It is made available under a CC-BY 4.0 International license .

1 2 3 4 5 6	Risk prediction tools for pressure injury occurrence: An umbrella review of systematic reviews reporting model development and validation methods
7	Bethany Hillier ^{1,2}
8	Katie Scandrett ¹
9	April Coombe ^{1,2}
10	Tina Hernandez-Boussard ³
11	Ewout Steyerberg ⁴
12	Yemisi Takwoingi ^{1,2}
13	Vladica Velickovic ^{5,6}
14	Jacqueline Dinnes ^{1,2*}
15	
16	
17	Affiliations
18 19	¹ Department of Applied Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, UK
20 21	² NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
22	³ Department of Medicine, Stanford University, Stanford, CA USA
23 24	4 Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
25	⁵ Evidence Generation Department, HARTMANN GROUP, Heidenheim, Germany
26 27	⁶ Institute of Public Health, Medical, Decision Making and Health Technology Assessment, UMIT, Hall, Tirol, Austria
28	Email addresses
29 30 31	b.hillier@bham.ac.uk (BH); k.e.scandrett@bham.ac.uk (KS); a.r.coombe@bham.ac.uk (AC); boussard@stanford.edu (THB); e.w.steyerberg@lumc.nl (ES); y.takwoingi@bham.ac.uk (YT); vladica.velickovic@hartmann.info (VV)
32	* Corresponding author: j.dinnes@bham.ac.uk (JD)
33	Keywords
34	Development, internal, external validation, prediction, prognostic, pressure injury, ulcer, overview

It is made available under a CC-BY 4.0 International license .

35 ABSTRACT

36 Background

- 37 Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification
- 38 of those who are at risk of developing PIs allows preventive interventions to be focused on patients
- 39 who are at the highest risk. The considerable number of risk assessment scales and prediction
- 40 models available underscore the need for a thorough evaluation of their development, validation
- 41 and clinical utility.
- 42 Our objectives were to identify and describe available risk prediction tools for PI occurrence, their
- 43 content and development and validation methods used.

44 Methods

- 45 The umbrella review was conducted according to Cochrane guidance. MEDLINE, Embase, CINAHL,
- 46 EPISTEMONIKOS, Google Scholar and reference lists were searched to identify relevant systematic
- 47 reviews. Risk of bias was assessed using adapted AMSTAR-2 criteria. Results were described
- 48 narratively. All included reviews contributed to build a comprehensive list of risk prediction tools.

49 Results

- 50 We identified 32 eligible systematic reviews only seven of which described the development and
- 51 validation of risk prediction tools for PI. Nineteen reviews assessed the prognostic accuracy of the
- 52 tools and 11 assessed clinical effectiveness. Of the seven reviews reporting model development and
- 53 validation, six included only machine learning models. Two reviews included external validations of
- 54 models, although only one review reported any details on external validation methods or results.
- 55 This was also the only review to report measures of both discrimination and calibration. Five reviews
- 56 presented measures of discrimination, such as area under the curve (AUC), sensitivities, specificities,
- 57 F1 scores and G-means. For the four reviews that assessed risk of bias assessment using the
- 58 PROBAST tool, all models but one were found to be at high or unclear risk of bias.

59 Conclusions

- 60 Available tools do not meet current standards for the development or reporting of risk prediction
- 61 models. The majority of tools have not been externally validated. Standardised and rigorous
- 62 approaches to risk prediction model development and validation are needed.

63 Registration

- 64 The protocol was registered on the Open Science Framework (<u>https://osf.io/tepyk</u>).
- 65
- 66

It is made available under a CC-BY 4.0 International license .

67 INTRODUCTION

68 Pressure injuries (PI) carry a significant healthcare burden. A recent meta-analysis estimated the

69 global burden of PIs to be 13%, two-thirds of which are hospital-acquired PIs (HAPI).¹ The average

cost of a HAPI has been estimated as \$11k per patient, totalling at least \$27 billion a year in the

71 United States based on 2.5 million reported cases.² Length of hospital stay is a large contributing

72 cost, with patients over the age of 75 who develop HAPI having on average a 10-day longer hospital

r stay compared to those without PI.³

74 PIs result from prolonged pressure, typically on bony areas like heels, ankles, and the coccyx, and are

75 more common in those with limited mobility, including those who are bedridden or wheelchair

vsers. PIs can develop rapidly, and pose a threat in community, hospital and long-term care settings.

77 Multicomponent preventive strategies are needed to reduce Pl incidence⁴ with timely

implementation to both reduce harm and burden to healthcare systems.⁵ Where preventive

79 measures fail or are not introduced in adequate time, PI treatment involves cleansing, debridement,

80 topical and biophysical agents, biofilms, growth factors and dressings⁶⁷⁸, and in severe cases, surgery

81 may be necessary.⁵⁹

82 A number of clinical assessment scales for assessing the risk of PI are available (e.g. Braden¹⁰¹¹,

83 Norton¹², Waterlow¹³) but are limited by reliance on subjective clinical judgment. Statistical risk

84 prediction models may offer improved accuracy over clinical assessment scales, however appropriate

85 methods of development and validation are required.^{14 15 16} Although methods for developing risk

prediction models have developed considerably,^{14 15 17 18} methodological standards of available

87 models have been shown to remain relatively low.^{17 19-22} Machine learning (ML) algorithms to

88 develop prediction models are increasingly commonplace, but these models are at similarly high risk

of bias²³ and do not necessarily offer any model performance benefit over the use of statistical

90 methods such as logistic regression.²⁴ Methods for systematic reviews of risk prediction model

studies have also improved,²⁵⁻²⁷ with tools such as PROBAST (Prediction model Risk of Bias

92 Assessment Tool)²⁸ now available to allow critical evaluation of study methods.

Although several systematic reviews of PI risk assessment scales and risk prediction models for PI

94 (subsequently referred to as risk prediction tools) are available²⁹⁻³⁸, these have been demonstrated to

95 frequently focus on single or small numbers of scales or models, use variable review methods and

96 show a lack of consensus about the accuracy and clinical effectiveness of available tools.³⁹ We

97 conducted an umbrella review of systematic reviews of risk prediction tools for PI to gain further

insight into the methods used for tool development and validation, and to summarise the content ofavailable tools.

100 METHODS

101 Protocol registration and reporting of findings

102 We followed guidance for conducting umbrella reviews provided in the Cochrane Handbook for

103 Intervention Reviews.⁴⁰ The review was reported in accordance with guidelines for Preferred

104 Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)⁴¹ (see Appendix 1), adapted for

105 risk prediction model reviews as required. The protocol was registered on the Open Science

106 Framework (<u>https://osf.io/tepyk</u>).

107 Literature search

- 108 Electronic searches of MEDLINE, Embase via Ovid and CINAHL Plus EBSCO from inception to June
- 109 2024 were developed, tested and conducted by an experienced information specialist (AC),

It is made available under a CC-BY 4.0 International license .

- 110 employing well-established systematic review and prognostic search filters⁴²⁻⁴⁴ combined with
- 111 specific keyword and controlled vocabulary terms relating to PIs. Additional simplified searches were
- 112 undertaken in EPISTEMONIKOS and Google Scholar due to the more limited search functionality of
- 113 these two sources. The reference lists of all publications reporting reviews of prediction tools
- 114 (systematic or non-systematic) were reviewed to identify additional eligible systematic reviews and
- to populate a list of PI risk prediction tools. Title and abstract screening and full text screening were
- 116 conducted independently and in duplicate by two of four reviewers (BH, JD, YT, KS). Any
- disagreements were resolved by discussion or referral to a third reviewer.

118 Eligibility criteria for this umbrella review

- 119 Published English-language systematic reviews of risk prediction models developed for adult patients
- 120 at risk of PI in any setting were included. Reviews of clinical risk assessment tools or models
- developed using statistical or ML methods were included, both with or without internal or external
- 122 validation. The use of any PI classification system^{6 45-47} as a reference standard was eligible. Reviews
- 123 of the diagnosis or staging of those with suspected or existing PIs or chronic wounds, reviews of
- 124 prognostic factor and predictor finding studies, and models exclusively using pressure sensor data
- 125 were excluded.
- 126 Systematic reviews were required to report a comprehensive search of at least two electronic
- 127 databases, and at least one other indicator of systematic methods (i.e. explicit eligibility criteria,
- 128 formal quality assessment of included studies, sufficient data presented to allow results to be
- 129 reproduced, or review stages (e.g. search screening) conducted independently in duplicate).

130 Data extraction and quality assessment

- Data extraction forms (Appendix 3) were developed using the CHARMS checklist (CHecklist for critical
- 132 Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) and Cochrane
- 133 Prognosis group template.^{48 49} One reviewer extracted data concerning: review characteristics, model
- details, number of studies and participants, study quality and results. Extractions were
- independently checked by a second reviewer. Where discrepancies in model or primary study details
- 136 were noted between reviews, we accessed the primary model development publications where
- 137 possible.
- 138 The methodological quality of included systematic reviews was assessed using AMSTAR-2 (A
- 139 Measurement Tool to Assess Systematic Reviews)⁵⁰, adapted for systematic reviews of risk prediction
- 140 models (Appendix 4). Quality assessment and data extraction were conducted by one reviewer and
- 141 checked by a second (BH, JD, KS), with disagreements resolved by consensus. Our adapted AMSTAR-2
- 142 contains six critical items, and limitations in any of these items reduce the overall validity of a
- 143 review.⁵⁰

144 Synthesis methods

- 145 Reviews were considered according to whether any information concerning model development and
- validation was reported. This specifically refers to reporting methods of model development or
- validation, and/or the presentation of measures of both discrimination and calibration. This is in
- 148 contrast to evaluations of prognostic accuracy, where models are applied at a binary threshold (e.g.,
- 149 for high or low risk), and present only discrimination metrics with no further consideration of model
- 150 performance. Available data were tabulated, and a narrative synthesis provided.
- 151 All risk prediction models identified are listed in Appendix 5 Table S4, including those for which no
- 152 information about model development or validation was provided at systematic review level. Risk
- 153 prediction models were classified as ML-based or non-ML models, based on how they were classified

It is made available under a CC-BY 4.0 International license.

