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Abstract  

INTRODUCTION: Traditional brain imaging genetics studies have primarily focused on how 

genetic factors influence the volume of specific brain regions, often neglecting the overall 

complexity of brain architecture and its genetic underpinnings.  

METHODS: This study analyzed data from participants across the Alzheimer’s disease (AD) 

continuum from the ALFA and ADNI studies. We exploited compositional data analysis to 

examine relative brain volumetric variations that (i) differentiate cognitively unimpaired (CU) 

individuals, defined as amyloid-negative (A-) based on CSF profiling, from those at different 

AD stages, and (ii) associated with increased genetic susceptibility to AD, assessed using 

polygenic risk scores. 

RESULTS: Distinct brain signatures differentiated CU A- individuals from amyloid-positive 

MCI and AD. Moreover, disease stage-specific signatures were associated with higher genetic 

risk of AD.  

DISCUSSION: The findings underscore the complex interplay between genetics and disease 

stages in shaping brain structure, which could inform targeted preventive strategies and 

interventions in preclinical AD. 

Keywords: AD Genetic Predisposition; Structural Brain Signature; Multiphenotype Analysis; 

Compositional Data Analysis; Polygenic Risk Scoring; Brain Imaging Genetics; 

Neurodegeneration.  
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1. Background  

Alzheimer’s disease (AD) is a complex multifactorial and heterogeneous neurodegenerative 

disorder, characterized by progressive changes in brain structure, among other 

pathophysiological hallmarks1. Structural magnetic resonance imaging (MRI) serves as a 

powerful tool for quantifying cerebral atrophy in the AD continuum. Common structural brain 

changes in AD display a limbic-to-frontal sequence2 throughout the disease continuum. 

Notably, brain atrophy and hippocampal reduction are closely linked with cognitive decline 3-

4-5-6. Recent studies have shown the high heritability of these structural changes 7-8, which 

increases the interest in their role as intermediate phenotypes. Genetics plays a pivotal role in 

AD, with the APOLIPOPROTEIN E gene allele ε4 (APOE-ε4) significantly increasing disease 

risk9. Nonetheless, beyond APOE-ε4, genome-wide association studies (GWAS) have 

identified numerous genetic variants associated with AD 10-11-12. In a recent published study 13 

we showed that the genetic risk of AD, estimated through polygenic risk scoring, was higher 

in clinical groups than in cognitively unimpaired (CU) amyloid negative individuals, but not 

amyloid positive. These findings highlight a similar genetic burden between CU individuals 

displaying AD-related pathology and individuals at clinical stages of the disease. Therefore, 

these results reinforce the need to carefully examine how genetics impact on AD structural 

endophenotypes to examine brain cortical and subcortical changes not only based on the 

clinical diagnosis but also on the genetic load for AD at early stages of the disease. By 

combining imaging and genetic markers, there is potential for a more comprehensive 

exploration and understanding of the individuals’ profiles during the preclinical stages of the 

disease. In this line, brain imaging genetics (IG) studies aim to integrate neuroimaging (NI) 

and genetic data to uncover  new genetic variants associated with AD-related brain features 14-

15. Among the different approaches in IG, univariate analyses that look for the association 
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between individual brain volumetric structures and AD genetic risk factors 16–18, do not 

consider  the compositional origin of the brain. The brain can be segmented in regions, and the 

volumes of the segmented regions can be expressed as a fraction relative to the total intracranial 

volume. Similarly, at any level of segmentation, a specific brain area and its segmented regions 

can be defined as a composition and its components, respectively. Thus, given the 

interconnected and compositional structure of the brain, it is crucial to analyze brain features 

in a multivariate way to fully understand the complex interactions and influences across 

different regions19. Recent studies have used compositional approaches in the field of brain 

imaging due to the compositional structure of the data obtained from structural MRI and 

anatomical brain segmentation 20. Compositional data analysis (CoDA) methods offer a 

sophisticated approach to evaluating the brain’s complex structure, by viewing it as a cohesive 

entity. In CoDA, instead of exploring each component separately, the analysis focuses on the 

relative variation between them 21-22. This approach moves beyond the limitations of traditional 

analyses that either focus on single volumetric structures or employ multivariate techniques 

that fail to capture the compositional origin of structural brain features. This aspect is 

particularly crucial in AD, where changes in one region can have cascading effects on others, 

reflecting the multifaceted nature of the disease23. This study aimed to identify relative brain 

