available shared 363 
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regulatory miRNAs (42). C22orf29 (also known as RTL10) may have the capacity to 364 

induce apoptosis in a BH3 domain-dependent manner, presumably by engaging the Bcl2 365 

family regulatory network to modulate the intrinsic apoptotic signaling pathway (43). The 366 

identification of known diagnostic biomarkers and immunotherapy targets within our 367 

predictive genes lends credence to the graphical models utilized in this study.  368 

Given the cancer immunoprevention potential of the MUC1 peptide vaccine response, 369 

characterized by a reduction of adenoma recurrence (14), the differentially expressed 370 

genes and regulated pathways we identified hold promise as therapeutic targets for 371 

vaccine non-responders. While these observations were made on responders and non-372 

responders to the MUC1 vaccine, it is likely that a number of these differentially enriched 373 

genes and pathways play a role in other vaccine responses. Many vaccines do not elicit 374 

a response in all recipients, such as the yearly flu vaccine which varies in effectiveness 375 

between 40% and 60% (44).  The selected adjuvant for the MUC1 vaccine, polyICLC, 376 

excels at activating dendritic cells to promote type I (innate) immunity (45). Alternative 377 

adjuvants may need to be considered for non-responders to the MUC1 peptide 378 

adjuvanted with polylCLC. While efforts are often made to improve the vaccine, it also 379 

may be important to consider an individual’s incoming immune history to respond to the 380 

vaccine.  Indeed, numerous research studies have demonstrated a correlation between 381 

the immune status prior to vaccination and the subsequent antibody response (46, 47). 382 

Overall, individuals that responded to the MUC1 vaccine showed a greater readiness in 383 

all the immune compartments to present and respond to antigen. The ability to profile 384 

individuals as potential responders or non-responders can aid in the selection of those 385 

who benefit most from a particular vaccine. At the same time, understanding the barriers 386 
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to response in non-responders can inform the development of better vaccine designs 387 

suitable for specific immune genotypes and phenotypes.    388 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24305336doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24305336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Authors’ Disclosures  389 
R.E. Schoen reports support from Freenome, Exact Sciences, and Immunovia during 390 
the conduct of the study; in addition, R.E. Schoen has a patent for Anti-MUC1 Binding 391 
Agent and Uses Thereof pending. O.J. Finn reports personal fees from PDS Biotech, 392 
Invectys, Immodulon, and Ardigen outside the submitted work.  393 
 394 
Funding 395 
This research was supported by NCI and NHLBI funding to OJF (R35CA210039), PVB 396 
(R01HL159805), and MJC (P30CA043703 Sub-Project 9164). VR was supported by a 397 
fellowship through the T32CA082084 grant. 398 
 399 
Acknowledgements 400 
We appreciate the tremendous efforts of the team members that conducted the two 401 
clinical trials and provided samples for this study, particularly Lisa Boardman, Marcia 402 
Cruz-Correa, Ajay Bansal, David Kastenberg, Chin Hur, Lynda Dzubinski, Sharon 403 
Kaufman, Luz M Rodriguez, Ellen Richmond, Asad Umar, Eva Szabo, Andres Salazar, 404 
John McKolanis, Pamela Beatty, Reetesh Pai, Aatur Singhi, Camille Jacqueline, Riyue 405 
Bao, Brenda Diergaarde, Ryan McMurray, Carrie Strand, Nathan Foster, David Zahrieh, 406 
and Paul Limburg. We are also indebted to all the trial participants for their commitment 407 
to our cancer prevention mission.  We thank the Genomics Core at the Lerner Research 408 
Institute of Cleveland Clinic and the Genomics and Applied Functional Genomics Cores 409 
at Case Western Reserve University for their technical and analytical support.  410 
 411 
  412 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24305336doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24305336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Figure Legends 413 

Figure 1: Differential gene expression pre- and post-MUC1 vaccination in 414 

responders and non-responders. Differentially expressed genes (DEGs) are shown for 415 

each time point and contrast in the left column, top 50 DEGs are shown in the right 416 

column. Group status is indicated in the row above the heatmap with responders (R) in 417 

dark blue, and non-responders (NR) in light blue. Z-scored normalized gene expression 418 

for each gene is displayed horizontally across all samples (diverging color scale legend 419 

on the upper right of each heatmap). Log2 fold-change and p values are indicated in the 420 

purple and green vertical columns, respectively. Unsupervised clustering of the samples 421 

is indicated by the black dendrogram at the top of heatmap, while clustering of the genes 422 

is indicated at the far left. Heatmaps showing all DEGs pre-vaccination (Baseline/Week 423 