- 154 in included systematic reviews, including cases where models such as logistic regression were treated
- 155 as ML-based models. Where possible, the predictors included in the tools were extracted at review
- 156 level and categorised into relevant groups in order to describe the candidate predictors associated
- 157 with risk of PI. No statistical synthesis of systematic review results was conducted.
- 158 Reviews reporting results as prognostic accuracy (i.e. risk classification according to a binary decision)
- 159 or clinical effectiveness (i.e. impact on patient management and outcomes) are reported
- elsewhere.³⁹ Hereafter, the term clinical utility is used to encompass both accuracy and clinical 160
- effectiveness. 161

RESULTS 162

Characteristics of included reviews 163

- 164 Following de-duplication of search results, 7200 unique records remained, of which 118 were 165 selected for full text assessment. We obtained the full text of 111 publications of which 32 met all
- 166 eligibility criteria for inclusion (see Figure 1). Seven reviews reported details about model
- development and internal validation^{36 37 51-55}, two of which also considered external validation^{52 54}; 19 167
- reported accuracy data^{29 31-35 38 54 56-66}; and 11 reported clinical effectiveness data.^{30 56 58 61 66-72} One 168
- review⁵⁴ reported both model development and accuracy data, and four reviews reported both 169
- accuracy and effectiveness data.^{56 58 61 66} 170
- 171 Table 1 provides a summary of systematic review methods for all 32 reviews according to whether or 172 not they reported any tool development methods (see Appendix 5 for full details). The seven reviews reporting prediction tool development and validation were all published within the last six years 173 174 (2019 to 2024) compared to reviews focused on the clinical utility of available tools (published from 175 2006 to 2024). Reviews focused on model development methods almost exclusively focused on MLbased models (all but one⁶⁰ of the seven reviews limited inclusion to ML models), and frequently did 176 177 not report study eligibility criteria related to study participants or setting (Table 1). In comparison, only two reviews (8%) concerning the clinical utility of models included ML-based models,^{38 54} but 178 more often reported eligibility criteria for population or setting: hospital settings (n = 3), 3^{33854} or 179 surgical settings (n=2)⁶⁷⁷¹, long-term care settings 180 $(n=2)^{29}$ or the elderly (n=1).⁶⁰ 181
- 182 On average, reviews about tool development included more studies than reviews of clinical utility 183 (median 22 compared to 15), more participants (median 408,504 compared to 7,684) and covered
- 184 more prediction tools (median 21 compared to 3) (Table 1). Ten reviews (38%) about clinical utility
- 185 included only one risk assessment scale, whereas reviews of tool development included at least 3
- different risk prediction models. The PROBAST tool for quality assessment of prediction model 186 studies was used in 57% (n=4) of tool development reviews^{37 52-54}, whereas validated test-accuracy
- 187
- specific tools such as QUADAS were used less frequently (10/26, 38%) in reviews of clinical utility. 188
- 189 Two reviews of tool development did not report any quality assessment of included studies (29%), 190 compared to 4 (15%) of reviews of clinical utility. Meta-analysis was conducted in two of seven (29%)
- 191 reviews of tool development compared to more than half of reviews of clinical utility (15, 58%).

192 Methodological quality of included reviews

193 The guality of included reviews was generally low (Table 2; Appendix 5 for full assessments). The

- 194 majority of reviews (71% (5/7) reviews on tool development and 78% (18/23) reviews on clinical
- 195 utility) partially met the AMSTAR-2 criteria for the literature search (i.e. searched two databases,
- 196 reported search strategy or key words, and justified language/publication restrictions), with only
- three (two reviews⁵⁶⁷² on clinical utility, and one review⁵⁴ on both tool development and clinical 197

It is made available under a CC-BY 4.0 International license .

- 198 utility) meeting all criteria for 'Yes' (i.e. searching grey literature and reference lists, with the search
- 199 conducted within 2 years of publication). Twenty-two reviews (69%) conducted study selection in
- 200 duplicate (5/7 (71%) of reviews about tool development and 17/26 (65%) of clinical utility reviews).
- 201 Conflicts of interest were reported in all seven tool development reviews and 77% of clinical utility
- reviews (20/26). Reviews scored poorly on the remaining AMSTAR-2 items, with around 50% or fewer
- 203 reviews meeting the stipulated AMSTAR-2 criteria. Nine reviews (28%) used an appropriate method
- of quality assessment of included studies and provided itemisation of judgements per study. No
- 205 review scored 'Yes' for all AMSTAR-2 items in either category.
- 206 Figure 1. PRISMA⁴¹ flowchart: identification, screening and selection process

207 List of full-text articles excluded, with reasons, is given in Appendix 5. *Note that one review 5^{4} is included in both.

		ar	nd/or valida	tion (n=7)	•		and/o	r clinical e	ffectiven	ess (n=26)	,
FEM 1 Research question / inclusion criteria	1			6		5			21		
FEM 2 Protocol		2		5			8	1		17	
FEM 3 Study design inclusions	1			6		2			24		
FEM 4 Search strategy	1			6		3		18	3		5
FEM 5 Study selection in duplicate			5		2			17		9	
FEM 6 Data extraction in duplicate		3		4				15		11	
FEM 7 Excluded studies list			7			2			24		
FEM 8 Included studies descriptions	1			6			7	7		12	
FEM 9 RoB / quality assessment		3	1		3		7	6		13	
FEM 10 Funding of included studies			7			2			24		
FEM 11 Appropriate statistical synthesis		2		5		4		12		10	
FEM 12 RoB – impact on synthesis	1	1		5		4		12		10	
FEM 13 RoB – impact on results		2		5			-	14		12	
FEM 14 Heterogeneity investigation		2		5				15		11	
FEM 15 Conflicts of interest			7					20			6

208 Table 2. Summary of AMSTAR-2 assessment results

AMSTAR – A MeaSurement Tool to Assess systematic Reviews; Item 1 – Adequate research question/ inclusion criteria?; Item 2 – Protocol and justifications for deviations?; Item 3 – Reasons for study design inclusions?; Item 4 – Comprehensive search strategy?; Item 5 – Study selection in duplicate?; Item 6 – Data extraction in duplicate?; Item 7 – Excluded studies list (with justifications)?; Item 8 – Included studies description adequate?; Item 9 – Assessment of RoB/quality satisfactory?; Item 10 – Studies' sources of funding reported?; Item 11 – Appropriate statistical synthesis method?; Item 12 – Assessment of RoB on synthesised results?; Item 13 – Assessment of RoB on review results?; Item 14 – Discussion/investigation of heterogeneity?; Item 15 – Conflicts of interest reported?; N/A – not applicable; RoB – risk of bias. Further details on AMSTAR items are given in Appendix 4, and results per review are given in Appendix 5. Note that where AMSTAR-2 assessment was applied to overlapping reviews (n=3) for prognostic accuracy and clinical effectiveness separately, and resulted in differing judgements for each review question, the judgements for the prognostic accuracy review question are displayed here for simplicity.

It is made available under a CC-BY 4.0 International license

It is made available under a CC-BY 4.0 International license .

209 Findings

210 Of the 32 reviews, 26 reviews focused on the clinical utility (accuracy or effectiveness) of prediction 211 tools. These clinical utility reviews provided no details about the development or validation of included models (except for one review⁵⁴), and gave only limited detail about setting and study 212 213 design (see Appendix 5). Reviews reporting the accuracy of prediction tools largely treated the tools 214 as diagnostic tests to be applied at a single threshold (e.g., for high or low risk) and they did not focus 215 on the broader aspects of prognostic model performance, such as calibration and the temporal 216 relationship between prediction and the outcome, PI occurrence. These reviews included a total of 217 70 different prediction tools, predominantly derived by clinical experts, as opposed to empirically-218 derived models (that is, with statistical or ML methods). The methodology underlying their 219 development is not always explicit, with scales in routine clinical usage apparently based on 220 epidemiological evidence and clinical judgment about predictors that may not meet accepted 221 principles for the development and reporting of risk prediction models. The most commonly 222 included tools were the Braden^{10 11} (included in 21 reviews), Waterlow¹³ (n=14 reviews), Norton¹²

223 (n=11 reviews), and Cubbin and Jackson scales⁹⁷⁹⁸ (n=8 reviews).

224 The seven systematic reviews that reported detailed information about model development and validation included 70 prediction models, 48 of which were unique to these seven reviews. Between 225 226 three⁵¹ and 35³⁶ model development studies were included; one review⁵² also included eight external validation studies and another review⁵⁴ included one external validation study. Electronic health 227 records (EHRs) were used for model development in all studies in one review³⁷ and for the majority 228 of models (>66%) in the remaining reviews, where reported. ^{51 54 55 53} Three reviews^{52 54 55} reported the 229 use of prospectively or retrospectively collected data. No review included information about the 230 231 thresholds used define whether a patient is at risk of developing PIs. Five reviews included detail 232 about the predictors included in each model.

The largest review³⁶ reported that logistic regression was the most commonly reported modelling approach (20/35 models), followed by random forest (n=18), decision tree (n=12) and support vector machine (n=12) approaches. Logistic regression was also the most frequently used approach in three other reviews (18/23⁵⁵, 16/21⁵² and 15/22⁵³). Primary studies frequently compared the use of different ML methods using the same datasets, such that 'other' ML methods were reported with

238 little to no further detail (e.g. 19 studies in the review by Dweekat and colleagues³⁶).

- Approaches to internal validation were not well reported in the primary studies. One review⁵² found no information on internal validation for 76% (16/21) of studies; with re-sampling reported in two
- and tree-pruning, cross-validation and split sample reported in one study each. Another review³⁶
- reported finding no information about internal validation for 20% of studies (7/35) and the use of
- 243 cross-validation (n=10), split sample (n=10) techniques, or both (n=8) for the remainder. Cross-
- validation was used in more than half (12/22) of studies in another.⁵³
- 245 Only one review reported details on methods for selection of model predictors⁵²: 29% (6/21)
- selected predictors by univariate analysis prior to modelling and 9 used stepwise selection for final
- 247 model predictors; 11 (52%) clearly reported candidate predictors, and all 21 clearly reported final
- 248 model predictors. Another review⁵⁴ stated that feature selection (or predictor selection) was
- 249 performed improperly and that some studies used univariate analyses to select predictors, but
- further details were not provided. One review⁵² reported 15 models (71%) with no information about
- 251 missing data, and only two using imputation techniques (imputation using another data set, and
- 252 multiple imputation by chained equations). Another review⁵⁴ reported 7 models (39%) with no

It is made available under a CC-BY 4.0 International license .

253 information about missing data, missing data excluded or negligible for 4 models (22%), and single or 254 multiple imputation techniques used for 5 (28%) and 3 (17%) models, respectively.