volumetric variations in cortical and subcortical areas that (i) distinguished between CU 

individuals and others at different stages of the disease and (ii) were associated with higher 

genetic susceptibility to AD within groups along the continuum. Compositional methods were 

employed to explore these relative brain volumetric variations, summarized in structural brain 

signatures. Results showed that structural brain signatures were accurately distinguishing 

between CU individuals and others at different stages of the disease. Moreover, disease stage-

specific signatures were associated with higher genetic risk of AD. These findings highlight 
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the modifying effect of disease stage and the heterogeneous profiles within the continuum on 

how AD genetic burden impacts brain structure, demonstrating the complex interplay between 

genetics and disease stage in shaping structural brain volumetry. 

2. Methods 

2.1. Study Population 

This study included 338 CU middle-aged (45-65 years old) participants from the ALFA+ 

cohort, a nested cohort of the ALzheimer’s and FAmilies study24, and 330 CI individuals from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort , a project funded by the 

National Institutes of Health (NIH) and launched in 2004 (adni.loni.usc.edu)25. Individuals had 

available information on cortical and subcortical brain regions volume, cerebrospinal fluid 

(CSF) biomarkers and genetic data. Participants were classified into A/T groups defined by 

their CSF biomarker profile according to the A/T framework described in26. Amyloid-beta 

pathology positivity (A+) and tau pathology positivity (T+) were defined based on validated 

cut-offs27. Further details on the CSF sampling can be found in Supplementary Methods. The 

CSF profile of A+T+ individuals in ALFA was determined by the CSF Aβ42/40 ratio < 0.071 

pg/mL and levels of CSF p-tau181 > 0.24 pg/mL, while in ADNI  A+ was defined by CSF 

Aβ42 levels ≤1100 pg/mL. Participants were classified into four different groups based on both 

their clinical diagnosis and their CSF amyloid profile. Finally, the sample was covering the 

whole disease continuum: CU A- ALFA (N=220), CU A+ ALFA (N=118), MCI A+ ADNI 

(N=230), AD A+ ADNI (N=100).  

2.2. Genetic data acquisition,  quality control and imputation 

For the ALFA study, DNA was obtained from blood samples through a salting-out protocol. 

Genotyping was performed with the Illumina Infinium Neuro Consortium (NeuroChip) Array 
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(build GRCh37/hg19)28.  Quality control procedure was performed using PLINK software. 

Imputation was performed using the Michigan Imputation Server with the haplotype Reference 

Consortium Panel (HRC r1.1 2016;29 following default parameters and established guidelines. 

A full description of the genotyping, quality control and imputation procedures is available 

elsewhere13. ADNI participants underwent genotyping using both the Human 610-Quad 

BeadChip and the Illumina HumanOmniExpress BeadChip (Illumina, Inc., San Diego, CA). 

Quality control measures and imputation procedures closely followed the protocols established 

in the ALFA study. Further details are available elsewhere30. 

2.3. Genetic predisposition to Alzheimer’s disease: polygenic risk score 

computation 

The polygenic risk score of AD (PRSAD) was calculated using the PRSice version 2 tool31. 

Summary statistics from a recent GWAS for AD11 were obtained to compute the PRSAD
13 

[Supplementary Table 1]. The algorithm retained the single nucleotide polymorphisms (SNPs) 

with the smallest p-value in each 250 kb window and removed SNPs that were in linkage 

disequilibrium (r2>0.1). The threshold of SNPs inclusion was defined at p-value<5·10-6 . The 

PRSAD was computed by adding up the alleles carried by participants, weighted by the SNP 

allele effect size from the GWAS and normalizing by the total number of alleles. The same 

procedure was performed to estimate the PRS of AD when excluding the APOE region 

(PRSADnoAPOE) (chr19:45,409,011-45,412,650; GRCh37/hg19). PRSs were both computed in 

ALFA and ADNI, respectively13. Both PRSs were dichotomized  and we created two groups 

of subjects to differentiate individuals at higher genetic predisposition to AD from the rest of 

the sample. Categorization was done in each cohort separately. The cut-off point was defined 

by the quantile 0.8 (High genetic group: PRS≥quantile 0.8; Low genetic group: PRS<quantile 

0.8).  
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2.4. Brain regions segmentation and quantification 

Volumes for cortical and subcortical brain regions were obtained through high-resolution 3D-

