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Abstract 

Aim: The Computer Tomography (CT) imaging equipment varies across 

facilities, leading to inconsistent image conditions. This poses 

challenges for deep learning analysis using collected CT images. To 

standardize the shape of the matrix, the creation of intermediate slice 

images with the same width is necessary. This study aimed to generate 

inter-slice images from two existing CT images. 

Materials and Methods: The study utilized CT images from the Japanese 

Facial Bone Fracture CT Collection Project. The pixel values were 

converted to Hounsfield numbers and normalized. Three re-slice systems 

utilizing U-nets were developed: 1/3, 1/4, and 1/5. The datasets were 

divided into training and validation sets, and data augmentation 

techniques were applied. The U-net models were trained for 200 epochs. 

Validation was conducted using validation datasets. The generated 

images were compared to the corresponding original images using peak 

signal-to-noise ratio (PSNR), structural similarity (SSIM), and mean 

squared error (MSE) calculations. Results: Statistical analysis 

revealed significant differences between linear interpolation and U-net 

prediction in all indexes.  

Conclusion: The developed re-slice systems with U-net models showed 

practical value for making intermediate slice images from the existing 

images in the craniofacial area. 
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Introduction  

X-ray CT (Computer Tomography) is an indispensable modality in 

diagnosing and treating patients, nowadays. Usually, the images are 

stored in DICOM （Digital Imaging and Communications in Medicine） 

format. To reduce data size for saving, exclusive drawing out images 

with thick intervals from the original ones is often done. The other 

slices with detailed information are discarded. Rebuilding a 3D image 

from these sparsely selected slices would result in a coarse one. 

The CT imaging equipment differs from facility to facility, and the 

imaging conditions are not standardized. When CT images are collected 

from multiple facilities, the variety of image conditions can cause 

problems. In order to perform 3D deep learning from the collected CT 

images, it is necessary to regularize the shape of the matrix. Though, 

it is not easy to do so, because the slice width is not the same for 

each patient. To create sets of images with the same slice width, the 

creation of the intermediate slice images from the existing images is 

necessary. 

In this study, the generation of the inter-slice images from two 

existing CT images (re-slicing) was attempted. 

 

 

Materials and Methods 

All procedures were done on a desk-top personal computer with a GPU: 

GeForce RTX3090 24.0GB ((nVIDIA, Santa Clara, CA, USA), Windows 10 Pro 

(Microsoft Corporations, Redmond, WA, USA). Python 3.8(1)(Python 

Software Foundation, DE USA): a programming language, was used under 

Anaconda 15 (2)(FedoraProject. 

http://fedoraproject.org/wiki/Anaconda#Anaconda_Team_Emeritus) as an 

installing system, and Spyder 4.1.4(2) as an integrated development 
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environment. Keras 3(3)(https://keras.io/): the deep learning library, 

written in Python was run on TensorFlow 2.5 (Google, Mountain View, 

CA, USA). GPU computation was employed through CUDA 10.0(4)(nVIDIA). A 

Python library: pydicom (https://pydicom.github.io) was used to deal 

with DICOM files. 

 

Data 

CT images (280 cases, 57931 images in total) accumulated in the 

Japanese Facial Bone Fracture CT Collection Project (Umin000039624) 

were used. The project has been approved by The Ethics Review Board of 

Hyogo Medical University (No.3326). The images were taken for the 

purpose of diagnosing fractures in craniofacial areas. Patients’ 

written consents for the study use were obtained. They were processed 

so that the personal information was not identified and stored in 

DICOM files. Imaging conditions varied. 

The images were read with pydicom and pixel values were converted to 

Hounsfield numbers with apply_modality_lut module. The values below -

1024 and above +1024 were truncated. Then 1024 was added, divided by 

2048, and normalized into 0.0 to 1.0. Most of the accumulated images 

were in axial view, but some were not. They were eliminated bｙ 

checking the DICOM tags. The localizer images were also eliminated. 

 

Slice level classifier 

A deep learning system to classify what level the CT image had been 

sliced(5) was previously established. Briefly, the CT images were 

visually classified into 6 regions: blank, head, orbital, maxilla, 

mandible, and neck. Randomly, 75% of each site was selected for 

training and 25% for validation. A ResNet-50(6) system to classify 6 

classes was made and trained with data-augmented (zooming, rotation, 

shifting) training data (Figure 1). The accuracy for training was 

0.9909 and for validation was 0.9873. 
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A series of CT images for each patient was processed with the slice 

level classifier, mentioned above. The images classified “blank” 

were eliminated. The images were aligned in the order of image 

position. A total of 20457 horizontal sections for 102 cases with no 

missing data were used in this study. The variation of slice width in 

the series of CT images, used in this study, is shown in Table1. 