- Model performance measures were reported by three reviews^{37 52 53}, all of which noted considerable 255 variation in reported metrics and model performance including C-statistics (0.71 to 0.89 in 10 256 studies⁵³), F1 score (0.02 to 0.99 in 9 studies⁵³), G-means (0.628 to 0.822 in four studies³⁷), and 257 observed versus expected ratios (0.97 to 1 in 3 studies⁵²). Four reviews^{37 53-55} reported measures of 258
- 259 discrimination associated with included models. Across reviews, reported sensitivities ranged
- 260 between 0.04 and 1, specificities ranged between 0.69 and 1, and AUC values ranged between 0.50 261 and 1.
- Shi and colleagues⁵² included eight external validations using data from long-term care (n=4) or acute 262
- hospital care (n=4) settings (Appendix 5 Table S5). All were judged to be at unclear (n=4) or high 263
- (n=4) risk of bias using PROBAST. Model performance metrics for five models (TNH-PUPP⁸⁹, Berlowitz 264
- 11-item model⁹⁹, Berlowitz MDS adjustment model⁹⁰, interRAI PURS⁸⁸, Compton ICU model⁹⁴) 265
- included C-statistics between 0.61 and 0.9 and reported observed versus expected ratios were 266
- between 0.91 and 0.97. The review also reported external validation studies for the 'SS scale'¹⁰⁰ and 267
- the prePURSE study tool⁹¹, but no model performance metrics were given. A meta-analysis of C-268
- 269 statistics and O/E ratios was performed, including values from both development and external
- 270 validation cohorts (Table 3). Parameters related to model development were not consistently
- 271 reported: C-statistics ranged between 0.71 and 0.89 (n = 10 studies); observed versus expected ratios
- 272 ranged between 0.97 and 1 (n=3 studies).
- Pei and colleagues⁵⁴ reported that one⁸¹ (1/18, 6%) of the model development studies included in 273
- 274 their review also conducted an external validation. However, review authors presented accuracy
- 275 metrics that originated from the internal validation, as opposed to the external validation
- (determined from inspection of the primary study). Additionally, no details on external validation 276
- 277 methods and no measures of calibration were presented. Pei and colleagues⁵⁴ judged this study to be of high risk of bias using PROBAST, as with the majority of studies (16/18, 89%) included in their
- 278
- 279 review. More detailed information about individual models, including predictors, specific model
- 280 performance metrics and sample sizes, is presented in Appendix 5.
- Included tools and predictors 281
- 282 A total of 124 risk prediction tools were identified (Table 4); 111 tools were identified from the 32
- 283 included systematic reviews and 13 were identified from screening the reference lists of literature
- 284 reviews that used non-systematic methods that were considered during full text assessment. Full
- 285 details obtained at review-level are reported in Appendix 5 Table S4.
- 286 Tools were categorised as having been developed with (60/124, 48%) or without (64/124, 52%) the 287 use of ML methods (as defined by review authors). Prospectively collected data was used for model 288 development for 21% of tools (26/124), retrospectively collected data for 41% (51/124), or was not
- 289 reported (47/124). Information about the study populations was poorly reported, however study
- 290 setting was reported for 112 prediction tools. Twenty-seven tools were reported to have been
- developed in hospital inpatients, and 22 were developed in long-term care settings, rehabilitation 291
- units or nursing homes or hospices. Where reported (n=100), sample sizes ranged from 15¹⁰¹ to 292 1,252,313.¹⁰² The approach to internal validation used for the prediction tools (e.g. cross-validation 293
- 294 or split sample) was not reported at review-level for over two thirds of tools (83/124, 67%).
- 295 We could extract information about the predictors for only 66 of the 124 tools (Table 5 and Appendix 296 5). The most frequently included predictor was age (33/66, 50%), followed by pre-disposing
 - 9

It is made available under a CC-BY 4.0 International license .

- diseases/conditions (32/66, 48%), medical treatment/care received (28/66, 42%) and mobility
- 298 (27/66, 41%). Tools often (31/66, 47%) included multiple pre-existing conditions or comorbidities
- and multiple types of treatment or medication as predictors. Other common predictors include
- 300 laboratory values, continence, nutrition, body-related values (e.g. weight, height, body temperature),
- 301 mental status, activity, gender and skin assessment (27% to 35% of tools). Ten tools incorporated
- 302 scores from other established risk prediction scales as a predictor, with eight including Braden¹⁰¹¹
- 303 scores, one including the Norton¹² score and one including the Waterlow¹³ score.
- 304 Only one review⁵² reported the presentation format of included tools, coded as 'score system'
- 305 (n=11), 'formula equation' (n=3), 'nomogram scale' (n=2), or 'not reported' (n=6).

306

It is made available under a CC-BY 4.0 International license .

307 Table 4. Summary of tool characteristics, extracted at review-level

Tool characteristics	(N=60_48%)	Non-ML tools	Total (N=124)
No. of included reviews ^A considered in	(11-00, 40/0)	(11-04, 32/0)	(11-12-1)
No. of included reviews considered in	0 (0)	12 (20)	13 (10)
1	31 (52)	23 (36)	54 (14)
2	6 (10)	9 (14)	15 (12)
>2	23 (38)	19 (30)	42 (34)
Development study details			
Median (range) year of publication	2020 (2000 – 2023)	1998 (1962 – 2015)	2008 (1962 – 2023)
Source of data			
Prospective	8 (13)	18 (28)	26 (21)
Retrospective	41 (68)	10 (16)	51 (41)
NS	11 (18)	36 (56)	47 (38)
Setting			
Hospital	16 (27)	11 (17)	27 (22)
Long-term care (incl. end-of-life and rehab)	8 (13)	14 (22)	22 (18)
Acute care (incl. surgical and ICU)	33 (55)	24 (38)	57 (46)
Mixed settings	1 (2)	1 (2)	2 (2)
Other	2 (3)	2 (3)	4 (3)
NS	0 (0)	12 (19)	12 (10)
Study population age			
Adults	36 (60)	34 (53)	70 (56)
Any	4 (7)	3 (5)	7 (6)
NS	20 (33)	27 (42)	47 (38)
Baseline condition			
PIs at baseline	1 (2)	0 (0)	1 (1)
No PIs at baseline	11 (18)	19 (30)	30 (24)
NS	48 (80)	45 (70)	93 (75)
Development methods			
Development method/algorithm ^B			
ML algorithms	48 (80)	0 (0)	48 (39)
Logistic regression	40 (67)	15 (23) ^C	55 (44)
Cox regression	0 (0)	5 (8)	5 (4)
Fine-Gray model	2 (3)	0 (0)	2 (2)
Clinical expertise	0 (0)	2 (3)	2 (2)
NS	0 (0)	44 (69) ^D	44 (35)
Internal validation method ^B			
Cross-validation	21 (35)	3 (5) ^G	24 (19)
Data splitting	28 (47)	0 (0)	28 (23)
Not done / NS	22 (37) ⁺	61 (95)	83 (67)
Median (range) no. of final predictors [⊧]	7 (3 – 23)	8 (3 – 12)	7 (3 – 23)
Study cohort			
Median (range) total sample size	2674 (27 – 1252313)	285 (15 – 31150)	686 (15 – 1252313)
Median (range) number of events	207 (8 – 86410)	51 (9 – 1350)	98 (8 - 86410)
Median (range) proportion of events (% of sample size)	10.43% (0.42% – 80.00%)	14.84% (1.18% – 46.67%)	14.69% (0.42% – 80.00%)

308

Note that tools were categorised as ML or non-ML tools based on the descriptions from authors of the included systematic reviews that the tools were identified in. ^A the 32 included systematic reviews; ^B tools use multiple methods, therefore total number not equal to N (100%); ^C one study also used discriminant analysis for model development; ^D many seemed to use clinical expertise, but development methods were not clearly reported; ^E counting of final predictors may vary between 309 310 311

models: some authors may count individual factors, while others consider domains or subscales; ^F one review³⁶ implies 5 312 models did not implement internal validation; ⁶ 'resampling' (not described further) was used for the development of 2 313

314 models; ML – machine learning; NS – not stated; ICU – intensive care unit; PI – pressure injury.

It is made available under a CC-BY 4.0 International license .

2	1	5
J	Т	

Table 5. Predictor categories and frequency (%) of inclusion in N=66 tools.

Due distant actor and	No. of tools
Predictor category	predictor appears in
Age	33 (50)
Pre-disposing conditions	32 (48)
Receiving medical treatment/care	28 (42)
Mobility	27 (41)
Laboratory values	23 (35)
Continence	22 (33)
Nutrition	22 (33)
Body	21 (32)
Mental Status	21 (32)
Activity	21 (32)
Gender	21 (32)
Skin	18 (27)
General Health	14 (21)
Braden ¹⁰¹¹ score	8 (12)
Length of stay	8 (12)
Pressure injury	7 (11)
Surgery duration	6 (9)
Ability to ambulate	6 (9)
Medical unit, ward, visit	5 (8)
Ethnicity or place of birth	5 (8)
Friction, shear, pressure	3 (5)
Body position	3 (5)
Pain	3 (5)
Hygiene	2 (3)
Isolation	2 (3)
Smoking	2 (3)
Norton ¹² or Waterlow ¹³ score	2 (3)
'Special' (not explained)	2 (3)

316 Figures are given as count (% out of 66 tools with information on predictors). Note that multiple predictors may fall within

317 the same predictor category. For instance, the category 'skin' may encompass both 'skin moisture' and 'skin integrity', with

the frequency count reflecting the entire predictor category rather than individual predictors.

319

It is made available under a CC-BY 4.0 International license .

320 DISCUSSION

321 This umbrella review summarises data from 32 eligible systematic reviews of PI risk prediction tools. 322 Quality assessment using an adaptation of AMSTAR-2 revealed that most reviews were conducted to 323 a relatively poor standard. Critical flaws were identified, including inadequate or absent reporting of 324 protocols (23/32, 72%), inappropriate statistical synthesis methods (13/17, 76%) and lack of 325 consideration for risk of bias judgements when discussing review results (17/32, 53%). Despite the 326 large number of risk prediction models identified, only seven reviews reported information about 327 model development and validation, predominantly for ML-based prediction models. The remaining 328 reviews reported the accuracy (sensitivity and specificity), or effectiveness of identified models. The 329 studies included in the 'accuracy' reviews that we identified, typically reported a binary classification 330 of participants as high or low risk of PI based on the risk prediction tool scores, rather than 331 constituting external validations of models. For many (44/64, 69%) prediction tools that were 332 developed without the use of ML, we were not able to determine whether reliable and robust 333 statistical methods were used or whether models were essentially risk assessment tools developed 334 based on expert knowledge. For nearly half (58/124, 47%) of the identified tools, predictors included 335 in the final models were not reported. Details of study populations and settings were also lacking. It 336 was not always clear from the reviews whether the poor reporting occurred at review level or in the 337 original primary study publications.

338 Model development algorithms included logistic regression, decision trees and random forests, with 339 a vast number of ML-based models having been developed in the last five years. Although logistic regression is considered a statistical approach¹⁰⁷, it does share some characteristics with ML 340 methods.¹⁰⁸ Modern ML frameworks and libraries have streamlined the automation of logistic 341 342 regression, including feature selection, hyperparameter optimisation, and cross-validation, solidifying 343 its role within the ML ecosystem; however, logistic regression may still appear in non-ML contexts, as 344 some developers continue to apply it using more traditional methods. Most (6/7, 86%) of our set of 345 reviews reported the use of logistic regression as part of an ML-based approach, however this 346 reflects the classifications used by included systematic reviews as opposed to our own assessment of 347 the methods used in the primary studies, and may therefore be an overestimation of the use of ML 348 models.

In contrast to logistic regression approaches, decision trees and random forests may not produce a
quantitative risk probability. Instead, they commonly categorise patients into binary 'at risk' or 'not
at risk' groups. Although the risk probabilities generated in logistic regression prediction models can
be useful for clinical decision making, it was not possible to derive any information about thresholds
used to define 'at risk' or 'not at risk', and for most reviews, it was unclear what the final model
comprised of. This lack of transparency poses potential hurdles in applying these models effectively
in clinical settings.

356 A recent systematic review of risk of bias in ML-developed prediction models found that most

357 models are of poor methodological quality and are at high risk of bias.²³ In our set of reviews, of the

four reviews that conducted a risk of bias assessment using the PROBAST tool, all models but one¹⁰³

were found to be at high or unclear risk of bias.^{37 52-54} This raises significant concerns about the

accuracy of clinical risk predictions. This issue is particularly critical in light of emerging evidence¹⁰⁴

on skin tone classification versus ethnicity/race-based methods in predicting pressure ulcer risk.

362 These results underscore the need for developing bias-free predictive models to ensure accurate and

363 equitable healthcare outcomes, especially in diverse patient populations.

It is made available under a CC-BY 4.0 International license .