T1-weighted MRI scans. Each cohort used customized protocols specific to the scanner. The 

images were pre-processed and segmented using Freesurfer. In ALFA32, protocol parameters 

were identical for all participants and included high-resolution three-dimensional structural 

images weighted in T1 with an isotropic voxel of 0.75 × 075 × 0.75 mm3, acquired with a 3T 

Philips ingenia CS scanner  The acquisition parameters were TR/TE/TI = 9.9/4.6/900 ms, flip 

angle = 8° and a matrix size of 320 × 320 × 240. In ADNI, MRI acquisition parameters included 

a repetition time (TR) of 2,400 ms, inversion time (TI) of 1,000 ms, flip angle of 8 degrees, 

and a field of view (FOV) of 24 cm. The acquisition matrix was set to 256 × 256 × 170 in the 

x-, y-, and z-dimensions, resulting in a voxel size of 1.25 × 1.26 × 1.2 mm 33. The MRI data 

underwent preprocessing steps, including correction for anterior commissure and posterior 

commissure, skull stripping, cerebellum removal, intensity inhomogeneity correction.  Finally, 

the data were down-sampled to a matrix size of 128 × 128 × 128. Freesurfer version 7 was used 

for cortical and subcortical quantification in ALFA, while in ADNI, version 5 and version 6 

were used in different batches. Cortical surface parcellation was done using the Desikan-

Killiany atlas34. Subcortical measurements were obtained working with the automatic 

subcortical segmentation of Freesurfer. Volumes were globally quantified by summing the 

measurements of both hemispheres. A total of 41 volumes were selected combining 34 

measurements from cortical regions and 7 from subcortical ones [Supplementary Methods]. 

Harmonization across sites was not assessed because the compositional approach did not work 

with raw volumes of the individuals. Instead, it worked with all pairs of log-ratios between 

regions’ volumes. Therefore, any differences that could arise between cohorts were removed.  
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2.5. Statistical analyses  

Differences in demographic characteristics were assessed according to amyloid status (ALFA) 

and diagnosis group (ADNI), using chi-square tests for categorical variables and parametric (t-

test, ANOVA) and non-parametric tests (Wilcoxon Rank-Sum test or Kruskal-Wallis test) for 

continuous normally and non-normally distributed variables, respectively. P-values for 

pairwise comparisons were also provided, adjusted for Benjamini-Hochberg false discovery 

rate. CoDA 35-22 was performed to identify structural brain signatures (i.e. a combination of 

specific brain regions' volumes) (i) capable of distinguishing between CU A- and other groups 

along the disease continuum, and (ii) associated with higher genetic predisposition to AD 

within groups [Supplementary Methods]. In the first scenario, logistic regression models, 

adjusted for age, sex and the PRSAD, were defined to examine the structural brain signature that 

distinguished CU A- from the rest of the groups in the continuum (CU A+, MCI A+, AD A+).  

In the second step, disease-stage stratified logistic regression models, adjusted for age and sex, 

were performed to explore the association between the brain signature with higher genetic risk 

of AD in each group [Figure 1]. Separate analyses were performed based on the PRS 

calculation used to determine the genetic groups: 1) The PRS including all the SNPs associated 

with AD (PRSAD) and 2) The PRS excluding the APOE region (PRSADnoAPOE). The procedure 

was exactly the same and analyses were repeated for both cases. Results for the second case 

can be found in Supplementary Results. All the analyses were performed using the R software 

version 4.2.2.  

3. Results 

3.1. Characteristics of the sample 
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The ALFA sample (N=338) included 62.43% of women and 54.14% of APOE-𝜀4 carriers, with 

a median age of 57 years old [IQR 53-61][Table 1]. The ADNI sample (N=330) was defined 

by 40% of women and ~64.55% of APOE-𝜀4 carriers, with a median age of 74 years [IQR 

68.2-78]. In the sample there were 30% of AD dementia patients and 70% of MCI individuals, 

all of them amyloid positive [Table 2]. Differences were assessed among disease-stage groups 

along the continuum [Table 3]. The highest percentage of women was found in ALFA CU A- 

individuals (63%) while the lowest was observed in ADNI MCI individuals (38%) (p < 0.001). 