 

Training U-nets 

(1) 1/3 re-slice system (Figure 2, 3) 

One image and the 4th image (skipping 2 images) were paired. They were 

stacked (512x512x2) and collected as input. The 2nd and 3rd images 

stacked (512x512x2) were collected as output. Then, one image and the 

7th image counted from it were stacked. That was collected as input. 

The 3rd and 5th images were stacked as output. The input/output 

dataset was divided into 70% (27710 pairs) for training and the rest 

(11877 pairs) for validation. A U-net(7) 

(https://pypi.org/project/keras-unet/) was customized as input: 

512x512x2, output: 512x512x2. Data augmentation, (within rotation of 

10 degrees, lateral and vertical shift of 10%, zoom of 20% and 

horizontal flip) was done with Keras ImageDataGenerator. Mean absolute 

error was utilized as the loss function. As the optimizer, Adam(8) was 

used. The U-net was trained with the training dataset for 200 epochs. 

 

(2) 1/4 re-slice system (Figure 4, 5) 

One image and the 5th image (skipping 3 images) were paired and 

stacked (512x512x2). That was collected as input, and the 2nd, 3rd and 

4th images stacked (512x512x3) were collected as output. Then, one 

image and the 9th image stacked were collected as input, the 3rd, 5th, 

and 7th images stacked as output. The input/output dataset was divided 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307089doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307089
http://creativecommons.org/licenses/by-nc/4.0/


into 70% (27638 pairs) for training and the rest (11846 pairs) for 

validation. A U-net (input: 512x512x2, output: 512x512x3) was trained 

with the training dataset. Training method was the same as the 1/3re-

slice system. 

 

(3) 1/5 re-slice system (Figure 6, 7) 

One image and the 6th image (skipping 4 images) were paired and 

stacked (512x512x2). It was collected as input, and the 2nd, 3rd, 4th 

and 5th images stacked (512x512x4) were collected as output. Then, one 

image and the 11th image stacked was collected as input, and the 3rd, 

5th, 7th and 9th images stacked as output. The input/output dataset 

was divided into 70% (27496 pairs) for training and the rest (11785 

pairs) for validation, and trained on a U-net (input: 512x512x2, 

output: 512x512x4). Training method was the same as the 1/3re-slice 

system. 

 

Validation 

Linear interpolation 

With validation datasets (paired and stacked two images), linear 

interpolation images were made by calculating weighted average, in 

accordance with the distance from the original two images. 

 

U-net prediction 

Validation datasets were fed to the trained U-nets and the images were 

created. 

 

Similarity index 

With scikit-image library(9) (https://scikit-image.org/), peak signal 
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to noise ratio (PSNR) between the created image and the corresponding 

original image was calculated with the data range of 1.0. Structural 

similarity (SSIM), with the data range of 1.0, and mean squared error 

(MSE) were also computed using the library. These computed similarity 

indexes were compared with paired-t analysis using SciPy library(10) 

(https://scipy.org/). 

 

 

Results 

Comparison of similarity indexes (PSNR, SSIM, MSE) in linear 

interpolation and U-net prediction with the corresponding original 

image is summarized in Table 2. Paired-t analysis statistically 

revealed the significant difference between them in all indexes. 

Examples of comparison between the images original, created by linear 

interpolation and U-net prediction are shown in Figure 8 – 13. 

Fractured parts were well reproduced for human eye. 

There were some datasets in which U-net prediction presented worse 

similarity indexes than linear interpolation. Two examples of them are 

shown in Figure 14, 15. Metal artifact can be seen in the original 

images of them.  

 

 

Discussion 

Linear interpolation is a simple method to create an intermediate 

image from two given images. Calculation of the linear weighted 

average of pixel value in the same position of the images are done. 

The method can be performed quickly because of its simplicity. The 

transition is done without spatial warping, so the intermediate images 
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are the simple mixtures of the original two images. Spline 

interpolation can be another option. At least three points are 

required to define a spline curve. Polynomials are used to determine 

the pixel values from the corresponding pixels. Calculation needs time 

and physical resources. 

Image morphing can be defined as the process of constructing image 

sequence that illustrate gradual transition between the two 

images(11)(12). This technique involves warping, changing the position 

of key points and deforming the images. The transition gives an 

observer realistic and spectacular impression. In the entertainment 

industry, image morphing is used very often. Establishing 

correspondence of two images with pairs of feature points is the 

beginning of the process. Although many attempts have been done to do 

this procedure automatically, manual selection is usually adopted. 