Where the method of internal validation was reported, split-sample and cross-validation were the
 most commonly used techniques, however, detail was limited, and it was not possible to determine
 whether appropriate methods had been used. Although split-sample approaches have been favoured
 for model validation, more recent empirical work suggests that bootstrap-based optimism
 correction¹⁰⁵ or cross-validation¹⁰⁶ are preferred approaches. None of the included reviews reported
 the use of optimism correction approaches.

Only two reviews included external validations of previously developed models⁵²⁵⁴, however limited 370 details of model performance were presented. External validation is necessary to ensure a model is 371 both reproducible and generalisable^{109 110}, bringing the usefulness of the models included in these 372 reviews into question. The PROGRESS framework suggests that multiple external validation studies 373 should be conducted using independent datasets from different locations.¹⁵ In the two reviews that 374 included model validation studies^{52 54}, it is unclear whether these studies were conducted in different 375 locations. Where reported, they were all conducted in the same setting as the corresponding 376 377 development study. PROGRESS also suggests that external validations are carried out in a variety of relevant settings. Shi and colleagues⁵² described four of eight validations as using 'temporal' data, 378 379 which suggests that the validation population is largely the same as the development population but 380 with use of data from different timeframes. This approach has been described as lying somewhere 381 'between' internal and external validation, further emphasising the need for well-designed external validation studies.¹⁰⁹ 382

Importantly, model recalibration was not reported for any external validations. Evidence suggests greater focus should be placed on large, well-designed external validation studies to validate and improve promising models (using recalibration and updating¹¹¹), rather than developing a multitude of new ones.^{15 18} Model validation and recalibration should be a continuous process, and this is something that future research should address. Following external validation, effectiveness studies should be conducted to assess the impact of model use on decision making, patient outcomes and costs.¹⁵

390 The effective use of prediction tools is also influenced by the way in which the model's output is

391 presented to the end-user. Only one review⁵² reported the presentation format of included tools,

such as formula equations and nomograms. In conjunction with this, identifying and mitigating

393 modifiable risk factors can help prevent PIs. Additional effort is needed in the development of risk

394 prediction tools to extract predictors that are risk modifiers and provide end-users with this

information, to make the predictions more interpretable and actionable.

396 Risk stratification in itself is not clinically useful unless it leads to an effective change in patient 397 management. For instance, in high-risk groups, additional types of preventive interventions can be triggered, or default preventive measures can be applied more intensively (e.g., more frequent 398 399 repositioning) based on the results of the risk assessment. While sensitivity and specificity are valid 400 performance metrics, their optimisation must consider the cost of misclassification. Net benefit calculations, which can be visualised through decision curves,¹¹² provide a more reliable means of 401 402 evaluating the clinical utility of risk assessment for PIs across a range of thresholds at which clinical 403 action is indicated. These calculations can assist in providing a balanced use of resources while 404 maximising positive health outcomes, such as lowering incidence of PI.

405 It is also important to assess whether the tool can improve outcomes with existing preventive
406 interventions and whether it integrates well into clinical workflows (i.e., clinical effectiveness). A
407 well-developed tool with good calibration and discrimination properties may be of limited value if
408 these practical concerns are not addressed. Therefore, model developers should check the expected

It is made available under a CC-BY 4.0 International license .

- 409 value of prognosis and how the tool can guide prevention when employed in practice, before
- 410 planning model development. If it's determined that there is no value in predicting certain outcomes
- 411 that brings into question whether the model should even be developed.¹¹³
- 412 Despite the advances in methods for developing risk prediction models, scales developed using
- 413 clinical expertise such as the Braden Scale¹⁰¹¹, Norton Scale¹², Waterlow Score¹³ and Cubbin-Jackson
- 414 Scales⁹⁷⁹⁸ are extensively discussed in numerous clinical practice guidelines for patient risk
- 415 assessment, and are commonly used in clinical practice.^{6 114} Although guidelines recognise their low
- 416 accuracy, they are still acknowledged, while other risk prediction models are not even considered.
- 417 This may be due to the availability of at least some clinical trials evaluating the clinical utility of
- 418 scales.³⁹ Some scales, such as the Braden scale¹⁰¹¹, are so widely used that they have become an
- 419 integral component of risk assessment for PI in clinical practice, and have even been incorporated
- 420 into EHRs. Their widespread use may impede the progress towards development, validation and
- 421 evaluation of more accurate and innovative risk prediction models. Striking a balance between
- tradition and embracing advancements is crucial for effective implementation in healthcare settingsand improving patient outcomes.

424 Strengths and limitations

- 425 Our umbrella review is the first to systematically identify and evaluate systematic reviews of risk
- 426 prediction models for PI. The review was conducted to a high standard, following Cochrane
- 427 guidance⁴⁰, and with a highly sensitive search strategy designed by an experienced information
- 428 specialist. Although we excluded non-English publications due to time and resource constraints,
- 429 where possible these publications were used to identify additional eligible risk prediction models. To
- some extent our review is limited by the use of AMSTAR-2 for quality assessment of included
- 431 reviews. AMSTAR-2 was not designed for assessment of diagnostic or prognostic studies and,
- although we made some adaptations, many of the existing and amended criteria relate to the quality
- 433 of reporting of the reviews as opposed to methodological quality. There is scope for further work to
- 434 establish criteria for assessing systematic reviews of prediction models.
- The main limitation, however, was the lack of detail about risk prediction models and risk prediction model performance that could be determined from the included systematic reviews. To be as
- 437 comprehensive as possible in model identification, we were relatively generous in our definition of
- 438 'systematic', and this may have contributed to the often-poor level of detail provided by included
- 439 reviews. It is likely, however, that reporting was poor in many of the primary studies contributing to
- 440 these reviews. Excluding the ML-based models, more than half of available risk prediction scales or
- 441 tools were published prior to the year 2000. The fact that the original versions of reporting
- guidelines for diagnostic accuracy studies¹¹⁵ and risk prediction models¹¹⁶ were not published until
- 443 2003 and 2015 respectively, is likely to have contributed to poor reporting. In contrast, the ML-based
- 444 models were published between 2000 and 2023, with a median year of 2020. Reporting guidelines
- for development and validation of ML-based models are more recent¹¹⁷¹¹⁸, but aim to improve the
- 446 reporting standards and understanding of evolving ML technologies in healthcare.

447 CONCLUSIONS

- There is a very large body of evidence reporting various risk prediction scales, tool and models for PI
 which has been summarised across multiple systematic reviews of varying methodological quality.
 Only five systematic reviews reported the development and validation of models to predict risk of
- 451 PIs. It seems that for the most part, available models do not meet current standards for the
- 452 development or reporting of risk prediction models. Furthermore, most available models, including
- 453 ML-based models have not been validated beyond the original population in which they were

It is made available under a CC-BY 4.0 International license .

- 454 developed. Identification of the optimal risk prediction model for PI from those currently available
- 455 would require a high-quality systematic review of the primary literature, ideally limited to studies
- 456 conducted to a high methodological standard. It is evident from our findings that there is still a lack
- 457 of consensus on the optimal risk prediction model for PI, highlighting the need for more standardised
- 458 and rigorous approaches in future research.

459

It is made available under a CC-BY 4.0 International license .

460 Table 1. Summary of included systematic review characteristics

Review characteristics	Reviews on model development and validation (N=7)	Reviews on accuracy or clinical effectiveness (N=26)	All included reviews (N=32)
Median (range) year of publication	2022 (2019 – 2023)	2017 (2006 – 2024)	2019 (2006 – 2024)
Eligibility criteria			
Participants			
Adults only	2 (29) ^A	15 (58) ^B	16 (50) ^{A,B}
Anvage	0(0)	2 (8)	2 (6)
No age restriction reported	5 (71)	9 (35)	14 (44)
Presence of PI at baseline			
No PIs at baseline	0 (0)	6 (23)	6 (19)
NS	7 (100)	20 (77)	26 (81)
Setting			
Any healthcare setting	0(0)	2 (8)	2 (6)
Hospital	3 (43)	3 (12)	5 (16)
Acute care (incl. surgical and ICU)	0(0)	8 (31)	8 (25)
Hospital or acute care	0(0)	2 (8)	2 (6)
Long-term care	0(0)	2 (8)	2 (6)
Long-term, acute or community settings	0 (0)	1 (4)	1 (3)
NS	4 (57)	8 (31)	12 (38)
Risk assessment tools			
Any prediction tool or scale	0 (0)	9 (35)	9 (28)
Specified clinical scale(s)	0 (0)	12 (46)	12 (38)
ML-based prediction models	6 (86)	2 (8)	7 (22)
ML or statistical models	1 (14)	0(0)	1(3)
PI prevention strategies	0 (0)	1 (4)	1 (3)
NS	0 (0)	2 (8)	2 (6)
PI dassification system			
Any	0 (0)	1 (4)	1 (3)
Accepted standard classifications	0 (0)	2 (8)	2 (6)
Several specified classification systems	0 (0)	3 (12)	3 (9)
(NPUAP, EPUAP, AHCPR or TDCPS)			
Other	0 (0)	1 (4)	1 (3)
NS	7 (100)	19 (73)	25 (78)
Source of data			
Prospective only	0 (0)	4.5 (17) ^C	4.5 (14)
Prospective or retrospective	1 (14)	2.5 (10)	3.5 (41)
NS	6 (86)	19 (73)	24 (75)
Study design restrictions			
Yes	1 (14)	14 (54)	15 (47)
No	0 (0)	3 (12)	3 (9)
NS	6 (86)	9 (35)	14 (44)
Review methods			
Median (range) no. sources ^D searched	5 (2 – 9)	6 (2 - 14)	5 (2 – 14)
Publication restrictions:			
End date (year)			
2000-2009	0 (0)	3 (12)	3 (9)
2010-2019	1 (14)	16 (62)	17 (53)
2020-2023	6 (86)	7 (27)	12 (38)
Language			
English only	5 (71)	10 (38)	15 (47)
2 languages	1 (14)	3 (12)	3 (9)
>2 languages	0(0)	3 (12)	3 (9)
No restrictions	0 (0)	4 (15)	4 (13)

It is made available under a CC-BY 4.0 International license .