Significant differences in APOE-ε4 carriership were observed among groups, with the lowest 

percentage found in ALFA CU A- participants (40% carriers) and the highest in ALFA CU A+ 

(78% carriers) (p < 0.001). Notably, the APOE-ε4 carrier rate in ALFA CU A+ was higher than 

in clinical groups from ADNI (p < 0.001). There were significant differences in the genetic 

predisposition to AD between CN A- and CU A+, MCI and AD dementia individuals (FDR p-

value pairwise comparisons < 0.001), but not between CU A+ and the impaired groups. Non-

significant differences were found between groups when the APOE region was removed from 

the polygenic risk score [Supplementary Figure 1]. Significant differences were also found in 

the median value of cortical and subcortical regions between groups [Supplementary Table 2]. 

 

3.2. Structural brain signatures differentiate amyloid-negative cognitively 

unimpaired individuals from others at different stages of the disease  

 

In the ALFA study, the structural brain signature that differentiated CU A- from CU A+ 

individuals was primarily characterized by the relative volumetric variation between the 

pallidum and the amygdala, along with volumetric variations in other cortical regions of the 

parietal, frontal and temporal lobes. The brain signature also involved subcortical regions, 

specifically the pallidum, putamen and the amygdala, and well as cortical areas in the cingulate 

cortex [Figure 2].  Thee structural brain signature capable of distinguishing between CU A- 
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and MCI A+ individuals mainly involved the relative volumetric variation between the 

fusiform and the frontal pole, along with volumetric variations of other temporal and frontal 

areas, as well as regions in the occipital lobe. This signature also included subcortical regions, 

specifically the putamen and pallidum, and cortical areas in the cingulate [Figure 2].  Finally, 

the structural brain signature that distinguished between CU A- and AD A+ individuals was 

primarily characterized by the relative volumetric variation between the insula and the inferior 

parietal, along with the volumetric variation of other parietal and frontal regions. The brain 

signature also involved the putamen and cortical areas in the cingulate cortex [Figure 2]. The 

structural brain signature showed high prediction accuracy for differentiating CU A- from 

disease stages, with the discrimination being significantly robust for both MCI A+ 

(AUC=0.992)  and AD A+ (AUC=0.980) [Supplementary Table 3].   

3.3. Disease-stage specific structural brain signatures associated with higher 

genetic risk of Alzheimer’s disease  

In CU A- individuals, the structural brain signature associated with higher genetic risk of AD 

primarily featured structural changes in the hippocampus and the fusiform, along with 

variations in frontal, temporal and occipital areas together with subcortical regions such as the 

pallidum [Figure 3]. For CU A+ individuals, the structural brain signature related to higher risk 

of AD was characterized by volumetric variations in temporal, frontal and occipital regions, 

with a higher emphasis on the temporal areas, specifically the middle and inferior temporal 

regions [Figure 3]. When exploring these structural brain signatures in CI  individuals, we 

observed that in MCI participants, the structural brain signature was primarily defined by 

structural changes in the pars opercularis and the superior parietal, together with variations in 

other frontal and parietal regions, along with contributions from some temporal and occipital 

areas as well as subcortical regions such as the amygdala and area accumbens [Figure 3]. In 
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AD dementia individuals, the structural brain signature associated with higher genetic risk of 

AD was mainly characterized by structural changes in the pars triangularis and the amygdala, 

along with variations in other frontal regions, as well as parietal, temporal and occipital areas 

[Figure 3D]. Although the prediction accuracy of the structural brain signature was low in all 

the groups [Supplementary Table 4], there were significant differences in the mean score of the 

structural brain signature between at-high and at-low risk individuals in each group along the 

disease continuum [Supplementary Figure 3].  

 

4. Discussion  

In this study, the use of CoDA revealed structural brain signatures capable of discerning 

between CU A- individuals and subjects within other disease-stage groups along the AD 

continuum. We also found structural brain signatures associated with higher genetic 

predisposition to AD that were specific to each stage of the disease along the continuum. In 

both cases, the structural brain signatures reflected different structural trajectories among the 

groups.  

On the one hand, regions involved in the brain signatures discriminating between CU A- and 

the rest of the groups were in line with previous reported patterns of brain networks in CU, 

MCI and AD36. The structural brain signature discerning between CU A- and CU A+ primarily 

involved subcortical areas such as the amygdala and pallidum, and cortical areas in the insula, 

cingulate and both frontal and parietal lobes. Despite being inversely related, the amygdala and 

pallidum emerged as the regions with the most significant contribution to the structural brain 

signature. Some authors 37 have found that atrophy in the amygdala predicts Mini Mental State 

Examination scores and hippocampal atrophy in very mild and mild AD subjects. These 
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findings highlight the relationship between the magnitude of atrophy in this region and 

cognitive impairment in very early stages of the disease. The structural brain signature that 

distinguished between CU A- and MCI A+, was mainly characterized by cortical regions in the 

temporal, frontal and occipital lobe, as well as in the cingulate cortex, together with subcortical 

areas such as the putamen and pallidum. Despite their inverse relationship, the fusiform and 

the frontal pole showed the most pronounced contribution to the structural brain signature. 