There was a report using an image morphing technique to create images 

between CT and NMR scans(13). They automatically extracted features 

partly. They could not fully automate the process of corresponding 

points between the images. And it is assumed that using morphing 

technique pair by pair takes time. 

 

Kudo et al. utilized three dimensional conditional generative 

adversarial networks to produce super-resolution CT images(14). Jurek 

et al. constructed a convolutional neural network to reconstruct 

super-resolution MR images(15). As three-dimensional networks demand 

large computation resource, former cropped 160 x 160 x 160 and the 

latter 180 x180 x 180 pixel region. 

 

In this study, three U-nets were trained individually for 1/3, 1/4 and 

1/5 re-slicing system. We considered that these 3 systems would be 

sufficient for our practical use. For example, to obtain 2mm interval 

series of CT images from 4mm slice width, it can be done by taking one 
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out every other from the products by the 1/4 re-slice system. To 

obtain 1mm interval series of CT images from 0.625mm slice width, it 

can be done by taking out every 8th from the products by the 1/5 re-

slice system, which makes 0.125mm slice width.   

 

The images generated by the trained U-nets showed statistically better 

similarity indexes to the original ones than linear interpolation. 

Though, with the datasets including metal artifact, some reversal 

occurred. The frequency of it was low. 

 

How similar the product should be is hard discuss. It depends on the 

quality of demand, cost, physical resource, time and so on. This study 

was to make intermediate slice images from the existing two images. 

The datasets used included variation of slice width as shown in Table 

1. The datasets with less variation may have achieved better results. 

Though, that may have reduced robustness. We would like to evaluate 

our approach practical. 

 

It cannot be denied that a series of CT images, obtained with thin 

slice thickness, provide more detailed information than that with 

thicker ones. Sometimes, it is discussed that thinly re-sliced images 

virtually from thicker sparse images can overcome this 

shortcoming(14). It is true that virtual re-slicing will increase 

image resolution vertically or three dimensionally. They appear 

clearer and more detailed to human eyes. Though, it does not mean that 

the system let real detailed information visible which was originally 

invisible in thicker slice. The information, not contained in the 

original data, may not be the real. If new information appears, no 

matter what method is used, it cannot be denied that it is false. This 

point should not be forgotten. Nakamoto et al. reported their 

experience in using virtual thin slice system as practitioners(16). 
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The diagnostic ability for vertebral compression fracture was impaired 

by the system. 

 

 

Conclusion 

Three re-slice systems utilizing U-nets were developed. 

Comparing with linear interpolation method, the systems were 

able to generate statistically better inter-slice images from 

two existing CT images. 
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Figure 1. Diagram of the slice level classifier. The trained 

network was used to search blank images. 
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Figure 2. Making datasets for 1/3 re-slice system. An image and 

the fourth image, which skipped two images, were concatenated and 

stored for input data. The skipped two images were concatenated 

and stored for output data. Also, an image and the seventh are 

concatenated for input. The third and fifth were concatenated and 

stored for the corresponding output. 
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Figure 3. A U-net for 1/3 re-slice system. The input shape was 

512x512x2 and the output shape was 512x512x2. 
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Figure 4. Making datasets for 1/4 re-slice system. An image and 

the fifth image, which skipped three images, were concatenated and 

stored for input data. The skipped three images were concatenated 

and stored for output data. An image and the 9th image were 

concatenated for input. The 3rd, 5th and 7th images were 

concatenated for the corresponding output. 

 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307089doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307089
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A U-net for 1/4 re-slice system. The input shape was 

512x512x2 and the output shape was 512x512x3. 
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Figure 6. Making datasets for 1/5 re-slice system. An image and 

the sixth image, which skipped four images, were concatenated and 

stored for input data. The skipped four images were concatenated 

and stored for output data. An image and the 11th image were 

concatenated for input. The 3rd, 5th, 7th and 9th images were 

concatenated for the corresponding output. 
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Figure 7. A U-net for 1/4 re-slice system. The input shape was 

512x512x2 and the output shape was 512x512x4. 
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Figure 8. An example of comparison between the images original, 

created by linear interpolation and U-net prediction (1/3 re-slice 

system).  

The first row: A series of CT slices with an interval of 0.5mm. 

The interval between orig0 and orig3 was 1.5mm.  

The second row: Images created by linear interpolation of orig0 

and orig3.  