NS	1 (14)	6 (23)	7 (23)
Quality assessment tool ^E			
PROBAST	4 (57)	1 (4) +	4 (13) ⁺
QUADAS	0 (0)	2 (8)	2 (6)
QUADAS-2	0 (0)	8 (31)	8 (25)
JBI tools	1 (14)	3 (12)	4 (13)
CASP	0 (0)	2 (8)	2 (6)
Cochrane RoB tool	0 (0)	1 (4)	1 (3)
Other	0 (0)	6 (23)	6 (19)
None	2 (29)	4 (15)	6 (19)
Meta-analysis included	2 (29)	15 (58)	16 (50)
Method of meta-analysis			
(% of reviews incl. meta-analysis)			
Univariate RE/FE model (depending on	1 (50) ^G	2 (13) ^G	3 (19)
heterogeneity assessment)			
Univariate RE model	1 (50)	6 (40) ^G	6 (38) ^G
Hierarchical model (for DTA studies)	0 (0)	2 (13)	2 (13)
Unclear/NS	0 (0)	5 (33) ^G	5 (31) ^G
Volume of evidence			
Median (range) no. studies	22 (3 – 35)	15 (1 – 70)	17 (1 - 70)
Madian (ranga) na nasticipanta	408,504 (6,674 –	7,684 (528 – 408,504)	11,729 (528 - 1,278,148)
wedian (range) no. participants	1,278,148)		
Median (range) no. tools	21 (3 – 35)	3 (1 - 28)	4 (1 – 35)

461Figures are number (%) of reviews, unless otherwise specified. A one review specified restricting to "adult" populations,462but only restricted by aged ≥ 14 years; B one review 60 restricted to aged >60 years; C one review 56 states either prospective463or retrospective data eligible for Research Question 1, but prospective only for Research Question 2, hence 0.5 added to464each category; D including databases, bibliographies or registries; F reviews may fall into multiple categories, therefore total465number within domain not necessarily equal to N (100%); F one review 38 reported use of PROBAST in methods, but did not466present any PROBAST results; G one review conducts univariate meta-analysis for a single estimate, e.g. c-statistic⁵², AUC⁶²,467RR⁵⁷, or OR.⁵⁸

468 AHCPR – Agency for Health Care Policy and Research; CASP – Critical Appraisal Skills Programme; DTA – diagnostic test

469 accuracy; EPUAP – European Pressure Ulcer Advisory Panel; FE – fixed effects; ICU – intensive care unit; JBI – Joanna Briggs

470 Institute; ML – machine learning; NPUAP – National Pressure Ulcer Advisory Panel; NS – not stated; PI – pressure injury;

471 PROBAST – Prediction model Risk of Bias Assessment; QUADAS (2) – Quality Assessment of Diagnostic Accuracy Studies

472 (Version 2); RE – random effects; TDCPS – Torrance Developmental Classification of Pressure Sore.

473

Review au (publicati year)	uthor DEV/ ion VAL (no. studies)	Setting of included studies; data sources	Model development algorithms	Internal validation methods	Brief description of study quality	Summary of model performance results
Barghouti (2023)	hi ⁵⁵ DEV (23)	Setting of included studies NS, but the review's inclusion criteria specified hospital settings Retrospective n=15; prospective n=5; both retrospective and prospective n=1; case-control study n=1; experimental study design n=1 EHRs n=20; international or national database n=3	LR n=18; RF n=13; DT n=5; NN n=5; SVM n=5; Fine- Gray Model n=2; KNN n=2; XGBoost n=1; BART n=1; EBM n=1; Gaussian Naïve Bayes n=1; GB n=1; GBM n=1; LDA n=1; NB n=1	Split sample n=17; NS n=6	RoB assessed using JBI critical appraisal checklist for cohort studies, and only summary results provided. Only one domain was low RoB across all included studies, which was whether the participants were free from the outcome (PIs) at the start of the study. Domains with mostly high-risk (<50%) or moderate-risk (51-81%) results related to statistical analysis methods, follow-up time, dealing with confounding factors, and measurement of the exposure.	Only reported measures of discrimination: Accuracy ranged between 0.52 (ML Walther ⁷³) and 0.99 (ML Anderson ⁷⁴); Sensitivity ranged between 0.04 (ML Walther ⁷³) and 1 (ML Hu ⁷⁵ , ML Anderson ⁷⁴); Specificity ranged between 0.69 (ML Hyun ⁷⁶ , ML Nakagami ⁷⁷) and 1 (ML Cai ⁷⁸ , ML Walther ⁷³); PPV ranged between 0.01 (ML Nakagami ⁷⁷) and 1 (ML Cai ⁷⁸); NPV ranged between 0.08 (ML SPURS ⁷⁹ , ML Cramer ⁸⁰) and 1 (ML Hu ⁷⁵ , ML Anderson ⁷⁴ , ML Ladios-Martin ⁸¹); AUC ranged between 0.50 (ML Cai ⁷⁸) and 1 (ML Hu ⁷⁵ , ML Cai ⁷⁸)
Dweekat° (2023)	DEV (34); unclear (1) ^A	HAPI/CAPI n=32; SRPI n=2; detection of PI (effect on length of stay) n=1; nursing home residents n=2 Data sources NS	LR n=20; RF n=18; DT n=12; SVM n=12; MLP n=9; KNN n=4; LDA n=1; other n=19	CV n=10; split sample n=10; split sample and CV n=8; NS n=7	No RoB assessment	Results not reported; review focused on methods only
Jiang ³⁷ (20	021) DEV (9)	ICU n=3; operating room n=2; acute care hospital n=1; oncology department n=1; end- of-life care n=1; mobility-related disabilities n=1 EHRs used in all models	DT n=5; LR n=3; NN n=2; SVM n=2; BN n=1; GB n=1; MTS n=1; RF n=1	Split sample n=4; NS n=9	RoB assessed using PROBAST. Overall RoB high for all predictive models. All models at high RoB in analysis domain.	Only reported measures of discrimination: F-score ranged between 0.377 (ML Su MTS ⁸²) and 0.670 (ML Su LR ⁸²); G-means ranged between 0.628 (ML Kaewprag BN ⁸³) and 0.822 (ML Su MTS ⁸²); Sensitivity ranged between 0.478 (ML Kaewprag ⁸³) and 0.848 (ML Yang ⁸⁴); Specificity ranged between 0.703 (ML Deng ⁸⁵) and 0.988 (ML Su LR ⁸²)
Pei ⁵⁴ (202	23) DEV (17); DEV+VAL (1)	DEV ICU n=4; hospitalised patients n=8; hospitalised patients	RF n=12; LR n=11; DT n=9; SVM n=8; NN n=5; MTS n=1;	CV n=1; Split sample n=5; split sample and CV	RoB assessed using PROBAST. Overall, 16/18 (88.9%) papers were at high RoB, 1 (5.6%) was at	Only reported measures of discrimination: Summary AUC 0.9449

474 Table 3. Results of reviews reporting model development and validation

Review author (publication year)	DEV/ VAL (no. studies)	Setting of included studies; data sources	M odel development algorithms	Internal validation methods	Brief description of study quality	Summary of model performance results
		awaiting surgery n=3; cancer patients n=1; end-of-life inpatients n=1 Retrospective n=14; prospective n=3 EHRs n=12; MIMIC-IV database n=1; CONCERN database n=1 <i>DEV+VAL</i> ICU n=1 Retrospective n=1 EHRs n=1	NB n=3; KNN n=2; MLP n=1; XGBoost n=2; BART n=1; LASSO n=1; BN n=1; ANN n=1; EN n=1; GBM n=1; Other ^B n=1	n=10; NS n=2	unclear RoB and only 1 (5.6%) was at low RoB. 14 (77.8%) studies were at high RoB in the analysis domain. The most common factors contributing to the high risk of bias in the analysis domain included an inadequate number of events per candidate predictor, poor handling of missing data and failure to deal with overfitting.	Summary sensitivity 0.79 (95% Cl: 0.78, 0.80); N _{cases} = 19,893 Summary specificity 0.87 (95% Cl: 0.88, 0.87); N _{non-cases} = 388,611 Summary likelihood ratios PLR 10.71 (95% Cl: 5.98, 19.19) NLR 0.21 (95% Cl: 5.98, 19.19) Pooled odds ratio 52.39 (95% Cl: 24.83, 110.55)
Ribeiro ⁵¹ (2021)	DEV (3)	SRPI cardiovascular n=2; SRPI critical care n=1 EHRs used in n=2 models	ANN n=1; RF n=1; XGBoost n=1	Split sample n=2; NS n=1	No RoB assessment	Only reported measures of discrimination: Accuracy ranged between 0.79 (ML Alderden ⁸⁶) and 0.82 (ML Chen ⁸⁷).
Shi ⁵² (2019)	DEV (21); VAL (7)	DEV General acute care hospital n=7; long-term care n=5; specific acute care (e.g. ICU) n=4; cardiovascular surgery n=2; trauma and burn centres n=1; rehabilitation units n=1; unclear n=1 Retrospective n=11; prospective n=10 VAL Long-term care n=3; specific acute care (e.g. ICU) n=2; general (acute care) hospital n=2 Retrospective n=4; prospective n=3	LR n=16; cox regression n=5; ANN n=1; C4.5 ML (DT induction algorithm) n=1; DA n=1; DT n=1; NS n=1	CV n=1; tree- pruning n=1; split sample n=1; re- sampling n=2; NS n=16	RoB assessed using PROBAST. <i>DEV</i> Overall RoB unclear for two models. Overall RoB high for the remaining 19 models. Analysis and outcome domains were mostly at high RoB. <i>VAL</i> Overall RoB unclear for three validation studies. Overall RoB high for the remaining four validation studies. Analysis and outcome domains were mostly at high RoB.	C-statistics ^C ranged between 0.61 (interRAI PURS ⁸⁸) and 0.90 (TNH-PUPP ⁸⁹); O/E ratios ^C ranged between 0.91 (Berlowitz MDS ⁹⁰) and 1.0 (prePURSE study tool ⁹¹) <i>Pooled C-statistics</i> ^C TNH-PUPP ⁸⁹ : 0.86 (95% CI 0.81–0.90), n=2 Fragmment scale ⁹² : 0.79 (95% CI 0.77–0.82), n=1 ^D Berlowitz 11-item model ⁹³ : 0.75 (95% CI 0.74– 0.76), n=2 Berlowitz MDS model ⁹⁰ : 0.73 (95% CI 0.72– 0.74), n=2 interRAI PURS ⁸⁸ : 0.65 (95% CI 0.60–0.69), n=3 Compton ⁹⁴ : 0.81 (95% CI 0.78–0.84), n=2 <i>Pooled O/E ratios</i> ^C Berlowitz 11-item model ⁹³ : 0.99 (95% CI 0.95– 1.04), n=2

It is made available under a CC-BY 4.0 International license .

Review author (publication year)	DEV/ VAL (no. studies)	Setting of included studies; data sources	Model development algorithms	Internal validation methods	Brief description of study quality	Summary of model performance results
						Berlowitz MDS ⁹⁰ : 0.94 (95% Cl 0.88–1.01), n=2
Zhou ⁵³ (2022)	DEV (22)	SRPI n=3; ICU n=11; hospitalised n=6; rehabilitation centre n=1; hospice n=1	LR n=15; RF n=10; DT n=9; SVM n=9; ANN n=8; BN n=3; XGBoost n=3; GB	CV n=12; NS n=10	RoB assessed using PROBAST. Overall RoB unclear for five studies. Overall RoB high for 15 models. RoB not assessed in two	Only reported measures of discrimination: F1 score ranged between 0.02 (ML Nakagami ⁷⁷) and 0.99 (ML Song [2] ⁹⁵); AUC ranged between 0.78 (ML Delparte ⁹⁶) and
		EHR n=18; MIMIC-III database n=4	n=2; AdaBoost n=1; CANTRIP n=1; LSTM n=1; EN n=1; KNN n=1; MTS n=1; NB n=1		studies due to use of unstructured data.	0.99 (ML Song [2] ⁹⁵); Sensitivity ranged between 0.08 (ML Cai ⁷⁸) and 0.99 (ML Song [2] ⁹⁵); Specificity ranged between 0.63 (ML Delparte ⁹⁶) and 1 (ML Cai ⁷⁸)

475 ^AAppears to be a model validation study but the review only included model development studies.