Recent studies have revealed different patterns of atrophy in MCI individuals, with observed 

thinning in both the fusiform and the frontal in distinct incident MCI subtypes38. Results 

highlight the complexity of structural changes in heterogeneous profiles.  Finally, CU A-  

individuals were differentiated from AD A+ through a structural brain signature mainly 

involving cortical areas in the frontal and parietal lobe, together with the insula and the 

cingulate cortex, as well as subcortical areas such as the putamen. The insula and the inferior 

parietal were inversely related but had the highest contribution to the structural brain signature. 

Previous studies have explored cortical networks in CU, MCI and AD patients36 and have 

identified group-specific hub regions, specifically involving the cingulate and the orbital 

frontal gyrus in AD patients. These findings are in line with the reported regions that we found 

involved in the structural brain signature associated with higher odds of belonging to the AD 

group. Moreover, authors 36 also found that compared with CU, the nodal centrality of MCI 

and AD decreased in the middle temporal and increased in the precuneus, located in the parietal 

lobe.  

On the other hand, regions involved in the structural brain signatures associated with higher 

genetic predisposition of AD within disease-stage groups, reflected the structural atrophy 

trajectory observed as AD progresses, from medial temporal, to temporo-parietal and frontal 

regions39. The structural brain signature linked to higher risk of AD in CU individuals primarily 
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involved the relative change of temporal areas. Furthermore, independently of amyloid status, 

the structural brain signature of both CU A- and A+ individuals, shared some commonalities, 

such as the involvement of the pallidum and the middle temporal cortex, albeit with varying 

degrees of prominence. Despite these common similarities, the impact of AD genetic load on 

the modulation of nearby brain regions was group-specific. These findings suggest that the 

brain's response to AD genetic predisposition differs even within the preclinical stage, which 

has been already observed in univariate brain modelization17-18. In the MCI group, the structural 

brain signature discerning individuals at higher genetic risk of AD from those at lower risk, 

was characterized by relative volumetric changes in temporal and parietal regions. Specifically, 

MCI at higher genetic risk of AD exhibited a brain signature representing an intermediate 

position between CU and AD. Notably, the amygdala and accumbens played significant roles 

in shaping this signature. The amygdala, in particular, is well-established in the processing of 

emotional and memory-related information, implying a potential role in the early stages of 

cognitive dysfunction (Al-Ani et al., 2023). In the AD group, the structural brain signature was 

primarily characterized by frontal regions. The amygdala remained a crucial contributor to this 

signature. These findings emphasize the genetic susceptibility of the amygdala and its role in 

advanced stages of AD.  Recent studies40 have reported the association between the APOE-𝜀4 

genotype and reduced volumes in the amygdala, specifically in the AD dementia and MCI 

groups compared to young cognitively healthy individuals. However, they did not find 

significant associations between the volume of the amygdala and an overall polygenic score of 

AD. In contrast, other studies41 have found significant associations between higher genetic risk 

of AD and lower amygdala volumes in individuals from the ADNI cohort.   

Altogether, results suggested that when accounting for genetic information, group-specific 

structural brain signatures better capture the pattern of structural changes observed as the 
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disease progresses. The identification of these structural brain signatures underscores the 

complex interplay between genetics and brain morphology in both prodromal and clinical 

stages of the disease. Moreover, these findings provide a novel perspective for brain IG studies 

showing that the contribution of genetic factors to brain structure may evolve as the disease 

progresses42. Results also highlighted the impact of polygenicity on the brain morphology. 