0) (A), top 50 DEGs pre-vaccination (Baseline/Week 0) (B), DEGs at Week 2 post-424 

vaccination (C), top 50 DEGs at Week 2 post-vaccination (D), all genes demonstrating 425 

longitudinal changes at Week 2 vs. Week 0 (Delta Wk2-Wk0) (E), top 50 genes 426 

demonstrating longitudinal changes at Week 2 vs. Week 0 (Delta Wk2-Wk0) (F) in 427 

PBMCs from responders versus non-responders. 428 

 429 

Figure 2: Differentially expressed T-cell fitness signatures in PBMCs from 430 

responders and non-responders to MUC1 vaccination is associated with CD4 431 

frequencies and expression of multiple regulators of T-cell help. (A,B) iCOSL 432 

signaling pathway-related genes are associated with response to MUC1 vaccination at 433 

Baseline (A)  and Week 2 post-vaccination (B) in MUC1 vaccine responders and non-434 

responders. Heatmaps are organized as in Figure 1. (C) Violin plots of CD4+ T-cell 435 
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frequencies as determined by flow cytometry. (D-F) Violin plots of CD40L expression on 436 

CD4 T-cells (D), CD8 T-cells (E), and the change in ICOS levels on CD8 T-cells (Delta 437 

Week 2 vs. Week 0/Baseline) (F) measured by geometric mean fluorescence intensity 438 

(MFI).   439 

 440 

Figure 3: The mTOR signaling pathway is upregulated in enhanced response to 441 

MUC1 vaccination. (A) Heatmap showing top differentially enriched pathways from the 442 

Hallmark Gene Set (MSigDB) in the PBMCs from high responders (HR) vs. non-443 

responders (NR) at Baseline. Group status is indicated in the row above the heatmap as 444 

follows: high responders (HR) - pink, while non-responders (NR) - light blue. Z-scored 445 

normalized pathway enrichment log 2 fold-change and p values are displayed as in Figure 446 

1. Unsupervised clustering of the samples is indicated at the top of the heatmap, while 447 

clustering of the pathways is displayed on the far left. (B) Violin plots showing the level of 448 

S6 ribosomal protein phosphorylation in the indicated cell subsets (CD4, CD8, CD19/B-449 

cells and CD14/monocytes). (C) Violin plots showing the level of AKT1 phosphorylation 450 

in the indicated cell subsets (CD4, CD8, CD19/B-cells and CD14/monocytes). For all 451 

violin plots, geometric mean fluorescence intensity (MFI) is shown on the y-axis. 452 

Responders (R) and non-responders (NR) are designated by dark blue and light blue 453 

respectively. 454 

 455 

Figure 4: B-cell signaling and NFκB signaling signatures are associated with 456 

response to MUC1 vaccination. (A,B) Heatmaps showing enrichment of B-Cell 457 

Receptor Signaling pathways in the PBMCs from Responders (R) vs. non-responders 458 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24305336doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24305336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

(NR) at Baseline (A) and high responders (HR) vs. non-responders (NR) at Baseline (B). 459 

(C,D) Differential gene expression from the CD40 Signaling pathway from PBMCs from 460 

R vs. NR at Baseline (C) and Week 2 (D). Heat maps are organized as in Figure 1. (E) 461 

Violin plots showing expression levels of CD40 and HLA-DR on B-cells (CD19+). (F) 462 

Violin plots of NFκB complex p65 subunit phosphorylation in T-cells (CD3+), non-DC/non-463 

B antigen presenting cells (CD11C-HLADR+), and B-cells (CD19+). For violin plots, 464 

geometric mean fluorescence intensity (MFI) is shown on the y-axis.  465 

 466 

Figure 5: Signatures of enhanced antigen presentation are evident in participants 467 

with an enhanced response to MUC1 vaccination. Heatmaps showing enrichment of 468 

dendritic cell (DC) specific genes in the PBMCs from Responders (R) vs. non-responders 469 

(NR) at Baseline (A) and Week 2 post-vaccination (B). Heatmaps are organized as in 470 