476 ^B Other includes: average perception, Bayes point machine, boosted DT, boosted decision forest, decision jungle and locally deep SVM. All reported for one study⁸¹.

477 ^C Values from fixed-effects meta-analyses, pooling development and external validation study estimates together.

478 ^DOne data source but included two C-statistic values (one for model development and one for internal validation) that were subsequently pooled.

479 AUC – area under curve; ANN – artificial neural network; BART – Bayesian additive regression tree; BN – Bayesian network; CAPI – community-acquired pressure injury; CANTRIP - reCurrent

480 Additive Network for Temporal RIsk Prediction; CONCERN – Communicating Narrative Concerns Entered; CV – cross-validation; DEV – development; DOR – diagnostic odds ratio; DT – decision

481 tree; EBM – explainable boosting machine; EHRs – electronic health records; EN – elastic net; GB(M) – gradient boosting (machine); HAPI – hospital-acquired pressure injury; ICU – intensive

482 care unit; JBI – Joanna Briggs Institute; KNN – k-nearest neighbours; LASSO – least absolute shrinkage and selection operator; (L)DA – (linear) discriminant analysis; LSTM – long short-term

483 memory; LR – logistic regression; MIMIC – Medical Information Mart for Intensive Care; ML – machine learning; MLP – multilayer perceptron; MTS – Mahalanobis-Taguchi system; N/A – not

484 applicable; NB – naïve Bayes; NN – neural network; NLR – negative likelihood ratio; NS – not stated; O/E – observed vs expected; PI – pressure injury; PLR – positive likelihood ratio; PROBAST –

Prediction model Risk of Bias ASsessment Tool; RF – random forest; RoB – risk of bias; SRPI – surgery-related pressure injury; SVM – support vector machine; VAL – validation; XGBoost –

486 extreme gradient boosting

It is made available under a CC-BY 4.0 International license

It is made available under a CC-BY 4.0 International license .

487 Declarations

- 488 Ethics approval and consent to participate
- 489 Not applicable.
- 490 Consent for publication
- 491 Not applicable.
- 492 Availability of data and materials
- 493 All data produced in the present work are contained in the manuscript and supplementary file.

494 Conflicting Interests

- 495 The authors of this manuscript have the following competing interests: VV is an employee of Paul
- 496 Hartmann AG; ES and THB received consultancy fees from Paul Hartmann AG. VV, ES and THB were
- 497 not involved in data curation, screening, data extraction, analysis of results or writing of the original
- 498 draft. These roles were conducted independently by authors at the University of Birmingham. All
- 499 other authors received no personal funding or personal compensation from Paul Hartmann AG and
- 500 have declared that no competing interests exist.

501 Funding

- 502 This work was commissioned and supported by Paul Hartmann AG (Heidenheim, Germany), part of
- 503 HARTMANN GROUP. The contract with the University of Birmingham was agreed on the legal
- 504 understanding that the authors had the freedom to publish results regardless of the findings.
- 505 YT, JD, BH and AC are funded by the National Institute for Health and Care Research (NIHR)
- 506 Birmingham Biomedical Research Centre (BRC). This paper presents independent research supported
- 507 by the NIHR Birmingham BRC at the University Hospitals Birmingham NHS Foundation Trust and the
- 508 University of Birmingham. The views expressed are those of the authors and not necessarily those of
- 509 the NIHR or the Department of Health and Social Care.

510 Author Contributions

- 511 **Conceptualisation:** Bethany Hillier, Katie Scandrett, April Coombe, Tina Hernandez-Boussard, Ewout
- 512 Steyerberg, Yemisi Takwoingi, Vladica Velickovic, Jacqueline Dinnes
- 513 **Data curation:** Bethany Hillier, Katie Scandrett, April Coombe, Jacqueline Dinnes
- 514 Formal analysis: Bethany Hillier, Katie Scandrett, Jacqueline Dinnes
- 515 Funding acquisition: Yemisi Takwoingi, Vladica Velickovic, Jacqueline Dinnes
- 516 Investigation: Bethany Hillier, Katie Scandrett, April Coombe, Yemisi Takwoingi, Jacqueline Dinnes
- 517 Methodology: Bethany Hillier, Katie Scandrett, April Coombe, Tina Hernandez-Boussard, Ewout
- 518 Steyerberg, Yemisi Takwoingi, Vladica Velickovic, Jacqueline Dinnes
- 519 Project administration: Bethany Hillier, Yemisi Takwoingi, Jacqueline Dinnes
- 520 **Resources:** Bethany Hillier, Katie Scandrett
- 521 Supervision: Yemisi Takwoingi, Jacqueline Dinnes
- 522 Writing original draft: Bethany Hillier, Katie Scandrett, April Coombe, Jacqueline Dinnes

It is made available under a CC-BY 4.0 International license .

- 523 Writing review & editing: Bethany Hillier, Katie Scandrett, April Coombe, Tina Hernandez-Boussard,
- 524 Ewout Steyerberg, Yemisi Takwoingi, Vladica Velickovic, Jacqueline Dinnes

525 Acknowledgements

- 526 We would like to thank Mrs. Rosie Boodell (University of Birmingham, UK) for her help in acquiring
- 527 the publications necessary to complete this piece of work.

It is made available under a CC-BY 4.0 International license .

References

528	1. Li Z, Lin F, Thalib L, et al. Global prevalence and incidence of pressure injuries in hospitalised adult
529	patients: A systematic review and meta-analysis. International Journal of Nursing Studies
530	2020;105:103-546. doi: 10.1016/j.ijnurstu.2020.103546
531	2. Padula WV, Delarmente BA. The national cost of hospital-acquired pressure injuries in the United
532	States. Int Wound J 2019;16(3):634-40. doi: 10.1111/iwj.13071 [published Online First:
533	2019/01/28]
534	3. Theisen S, Drabik A, Stock S. Pressure ulcers in older hospitalised patients and its impact on length
535	of stay: a retrospective observational study. <i>J Clin Nurs</i> 2012;21(3-4):380-7. doi:
536	10.1111/j.1365-2702.2011.03915.x [published Online First: 2011/12/09]
537	4. Sullivan N, Schoelles K. Preventing In-Facility Pressure Ulcers as a Patient Safety Strategy. Annals of
538	Internal Medicine 2013;158(5.2):410-16. doi: 10.7326/0003-4819-158-5-201303051-00008
539	5. Institute for Quality and Efficiency in Health Care (IQWiG). Preventing pressure ulcers. Cologne,
540	Germany 2006 [updated 2018 Nov 15. Available from:
541	https://www.ncbi.nlm.nih.gov/books/NBK326430/?report=classic accessed Feb 2023].
542	6. Haesler E. European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel and
543	Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers/Injuries:
544	Clinical Practice Guideline. 2019 [Available from: https://internationalguideline.com/2019
545	accessed Feb 2023].
546	7. Walker RM, Gillespie BM, McInnes E, et al. Prevention and treatment of pressure injuries: A meta-
547	synthesis of Cochrane Reviews. <i>Journal of Tissue Viability</i> 2020;29(4):227-43. doi:
548	10.1016/j.jtv.2020.05.004
549	8. Shi C, Dumville JC, Cullum N, et al. Beds, overlays and mattresses for preventing and treating
550	pressure ulcers: an overview of Cochrane Reviews and network meta-analysis. Cochrane
551	Database Syst Rev 2021;8(8):Cd013761. doi: 10.1002/14651858.CD013761.pub2 [published
552	Online First: 2021/08/16]
553	9. Russo CA, Steiner C, Spector W. Hospitalizations Related to Pressure Ulcers, 2006. HCUP Statistical
554	Brief: Agency for Healthcare Research and Quality, Rockville, MD. 2008.
555	10. Braden B, Bergstrom N. A Conceptual Schema for the Study of the Etiology of Pressure Sores.
556	<i>Rehabilitation Nursing</i> 1987;12(1):8-16. doi: 10.1002/j.2048-7940.1987.tb00541.x
557	11. Bergstrom N, Braden BJ, Laguzza A, et al. The Braden Scale for Predicting Pressure Sore Risk. Nurs
558	<i>Res</i> 1987;36(4):205-10.
559	12. Norton D. Geriatric nursing problems. Int Nurs Rev 1962;9:39-41.
560	13. Waterlow J. Pressure sores: a risk assessment card. Nursing Times 1985;81:49-55.
561	14. Steyerberg EW, Harrell FE, Jr. Prediction models need appropriate internal, internal-external, and
562	external validation. J Clin Epidemiol 2016;69:245-7. doi: 10.1016/j.jclinepi.2015.04.005
563	[published Online First: 2015/04/18]
564	15. Steyerberg EW, Moons KGM, van der Windt DA, et al. Prognosis Research Strategy (PROGRESS) 3:
565	Prognostic Model Research. <i>PLOS Medicine</i> 2013;10(2):e1001381. doi:
566	10.1371/journal.pmed.1001381
567	16. Siontis GCM, Tzoulaki I, Castaldi PJ, et al. External validation of new risk prediction models is
568	infrequent and reveals worse prognostic discrimination. Journal of Clinical Epidemiology
569	2015;68(1):25-34. doi: 10.1016/j.jclinepi.2014.09.007
570	17. Bouwmeester W, Zuithoff NPA, Mallett S, et al. Reporting and Methods in Clinical Prediction
571	Research: A Systematic Review. <i>PLOS Medicine</i> 2012;9(5):e1001221. doi:
572	10.1371/journal.pmed.1001221
573	18. Van Calster B, Steyerberg EW, Wynants L, et al. There is no such thing as a validated prediction
574	model. <i>BMC Medicine</i> 2023;21(1):70. doi: 10.1186/s12916-023-02779-w