While the APOE-ε4 allele is widely recognized as the most significant risk factor for AD, our 

study exposes the importance of a broader genetic landscape in influencing brain structure 

alterations in AD43. This insight is particularly crucial for the understanding of the disease 

pathogenesis, suggesting that changes in brain structure are a result of a complex genetic 

interplay rather than being solely dependent on single genetic variants44. Besides the APOE-𝜀4 

allele, other polymorphisms in the APOE region (i.e. rs405509; T/T as risk allele), have been 

independently associated with the thickness of specific brain regions (e.g. left parahippocampal 

gyrus) in old cognitively healthy individuals45. Moreover, genetic variants included in the 

computation of the polygenic risk score of AD were annotated to multiple genes 11 that have 

been associated with MRI outcomes, such as TOMM4046, that is involved in a haplotype 

together with APOE (TOMM40′523-APOE 𝜀4) that has been associated with AD cortical 

morphological traits 47. 

Despite these findings, our study also showed some limitations. Notably, we acknowledge the 

need for longitudinal data analysis to assess the joint volumetric trajectories discerning 

individuals at higher genetic risk of AD from those at lower risk over time. Another aspect to 

consider is that each structural brain signature captures the relative variation of brain regions’ 

volumes that are most closely associated with the outcome of interest. Thus, the structural brain 

signature does not reflect actual changes on the brain volumetric composition, but relative 

volumetric variations. This interpretation might not be straightforward, but the methodology 
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overcomes biases and limitations of current IG multivariate approaches when working with 

heterogeneous MRI data from different cohorts. For instance, CoDA surpasses traditional 

methodologies in its ability to integrate volumetric data from various cohorts without the 

stringent requirement for harmonization48. This flexibility facilitates the analysis of diverse 

datasets and strengthens the reliability of cross-study comparisons. Nonetheless, another 

limitation lies in the involvement of other AD risk factors that may interact with genetics 

affecting the brain volumetric modulation. It is well known that genetic factors significantly 

contribute to neurodegenerative disorders, but often they are functional under specific 

exposures49. In this context, one could state that individuals from the ALFA cohort are exposed 

to sufficiently homogeneous conditions to assume an equal random impact of factors external 

to genetics. However, it should be noted that an extension of these results by evaluating the 

impact of external factors and in a more diverse population group, would improve the 

interpretation and translation of the results. 

This study also had several strengths. The use of CoDA represents a strong  method for 

overcoming methodological aspects of the traditional analyses used in neuroimaging studies 

and offers a more accurate and comprehensive understanding of brain structural alterations 

linked to genetics than common univariate and multivariate methods50. Unlike conventional 

univariate analyses, which often lack the power to detect significant associations due to 

rigorous multiple testing corrections at brain-wide or genome-wide level, this approach adeptly 

captures the complex interdependencies among different brain regions. Moreover, CoDA 

offers distinct advantages over commonly used multivariate methods19. While multivariate 

approaches reduce data dimensionality and identify correlated feature sets51, they typically 

overlook the compositional nature of brain data.  
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In summary, CoDA emerges as a relevant method in neuroimaging studies, holding significant 

implications for both research and clinical practice. By providing a more accurate analysis of 

brain imaging data and addressing its compositional nature, CoDA can influence the 

development of targeted approaches, opening new avenues for enhancing brain health. 
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Tables  

 
ALFA  

N=338 

 N  

Sex (n,%)                        338 

    Men     127 (37.574%)          

    Women     211 (62.426%)          

Age (median, IQR) 57.000 [53.000;61.000] 338 

Education years (median, IQR) 12.000 [11.000;17.000] 338 

Amyloid-beta status (n,%)                        338 

    AB-     220 (65.089%)          

    AB+     118 (34.911%)          

APOE ε4 carriers (n,%)                        338 

    Non-carrier     155 (45.858%)          

    Carrier     183 (54.142%)          

APOE ε4 load (n,%)                        338 

        Non-carriers     155 (45.858%)          

        One ε4 allele     152 (44.970%)          

        Two ε4 alleles      31 (9.172%)           

Minimental State Examination (median, IQR) 29.000 [28.000;30.000] 338 

Table 1.  Demographic characteristics and APOE genotypes distribution in the ALFA 

sample  

 

 
ADNI 

 N=330 

 N  

Sex (n,%)                        330 

    Women     132 (40.000%)          

    Men     198 (60.000%)          

Age (median, IQR) 74.050 [68.200;78.000] 330 

Education years (median, IQR) 16.000 [14.000;18.000] 330 

Diagnosis (n,%)                        330 

    AD     100 (30.303%)          

    MCI     230 (69.697%)          

APOE ε4 carriers (n,%)                        330 

    Non-carrier     117 (35.455%)          

    Carrier     213 (64.545%)          

APOE ε4 load (n,%)                        330 

        Non-carriers     117 (35.455%)          