Figure 1. Violin plots of HLA-DR expression on DCs at Baseline (Week 0) (C), as well 471 

relative change in expression of CD86 (D) and CD40 (E) in these cells. For all violin plots, 472 

geometric mean fluorescence intensity (MFI) is shown on the y-axis. 473 

 474 

Figure 6: Graphical models of response from transcriptomic data measured two-475 

weeks post-vaccination.  (A) Receiver Operating Characteristic curve of response (≥2-476 

fold increase in IgG) using week 2 transcriptome signature. (B) Correlation of predicted 477 

response odds with the magnitude of antibody titer at week 12 (C) Full model showing all 478 

neighbors and second neighbors of week 12 antibody titer levels (Week 12 IgG), (D) 479 

reduced model showing only direct causes of week 12 antibody titer. Color of edge 480 

denotes a positive vs negative correlation, and size denotes edge stability.   481 
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Supplemental Material 482 

Table 1: Detailed information on antibody panels used for flow cytometric analysis.  483 

  484 
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Supplemental Methods: 485 

Causal Modeling with MGM-FCI-MAX 486 

A Probabilistic Graphical Model (PGM) represents the joint distribution of variables in a 487 

dataset as a graph where each node corresponds to a variable and an edge between two 488 

nodes, A and B, corresponds to a conditional dependence between A and B given the 489 

rest of the variables in the data (48). PGM’s come in two types: directed graphical models 490 

rely on additional assumptions to infer cause and effect direction between variables, while 491 

undirected graphical models indicate only conditional dependence.  492 

MGM-FCI-MAX is a new method to learn a directed model (17). The algorithm 493 

begins by inferring an undirected graphical model using the Mixed Graphical Models 494 

(MGM) algorithm (16) and then uses FCI-MAX to determine causal direction.  MGM 495 

models categorical variables as multinomial and continuous variables as Gaussian with 496 

a mean given by a linear regression on all other variables. The full joint distribution of the 497 

model is given in Equation 1 below. Here, 𝑥! is the sth of p continuous 𝑦" is the jth of q 498 

categorical variables. 𝛽!# is the linear interaction term between two continuous variables, 499 

and 𝛼! is the continuous node potential. 𝜌!" is the edge potential function between 500 

continuous and categorical variables, and it takes on one value for each category of the 501 

variable 𝑦". Finally,  𝜙$" is the potential function between two categorical variables with a 502 

unique value for all combinations of categories of the variables 𝑦$ and 𝑦".   503 

𝑝(𝑥, 𝑦; 𝜃) ∝ 𝑒𝑥𝑝 0∑ ∑ − %
&
𝛽!#𝑥!𝑥# +	∑ 𝛼!𝑥!

'
!(% +'

#(%
'
!(%504 

	∑ ∑ 𝜌!"5𝑦"6𝑥! +
)
"(%

'
!(% ∑ ∑ 𝜙$"5𝑦$ , 𝑦"6

)
$(%

)
"(% 7 (1) 505 

The pseudolikelihood approach was used to optimize the model parameters (49). 506 

The pseudolikelihood is the product of the conditional distributions of each variable, and 507 
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it is a consistent estimator of the goodness of fit of the model to the data. To ensure a 508 

sparse graph, edges are penalized via the method proposed in (16) with separate penalty 509 

parameters for each edge type: (CC = Continuous-Continuous, CD = Continuous-510 

Discrete, DD= Discrete-Discrete) (Equation 2). Here, 𝑙9(𝛩) is the negative-log 511 

pseudolikelihood and the rest are penalty terms which ensure a sparse model.  512 

𝑎𝑟𝑔𝑚𝑖𝑛*	𝑙9(𝛩) + 𝜆++ ∑ B𝛽,-B% +,.- 𝜆+/ ∑ ‖𝜌-0‖& +-,0 𝜆// ∑ ‖𝛾2-‖32.-   (2) 513 

FCI-MAX is used to determine causal directions using the undirected graph as a 514 

starting point. FCI-MAX is an extension of the Fast-Causal Inference (FCI) algorithm (50), 515 

which is a sound and complete constraint-based algorithm for learning the causal 516 

structure of a set of variables in the presence of confounding variables. FCI uses 517 

conditional independence tests to rule out unlikely cause and effect relationships. FCI-518 

MAX improves the accuracy of FCI by performing additional tests to more accurately 519 

assign orientations, especially in datasets with small sample sizes.  The output of the 520 

algorithm is a graphical causal model where there are four possible edges.  An edge of 521 

the form (“A --> B”) suggests that A is a cause of B and B is not a cause of A. An edge 522 