575	19. Wynants L, Calster BV, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-
576	19: systematic review and critical appraisal. <i>BMJ</i> 2020;369:m1328. doi: 10.1136/bmj.m1328
577	20. Ma J, Dhiman P, Qi C, et al. Poor handling of continuous predictors in clinical prediction models
578	using logistic regression: a systematic review. <i>J Clin Epidemiol</i> 2023;161:140-51. doi:
579	10.1016/j.jclinepi.2023.07.017 [published Online First: 2023/08/02]
580	21. Dhiman P, Ma J, Qi C, et al. Sample size requirements are not being considered in studies
581	developing prediction models for binary outcomes: a systematic review. BMC Medical
582	Research Methodology 2023;23(1):188. doi: 10.1186/s12874-023-02008-1
583	22. Moriarty AS, Meader N, Snell KIE, et al. Predicting relapse or recurrence of depression: systematic
584	review of prognostic models. Br J Psychiatry 2022;221(2):448-58. doi: 10.1192/bjp.2021.218
585	23. Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models
586	developed using supervised machine learning techniques; systematic review, BMJ
587	2021;375:n2281. doi: 10.1136/bmj.n2281
588	24. Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of
589	machine learning over logistic regression for clinical prediction models. J Clin Epidemiol
590	2019:110:12-22. doi: 10.1016/i.iclinepi.2019.02.004 [published Online First: 20190211]
591	25. Debray TPA. Damen JAAG. Snell KIE. et al. A guide to systematic review and meta-analysis of
592	prediction model performance. <i>BMJ</i> 2017:356:i6460. doi: 10.1136/bmi.i6460
593	26 Riley RD van der Windt D Croft P et al. Prognosis research in healthcare: concepts methods
594	and impact: Oxford University Press 2019.
595	27 Snell KIE Levis B. Damen IAA et al. Transparent reporting of multivariable prediction models for
596	individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses
597	(TRIPOD-SRMA) <i>BMI</i> 2023:381:e073538 doi: 10.1136/bmi-2022-073538
598	28 Wolff RE Moons KGM Riley RD et al. PROBAST: A Tool to Assess the Risk of Rias and Applicability
599	of Prediction Model Studies Annals of Internal Medicine 2019:170(1):51-58 doi:
600	10.7326/M18-1376
601	29. Chen HL, Shen WO, Liu P. A Meta-analysis to Evaluate the Predictive Validity of the Braden Scale
602	for Pressure Ulcer Risk Assessment in Long-term Care. Ostomy/wound management
603	2016:62(9):20-8.
604	30 Baris N. Karabacak BG. Alpar SF. The Use of the Braden Scale in Assessing Pressure Ulcers in
605	Turkey: A Systematic Review. Advances in skin & wound care 2015:28:349-57. doi:
606	10 1097/01 ASW 0000465299 99194 e6
607	31. He W. Liu P. Chen HL. The Braden Scale cannot be used alone for assessing pressure ulcer risk in
608	surgical patients: a meta-analysis Ostomy/wound management 2012;58:34-40
609	32. Huang C. Ma Y. Wang C. et al. Predictive validity of the braden scale for pressure injury risk
610	assessment in adults: A systematic review and meta-analysis <i>Nursing open</i> 2021;8:2194-207
611	doi: 10.1002/nop2.792
612	33 Park SH Choi YK Kang CB Predictive validity of the Braden Scale for pressure ulcer risk in
613	hospitalized nations. <i>Journal of Tissue Vighility</i> 2015;24:102-13. doi:
614	10 1016/i ity 2015 05 001
615	34 Wei M Wull Chen Y et al Predictive Validity of the Braden Scale for Pressure Ulcer Risk in
616	Critical Care: A Meta-Analysis Nursing in critical care 2020:25:165-70 doi:
617	10 1111/nicc 12500
618	35 Wilchesky M. Lungu O. Predictive and concurrent validity of the Braden scale in long-term care. A
619	meta-analysis Wound Repair and Regeneration 2015:23:44-56 doi: 10.1111/wrr 12261
620	36. Dweekat OY. Lam SS. McGrath L. Machine Learning Techniques Applications and Potential Future
621	Opportunities in Pressure Injuries (Bedsores) Management: A Systematic Review
622	International journal of environmental research and public health 2023-20(1) doi:
623	10.3390/iierph20010796
624	37. Jiang M. Ma Y. Guo S. et al. Using Machine Learning Technologies in Pressure Injury Management
625	Systematic Review. JMIR Medical Informatics 2021;9(3):e25704. doi: 10.2196/25704

626	38. Qu C, Luo W, Zeng Z, et al. The predictive effect of different machine learning algorithms for
627	pressure injuries in hospitalized patients: A network meta-analyses. <i>Heliyon</i>
628	2022;8(11):e11361. doi: 10.1016/j.heliyon.2022.e11361
629	39. Hillier B, Scandrett K, Coombe A, et al. Accuracy and clinical effectiveness of risk prediction tools
630	for pressure injury occurrence: An umbrella review (pre-print). <i>MedRxiv</i> 2024 doi:
631	10.1101/2024.05.07.24307001
632	40. Pollock M, Fernandes RM BL, Pieper D, Hartling L, Chapter V: Overviews of Reviews. In: Higgins
633	JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA ed. Cochrane Handbook for
634	Systematic Reviews of Interventions version 63 (updated February 2022). Available from
635	www.training.cochrane.org/handbook: Cochrane 2022.
636	41. Moher D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-
637	Analyses: The PRISMA Statement. <i>PLOS Medicine</i> 2009:6(7):e1000097. doi:
638	10.1371/iournal.pmed.1000097
639	42. Ingui BL Rogers MA. Searching for clinical prediction rules in MEDLINE. <i>J Am Med Inform Assoc</i>
640	2001·8(4)·391-7 doi: 10.1136/jamia.2001.0080391 [published Online First: 2001/06/22]
641	43 Wilczynski NI Havnes RB Ontimal Search Strategies for Detecting Clinically Sound Prognostic
642	Studies in EMBASE: An Analytic Survey Journal of the American Medical Informatics
643	Association 2005:12/4):481-85. doi: 10.1197/jamia M1752
644	11 Geersing G-L Bouwmeester W Zuithoff P et al Search Filters for Finding Prognostic and
645	Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews PLOS ONE
646	2012:7/2):e32844_doi: 10.1371/journal.none.0032844
647	A5 NHS Pressure ulcers: revised definition and measurement. Summary and recommendations 2018
6/8	Available from: https://www.england.phs.uk/wp.content/uploads/2021/09/NISTPP-
640	[Available from. <u>intps://www.engianu.mis.uk/wp-content/uploads/2021/05/N5TTT-</u>
650	<u>Summary-recommendations.pur</u> accessed red 2023].
651	40. After R. Pressure aler classification: the Terrance system Journal of Mound Care 2000;9(6):275
653	47. Harkel J. Pressure dicer classification. the forfance system. <i>Journal of Wound care</i> 2000,9(0).275-
052	77. UOI. 10.12900/JOWC.2000.9.0.20255
055	48. Moons Kow, de Groot JAH, Bouwmeester W, et al. Childan Appraisal and Data Extraction for
654 CEE	Systematic reviews of Prediction Modelling Studies: The CHARMIS Checklist. PLOS Medicine
655	2014;11(10):e1001744. doi: 10.1371/journal.pmed.1001744
656	49. Cochrane. DE form example prognostic models - scoping review: The Cochrane Collaboration: The
657	Prognosis Methods Group; [Available from: <u>https://methods.cochrane.org/prognosis/tools</u>
658	accessed Feb 2023].
659	50. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that
660	include randomised or non-randomised studies of healthcare interventions, or both. Bivij
661	2017;358:j4008. doi: 10.1136/bmj.j4008
662	51. Ribeiro F, Fidalgo F, Silva A, et al. Literature review of machine-learning algorithms for pressure
663	ulcer prevention: Challenges and opportunities: MDPI 2021.
664	52. Shi C, Dumville JC, Cullum N. Evaluating the development and validation of empirically-derived
665	prognostic models for pressure ulcer risk assessment: A systematic review. International
666	<i>journal of nursing studies</i> 2019;89:88-103. doi: 10.1016/j.ijnurstu.2018.08.005
667	53. Zhou Y, Yang X, Ma S, et al. A systematic review of predictive models for hospital-acquired
668	pressure injury using machine learning. <i>Nursing open</i> 2022;30 doi: 10.1002/nop2.1429
669	54. Pei J, Guo X, Tao H, et al. Machine learning-based prediction models for pressure injury: A
670	systematic review and meta-analysis. <i>Int Wound J</i> 2023 doi: 10.1111/iwj.14280[published
671	Online First: 2023/06/20]
672	55. Barghouthi EaD, Owda AY, Asia M, et al. Systematic Review for Risks of Pressure Injury and
673	Prediction Models Using Machine Learning Algorithms. <i>Diagnostics (Basel, Switzerland)</i>
674	2023;13(17) doi: 10.3390/diagnostics13172739
675	56. Chou R, Dana T, Bougatsos C, et al. Pressure ulcer risk assessment and prevention: a systematic
676	comparative effectiveness review. <i>Annals of internal medicine</i> 2013;159(1):28-38.