        One ε4 allele     153 (46.364%)          

        Two ε4 alleles      60 (18.182%)          

Minimental State Examination (median, IQR) 27.000 [25.000;29.000] 330 

Table 2.  Demographic characteristics and APOE genotypes distribution in the ADNI 

sample  
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CU A-  

ALFA   

 N=220 

CU A+  

ALFA   

N=118 

MCI A+  ADNI  

N=230 

AD  A+  

ADNI  

N=100 

p-value p-value 

CU A- vs 

CU A+ 

p-value 

CU A- 

vs MCI 

p-value 

AD vs 

CU A- 

p-value 

CU A+ 

vs MCI 

p-value 

AD vs 

CU A+ 

p-value 

AD vs 

MCI 

            

Sex (n,%)                                                                                              <0.001        0.784           

<0.001     

    0.002         

<0.001     

    0.018        0.649    

    Women     139 

(63.182%)      

     72 (61.017%)           89 (38.696%)           43 (43.000%)                                                                                                       

    Men      81 (36.818%)           46 (38.983%)          141 

(61.304%)      

     57 (57.000%)                                                                                                       

Age (median, IQR) 56.000 

[52.750;60.000] 

58.000 

[54.000;62.000] 

72.850 

[68.125;77.400] 

75.600 

[69.550;80.300] 

 <0.001        0.004           

<0.001     

   <0.001         

<0.001     

   

<0.001     

   0.025    

Education years (median, IQR) 12.500 

[11.000;17.000] 

12.000 

[10.250;17.000] 

16.000 

[14.000;18.000] 

16.000 

[14.000;18.000] 

 <0.001        0.495           

<0.001     

   <0.001         

<0.001     

   

<0.001     

   0.105    

APOE ε4 carriers  (n,%)                                                                                              <0.001        <0.001          

<0.001     

   <0.001         

<0.001     

   

<0.001     

   0.317    

    Non-carrier     130 

(59.091%)      

     25 (21.186%)           86 (37.391%)           31 (31.000%)                                                                                                       

    Carrier      90 (40.909%)           93 (78.814%)          144 

(62.609%)      

     69 (69.000%)                                                                                                       

APOE ε4 load (n,%)                                                                                              <0.001        <0.001          

<0.001     

   <0.001         0.007          0.170        0.528    

        Non-carriers     130 

(59.091%)      

     25 (21.186%)           86 (37.391%)           31 (31.000%)                                 
 

                             
 

            

        One ε4 allele      79 (35.909%)           73 (61.864%)          104 

(45.217%)      

     49 (49.000%)                
  

                                                           

        Two ε4 alleles      11 (5.000%)            20 (16.949%)           40 (17.391%)           20 (20.000%)                                                        
 

                              

PRS-AD (median, IQR) -0.038 [-

0.155;0.090] 

0.056  

[-0.086;0.220] 

0.033  

[-0.112;0.204] 

0.070 

 [-0.054;0.234] 

<0.001 <0.001 <0.001 <0.001 0.559 0.459 0.150 

PRS-ADnoAPOE (median, IQR) -0.11  

[-0.18;-0.02] 

-0.12  

[-0.22;0.03] 

-0.10 

 [-0.19;-0.01] 

-0.08  

[-0.19;0.02] 

0.605 0.903 0.708 0.708 0.921 0.708 0.708 

Minimental State Examination 

(median, IQR) 

29.000 

[28.000;30.000] 

29.000 

[29.000;30.000] 

28.000 

[27.000;29.000] 

23.000 

[21.750;25.000] 

<0.001 0.303 <0.001 <0.001 <0.001 <0.001 <0.001 

 

Table 3.  Demographic characteristics and APOE genotypes distribution in the ALFA and ADNI sample.  
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3.  Modeling and variable selection

Cohort-specific PRSAD

cut-off = quantile 0.8

2.  Compositional dataset

Brain subregions as 
components Matrix pairs of log-

ratios

Total Brain Volume 
Composition

Relative variation between pairs of subregions' 
volumes - log-ratio approach

X1
X2

lr.X1/X2 ,...,lr.Xk/Xk-1

Dim=n·k(k-1)/2  

n=sample size
k= number of brain 

subregions

X1 X2 Xk Xk-1

1. Variable selection through elastic net penalized regression iteration 1

iteration 7

trainingtesting

testingtraining

2.  The joint effect of the selected brain regions is summarized in a brain structural signature (log-contrast function)

X1 X2 Xi-1 Xi Xk
Xk-1 Cross-validation

● α=0.9
● λ=lambda1.se
● N-fold=7β1 βk 

Xk Xk-1

positive             

negative

3.  The joint change of the structural brain signature and the binary outcomes of interest, after adjusting for 
covariates, is given by logistic regression models. 