(“A <--> B”) suggests that neither A nor B is a cause of the other, that is, a confounding 523 

variable causes both. An edge (“A o--> B”) suggests that if there are no latent variables 524 

causing both A and B, then A is a cause of B. Finally, an edge of the form (“A o-o B”) 525 

suggests that both endpoints are inconclusive. In high dimensional datasets (small 526 

sample size, large number of variables) these algorithms are less accurate in inferring 527 

causal orientations as they are in inferring the presence or absence of an edge(17).  528 

A likelihood ratio independence test (15) suitable for mixed data was used by FCI-529 

MAX. All three sparsity parameters for MGM (𝜆++ , 𝜆+/ , 𝜆//) were set to the default 0.2 and 530 
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α = 0.1 was used for the independence test threshold for FCI-MAX.  MGM-FCI-MAX was 531 

run on 100 bootstrap samples of the data, and edges were included in the final model if 532 

they appeared in at least 10% of bootstrapped samples.  533 

 534 

Computational Model Development and Evaluation 535 

 LASSO logistic regression (23) was used to develop a prediction model (select 536 

genes and infer logistic regression coefficients) for a binary outcome of response defined 537 

by the clinical trial endpoint (≥2-fold increase in IgG from baseline to week 12), using 538 

transcriptomic data measured two-weeks post-vaccination (Week 2 data). To develop and 539 

simultaneously evaluate model predictions, a nested leave-one-out cross validation 540 

approach was used. Iteratively, each individual sample is used as an evaluation set with 541 

the remaining samples used to learn model parameters. On each training set, a LASSO 542 

logistic regression was performed with an internal leave-one-out cross validation to 543 

choose the optimal sparsity penalty value (λ). The predictions on the single left-out 544 

sample in each round of cross validation were then used for downstream analysis.  545 

The Receiver Operator Characteristic (ROC) curve was calculated, and predictive 546 

accuracy of the model was measured using the area under the curve (AUC) of response 547 

vs. non-response, as well as sensitivity and specificity of predicted probabilities. Feature 548 

stability was measured to ensure that models remained similar across different cross-549 

validation iterations. 550 

MGM-FCI-MAX was used to infer the variables directly linked to response, using 551 

clinical data (age, sex, and BMI) and those genes selected by LASSO in the week 2 552 

transcriptomic data in at least one of the ten folds. LASSO logistic regression was used 553 
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to build a predictive model of response in each cross-validation fold. All statistical analysis 554 

was performed in R.  555 

  556 
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Panel 1: Innate Phenotyping
Company Cat # Antibody Color

BD 560114 STAT3 (pY705) PerCP-Cy5.5
BD 558421 anti-NF-κB p65 (pS529) A488 
BD 563931 CD152/CTLA4 BV786
Biolegend 305440 CD86 BV711
BD 743008 CD275/ICOSLG BV650
BD 563929 CD11c BV605
Invitrogen L34957 Live/Dead Amcyan
Biolegend 318340 CD56 BV510
BD 558122 CD16 PB
BD 564303 CD19 BUV737
BD 563546 CD3 BUV395
BD 335796 HLA-DR APC Cy7
BD 557923 CD14 A700
BD 612593 Anti-ERK1/2 (pT202/pY204) APC
Biolegend 334321 CD40 PE-Cy7
BD 563601 BCL-2 PE-CF594
BD 555388 CD11b PE

Panel 2: MTOR Signaling
Company Cat # Antibody (Clone) Color

BD 338426 CD16 PerCP-Cy5.5
BD 560048 anti-Akt1 (PKBa/Akt) FITC
BD 564058 CD56 BV786
BD 563677 CD8 BV711
Biolegend 304135 CD45RA BV650
Invitrogen Q10008 CD4 Q.605
Invitrogen L34957 Live/Dead Amcyan
Biolegend 302242 CD19 BV510
BD 561457 pS6 (S235/S236) V450
BD 564444 CD14 BUV737
BD 565885 Anti-ICOS (CD278) BUV395
BD 563588 Anti-Human CD154 (CD40L) APCeFluor780
BD 557943 CD3 A700
BD 560432 Anti-S6 pS240 A647
BD 562321 CD19 PE-CF594
BD 560684 Anti-Human CD28 PE-Cy7
BD 560285 p4E-BP1 (T36/46) PE
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