The third row: Images created by U-net prediction with the input 

of orig0 and orig3.  

psnr: peak signal-to-noise ratio, ssim: structural similarity and 

mse: mean squared error were calculated in comparison with the 

corresponding image of the first row.  
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Figure 9. An example of comparison between the images original, 

created by linear interpolation and U-net prediction (1/3 re-slice 

system).  

The first row: A series of CT slices with an interval of 4mm. The 

interval between orig0 and orig3 was 12mm.  

The second row: Images created by linear interpolation of orig0 

and orig3.  

The third row: Images created by U-net prediction with the input 

of orig0 and orig3.  

psnr: peak signal-to-noise ratio, ssim: structural similarity and 

mse: mean squared error were calculated in comparison with the 

corresponding image of the first row.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307089doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307089
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. An example of comparison between the images original, 

created by linear interpolation and U-net prediction (1/4 re-slice 

system).  

The first row: A series of CT slices with an interval of 1mm. The 

interval between orig0 and orig4 was 4mm. 

The second row: Images created by linear interpolation of orig0 and 

orig4.  

The third row: Images created by U-net prediction with the input of 

orig0 and orig4.  

Computed similarity indexes were better in U-net prediction than in 

linear interpolation. 

psnr: peak signal-to-noise ratio, ssim: structural similarity and mse: 

mean squared error were calculated in comparison with the 

corresponding image of the first row. 
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Figure 11. An example of comparison between the images original, 

created by linear interpolation and U-net prediction (1/4 re-slice 

system).  

The first row: A series of CT slices with an interval of 4mm. The 

interval between orig0 and orig4 was 16mm.  

The second row: Images created by linear interpolation of orig0 and 

orig4.  

The third row: Images created by U-net prediction with the input of 

orig0 and orig4.  

psnr: peak signal-to-noise ratio, ssim: structural similarity and mse: 

mean squared error were calculated in comparison with the 

corresponding image of the first row.  
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Figure 12. An example of comparison between the images original, 

created by linear interpolation and U-net prediction (1/5 re-slice 

system).  

The first row: A series of CT slices with an interval of 1mm. The 

interval between orig0 and orig5 was 5mm. 

The second row: Images created by linear interpolation of orig0 and 

orig5.  

The third row: Images created by U-net prediction with the input of 

orig0 and orig5.  

psnr: peak signal-to-noise ratio, ssim: structural similarity and mse: 

mean squared error were calculated in comparison with the 

corresponding image of the first row.  
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Figure 13. An example of comparison between the images original, 

created by linear interpolation and U-net prediction (1/5 re-slice 

system) .  

The first row: A series of CT slices with an interval of 4mm. The 

interval between orig0 and orig5 was 20mm. 

The second row: Images created by linear interpolation of orig0 and 

orig5.  

The third row: Images created by U-net prediction with the input of 

orig0 and orig5.  

psnr: peak signal-to-noise ratio, ssim: structural similarity and mse: 

mean squared error were calculated in comparison with the 

corresponding image of the first row.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307089doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307089
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. An example of dataset, U-net prediction showed worse peak 

signal-to-noise ratio and mean squared error than linear interpolation 

(1/3 re-slice system). Metal artifact was seen in the original images.  

The first row: A series of CT slices with an interval of 0.5mm. The 

interval between orig0 and orig3 was 1.5mm.  

The second row: Images created by linear interpolation of orig0 and 

orig3.  

The third row: Images created by U-net prediction with the input of 

orig0 and orig3.  

psnr: peak signal-to-noise ratio, ssim: structural similarity and mse: 

mean squared error were calculated in comparison with the 

corresponding image of the first row.  
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Figure 15. An example of dataset, U-net prediction showed worse 

structural similarity than linear interpolation (1/3 re-slice system). 

Metal artifact was seen in the original images.  

The first row: A series of CT slices with an interval of 0.5mm. The 

interval between orig0 and orig3 was 1.5mm.  

The second row: Images created by linear interpolation of orig0 and 

orig3.  

The third row: Images created by U-net prediction with the input of 

orig0 and orig3.  

psnr: peak signal-to-noise ratio, ssim: structural similarity and mse: 

mean squared error were calculated in comparison with the 

corresponding image of the first row.  
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Table 1. Variation of the slice thickness in the CT image series. 
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Table 2. Comparison of image similarity indexes. 

PSNR: peak signal-to-noise ratio, SSIM: structural similarity and MSE: 

mean squared error were calculated in comparison with the 

corresponding original image.  

* p<0.001 by paired-t analysis 
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