Brain Signature = Σ X1 X2 Xk Xk-1

β1 >0 βk-1 <0

(i) logit(CUA- vs Groupi) = β0 + Σ βi·Xi + γ1·Age + γ2·Sex + γ3·PRSAD,

(ii) logit(Non-high vs High risk AD) = β0 + Σ βi·Xi + γ1·Age + γ2·Sex, stratified by disease-stage

 where  Σ βi·Xi = Brain Signature 

1. Sample of the study and genetic characterization

PRSAD computation

1. Data acquisition - GWAS summary 
statistics (Wightman et al., 2021)

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-lo
g 1

0(
P)

Chromosome

Effect sizes in the population of reference

ALFA sample
N=338 CU individuals
N CUA- = 220
N CUA+= 118

ADNI sample
N=330 CI A+ individuals
N CIMCI A+ = 230
N  CIAD A+ = 100

AD continuum (clinical diagnosis and 
amyloid profile) 

AD A+

What about the genetic profile?

2.  PRS computation

LD R2=0.1
window  250kb

SNPs inclusion: p-value<5·10-6

High genetic risk AD
CUA-

CUA+MCI A+
AD A+

Low genetic risk AD
MCI A+

AD A+

CUA-

CUA+

MCI A+

Hypothetic scenario

AD A+

MCI A+

CUA+

Non-high risk High risk

CUA-

CUA-AD A+

Aim: to identify structural brain signatures (combination of specific brain subregion's volumes)

(i) capable of distinguishing between CU A- and the rest of the groups in the disease continuum.

(ii) associated with higher genetic risk of AD in individuals at different stages of the disease

(contribution to the brain signature)

AD A+

CUA+

CUA-

MCI A+

AD A+

Figure 1. Workflow coda4microbiome algorithm: implementation in our Imaging Genetics study.
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Sructural brain signatures that discriminate between CU A- and other disease-stage groups in the AD continuum

CU A- vs CU A+
N=338

Pallidum
Supramarginal

Putamen
Insula

Pars triangularis
Transverse temporal

Rostral anterior cingulate
Amygdala

Coefficient

CU A- vs MCI A+
N=450

Fusiform
Parahippocampal

Putamen
Caudal anterior cingulate

Lateral occpital
Pars orbitalis

Pallidum
Frontal pole

Coefficient

 CU A- vs AD A+
N=320

Insula
Medial orbitofrontal

Rostral anterior cingulate
Putamen

Caudal anterior cingulate
Precuneus

Frontal pole
Inferior parietal

Coefficient

CU A- vs CU A+
N=338

CU A- vs MCI A+
N=450

 CU A- vs AD A+
N=320

Figure 2. Brain structural signature distinguishing between CU A- individuals and others at different stages of the disease. In blue, brain regions 
that positively contribute to the structural brain signature. In red, brain regions that negatively contribute to the structural brain signature. 
Legend: CU A- (cognitively unimpaired amyloid-beta negative individuals), CU A+ (cognitively unimpaired amyloid-beta positive individuals), MCI A+ (mild cognitive 
impaired amyloid-beta positive individuals), AD A+ (Alzheimer’s disease amyloid-beta positive individuals). 
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CU A+ ALFA

Structural brain signatures associated with higher genetic risk of AD (PRSAD) along the AD continuum

CU A- ALFA CU A- ALFA

CU A+ ALFA

MCI A+ ADNI

AD A+ ADNI
AD A+ ADNI

MCI A+ ADNI

A. CU A-

CU A- CU A+ MCI A+ AD A+

Area accumbens

Figure 3. Brain structural signature associated with higher genetic predisposition to AD (PRSAD). In blue, brain regions that positively 
contribute to the structural brain signature. In red, brain regions that negatively contribute to the structural brain signature. Legend: CU A- 
(cognitively unimpaired amyloid-beta negative individuals), CU A+ (cognitively unimpaired amyloid-beta positive individuals), MCI A+ (mild cognitive impaired 
amyloid-beta positive individuals), AD A+ (Alzheimer’s disease amyloid-beta positive individuals). 
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