 Scales and Clinical Judgment for Pressure Ulcers: A Meta-analysis. Journal of Wound Ostomy 6 Continence Nursing 2014;41(1):24-34. doi: 10.1097/011/UWON 0000438014.90734.a2 St. Pancorbo-Hildalgo PL, Garcia-Fernandez FP, Lopez-Medina IM, et al. Risk assessment scales for pressure ulcer prevention: a systematic review. J Adv Nurs 2006;54(1):94-110. doi: 10.1111/j.165-5648.2006.03794.x St. Park SH, Lee HS. Assessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review and Meta-Analysis. Intrain Journal of public health 2016;54(2):122-33. O. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis. Western Journal of nursing research 2016;38:459-83. doi: 10.1177/019345915602259 Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. Journal of Nursing Education and Practice 2013;3(11):28-42. Wang N, Lu L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. Journal of Tissue Viability 2022;31:259-67. doi: 10.1016/j.jity.2022.02.005 Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the Intensive care unit: Systematic review. and Alagnostic test accuracy meta-analysis. Intensive & critical care nursing 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 Zhmmerman GS, Cremasco MF, Zanei SSV, et al. Pressure linyur visk prediction in critical care patients: an integrative review. Texto & Contexto-Enfermagem 2018;27(3) Shon N, Dia D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta – analysis. Nursing in Critical Care 2023;28(3):370-78. doi: 10.1111/incc.12818 Chen X, Diao D, Ye L. Predictive review. International Wound Journal 2019;16(5):1087-102. doi: 10.1016/j.jinur	677	57. García-Fernández FP, Pancorbo-Hidalgo PL, Agreda JJS. Predictive Capacity of Risk Assessment
 & Continence Nursing 2014;41(1):24-34. doi: 10.1097/01.WON.0000438014.90734.a2 SP. Pancorbo-Hidalgo PL, Garcia-Fernandez FP, Lopez-Medna ML, et al. Risk assessment scales for pressure ulcer prevention: a systematic review. <i>J Adv Nurs</i> 2006;54(1):94-110. doi: 10.1111/j.1365-2648.2006.03794.x SP. Panck SH, Lee HS, Sasessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review and Meta-Analysis. <i>Irvanian journal of public health</i> 2016;45(2):122-33. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderhy: A Meta-Analysis. <i>Western journal of nursing research</i> 2016;38:459-83. doi: 10.1177/0193945915602259 Tayyib NAH, Coryer, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. Wang N, Lu Y, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jiv.2022.00.2005 Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:10300. doi: 10.1016/j.ice.2020.103009 A. Zimmerman GS, Cremasco MF, Zanei SN, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Text & Contexto-Enfermagem</i> 2018;27(3) S. Meta-X, Juan J, Fullorok P. Psychometric properties of the Braden scale to assess pressure injury risk unitensive care: A systematic review. <i>Intensito & Critical Care</i> 2023;28(3):370-78. doi: 10.1111/jnicc.12818 Amaton J, Parelite V, Psychometric properties of the Braden scale to assess pressure injury risk assessment and pressure sing intensive & arelise 2009;46(369-79. doi: 10.101	678	Scales and Clinical Judgment for Pressure Ulcers: A Meta-analysis. <i>Journal of Wound Ostom</i> y
 S8. Pancorbo-Hidalgo PL, Garcia-Fernandez PP, Lopez-Medina IMA, et al. Risk assessment scales for pressure ulcer prevention: a systematic review. <i>J Adv Nurs</i> 2006;54(1):94-110. doi: 10.1111/j.1365-2648.2006.03794.x S9. Park SH, Lee HS. Assessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review and Meta-Analysis. <i>Ironian journal of public health</i> 2016;45(2):122-33. O. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis. <i>Western journal of nursing research</i> 2016;38:459-83. doi: 10.1177/019345915602259 Tayvib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. Wang N, Lu L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/jiccn.2020.103009 Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Text & Contexto-Enfermagem</i> 2018;27(3) Schen X, Diao D, Ve L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/inc.12818 Mehici A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk intensive care: a systematic review. <i>Intensive Care anusing</i> 2024;83:103686. doi: 10.1016/jiccn.2024.103686 Gaspar S, Peralta M, Marques A, et al. Effectivene	679	& Continence Nursing 2014;41(1):24-34. doi: 10.1097/01.WON.0000438014.90734.a2
 pressure uker prevention: a systematic review. <i>J Adv Nurs</i> 2006;54(1):94-110. doi: 10.1111/j.1365-2648.2006.03794.x Park SH, Lee HS. Assessing Predictive Validity of Pressure Uker Risk Scales- A Systematic Review and Meta-Analysis. <i>tranian journal of public health</i> 2016;45(2):122-33. Park SH, Lee YK, Won YM. Predictive Validity of Pressure Uker Risk Assessment Tools for Elderly: A Meta-Analysis. <i>Western journal of nursing research</i> 2016;38:459-83. doi: 10.1177/019345915602259 Tayyib NAH, Cover F, Lewis P. Pressure ukers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. Wang N, Lu Y, an F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtw.2022.0005 Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 Zimmermann GS, Cremasco MF, Zanel SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Text & Contexto-Enfermagem</i> 2018;27(3) Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ukers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 Meinic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure ingury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103666. doi: 10.1016/j.iccn.2024.103686 Gasar S, Perata M, Marques A, et al. Effectivess on hospital-acquired pressure ukers prevention: a systematic review. <i>Int</i>	680	58. Pancorbo-Hidalgo PL, Garcia-Fernandez FP, Lopez-Medina IM, et al. Risk assessment scales for
 10.1111/j.1365-2648.2006.03794.x 59. Park SH, Lee HS. Assessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review and Meta-Analysis. <i>Interin journal of public health</i> 2016;45(2):122-33. 60. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis. <i>Western journal of nursing research</i> 2016;38:459-83. doi: 10.1177/0193945915602259 61. Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. 62. Wang N, Lu L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtv.2022.00.005 63. Zhang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.jiccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: c. meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fubrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensitore & critical care nursing</i> 2024;83:103686. doi: 10.1016/jiccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers in injury risk in intensive care: A systematic review. <i>Journal of Nursing Studies</i> 2009;46:369-79. doi	681	pressure ulcer prevention: a systematic review. <i>J Adv Nurs</i> 2006;54(1):94-110. doi:
 59. Park SH, Lee HS. Assessing Predictive Validity of Pressure Ulcer Risk Scales: A Systematic Review and Meta-Analysis. <i>Iranian journal of public health</i> 2016;45(2):122-33. 60. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis. <i>Western journal of nursing research</i> 2016;38:459-83. doi: 10.1177/0193945915602259 61. Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. 62. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.liy.2022.02.005 63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.liccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehici A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.01016/j.iccn.2024.103686 67. Gaspar S, Perala M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/wj.13147 68. Ontario HQ. Pressu	682	10.1111/j.1365-2648.2006.03794.x
 and Meta-Analysis. <i>Ironian journal of public health</i> 2016;45(2):122-33. 60. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis. <i>Western journal of nursing research</i> 2016;38:459-83. doi: 10.1177/019394515602259 61. Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. 62. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jiv.2022.02.005 63. Zhang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.jiccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;38:103656. doi: 10.1016/j.jccn.2024.103666 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/nij.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technol</i>	683	59. Park SH, Lee HS. Assessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review
 60. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis. <i>Western journal of nursing research</i> 2016;38:459-83. doi: 10.1177/0193945915602259 61. Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. 62. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 201;64:103009. doi: 10.1016/j.iccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure Injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the lackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/jiccn.2024.103686 67. Gaspar S, Penalta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1011/wj.13147 68. Ontario HQ, Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and Intrarater reliab	684	and Meta-Analysis. Iranian journal of public health 2016;45(2):122-33.
 A Meta-Analysis. Western journal of nursing research 2016;38:459-83. doi: 10.1177/0193945915602259 Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. Wang N, Lu L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury risk prediction in critical care units systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.jccn.2020.103009 Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta – analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 Mehbie A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103666. doi: 10.1016/j.iccn.2024.10366 Gontario HQ, Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure linjury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of Clin</i>	685	60. Park SH, Lee YS, Kwon YM. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly:
 10.1177/0193945915602259 10.1177/0193945915602259 13.7y/ib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(11):28-42. 22. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 32. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 42. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 55. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.jccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/nij.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.jipurstu.2008	686	A Meta-Analysis. Western journal of nursing research 2016;38:459-83. doi:
 61. Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of patient risk factors and risk assessment scales. <i>Journal of Nursing Education and Practice</i> 2013;3(1):28-42. 62. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jitv.2022.00.05 63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.jiccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nic.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;38:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing</i> 5204;6:369-79. doi: 10.1016/j.jinurstu.2080.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Compar	687	10.1177/0193945915602259
 patient risk factors and risk assessment scales. Journal of Nursing Education and Practice 2013;3(11):28-42. 22. Wang N, Ly L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. Journal of Tissue Viability 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. Intensive & critical care nursing 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. Texto & Contexto-Enfermagem 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta analysis. Nursing in Critical Care 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fubbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. Intensive & critical care nursing 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. International Wound Journal 2019;16(5):1087-102. doi: 10.1111/wj.13147 68. Ontario HQ, Pressure ulcer prevention: an evidence-based analysis. Ontario health technology assessment series 2009;9(2):1-104. 70. Lovegrove J, Ven S, Milles SJ, et al. Comparison of pressure injury risk assessment and preventative intervemt. International Journal of Nursing Studies 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative intervemitons: a systematic review. Journal of Clinical Nursing 2021 doi	688	61. Tayyib NAH, Coyer F, Lewis P. Pressure ulcers in the adult intensive care unit: a literature review of
 2013;3(11):28-42. 22. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 23. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 24. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 25. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 26. Mehick A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/jiiccn.2024.103686 27. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/jwj.13147 28. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 29. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/jijinurstu.2008.09.010 20. Lovegrove J, Wen S, Nilles SJ, et al. Comparison of pressure ulcure: A systemati and preventative interventions: a systematic review. <i>Journal of Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/32(1):262-7	689	patient risk factors and risk assessment scales. Journal of Nursing Education and Practice
 62. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic review and meta-analysis. Journal of Tissue Viability 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. Intensive & critical care nursing 2021;64:103009. doi: 10.1016/j.liccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanel SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. Texto & Contexto-Enfermagem 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. Nursing in Critical Care 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. Intensive & critical care nursing 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. International Wound Journal 2019;16(5):1087-102. doi: 10.1111/wj.13147 68. Ontario HQ, Pressure ulcer prevention: an evidence-based analysis. Ontario health technology assessment series 2009;9(2):1:104. 69. Kottner J, Dassen T, Jannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. Sclinical judgement: A systematic review. Journal of Clinical Nursing 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 70. Lovegrove J, Wiles SJ, et al. Comparison of pressure ulcers fisk assessment and preventative interventions: a systematic review. Journal of wound care 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tool sor the p	690	2013;3(11):28-42.
 review and meta-analysis. <i>Journal of Tissue Viability</i> 2022;31:259-67. doi: 10.1016/j.jtv.2022.02.005 63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagen</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fubrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Wiels SJ, et al. Comparison of pressure injury risk assessment and preventative interventions: a systematic review. <i>Journal of Wound care</i> 2018;27(12):862-75. 71. Lovegrove J, Miles SJ, et al. Comparison of pressure ulcer skasessessment and preventative interventions: a systematic review. <i>Journal of Wound care</i> 2012;12(1):264-75.	691	62. Wang N, Lv L, Yan F, et al. Biomarkers for the early detection of pressure injury: A systematic
 10.1016/j.jtv.2022.02.005 27hang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 28. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 29. Gt. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 20. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 20. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/nji.3147 20. Ontario HQ, Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology assessment series</i> 2009;9(2):1-104. 20. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of Clinical Nursing</i> 2021,92(1):10.1111/j.jocn.16154 [published Online First: 2021/12/01] 21. Lovegrove J, Wiles S, Fulbrook P. The relationship between pressure ulcer sk assessment and preventative interventions: a systematic review. <i>Journal of Nursing</i> 54(2):27(12):862-75. 22. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2023;21(1):05044.<td>692</td><td>review and meta-analysis. Journal of Tissue Viability 2022;31:259-67. doi:</td>	692	review and meta-analysis. Journal of Tissue Viability 2022;31:259-67. doi:
 63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive &</i> <i>critical care nursing</i> 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nic.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103866 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/wij.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injur	693	10.1016/j.jtv.2022.02.005
 intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. <i>Intensive & critical care nursing</i> 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 24. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 25. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta – analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 26. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 2034;83:103686. doi: 10.1016/j.iccn.2024.103686 2035;82;82;82;82;82;82;82;82;82;82;82;82;82;	694	63. Zhang Y, Zhuang Y, Shen J, et al. Value of pressure injury assessment scales for patients in the
 critical care nursing 2021;64:103009. doi: 10.1016/j.iccn.2020.103009 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ij.inurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of pressure</i> 10, pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044.	695	intensive care unit: Systematic review and diagnostic test accuracy meta-analysis. Intensive &
 64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson–Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103666. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021;12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcers. <i>Cochrane Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure linjury in hospitalized patients using artificial intelligen	696	critical care nursing 2021;64:103009. doi: 10.1016/j.iccn.2020.103009
 patients: an integrative review. <i>Texto & Contexto-Enfermagem</i> 2018;27(3) 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwij.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tool sfor the prevention of pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure ilcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;3(8):415-23. doi:	697	64. Zimmermann GS, Cremasco MF, Zanei SSV, et al. Pressure injury risk prediction in critical care
 65. Chen X, Diao D, Ye L. Predictive validity of the Jackson-Cubbin scale for pressure ulcers in intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of</i> <i>Datbase of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;21(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 2021083	698	patients: an integrative review. Texto & Contexto-Enfermagem 2018;27(3)
 intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023;28(3):370-78. doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of</i> 22. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Oiu Y, et al. Modeling and prediction of pressure ulcers. <i>Scohrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure linjury in hospitalized patients using artifi	699	65. Chen X, Diao D, Ye L. Predictive validity of the Jackson–Cubbin scale for pressure ulcers in
 doi: 10.1111/nicc.12818 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane Database of Systematic Reviews</i> 2019 doi: 10.1002/14551858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure lores based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing	700	intensive care unit patients: A meta - analysis. <i>Nursing in Critical Care</i> 2023:28(3):370-78.
 66. Mehicic A, Burston A, Fulbrook P. Psychometric properties of the Braden scale to assess pressure injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure lores based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01	701	doi: 10.1111/nicc.12818
 injury risk in intensive care: A systematic review. <i>Intensive & critical care nursing</i> 2024;83:103686. doi: 10.1016/j.iccn.2024.103686 Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 8. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online Fi	702	66. Mehicic A. Burston A. Fulbrook P. Psychometric properties of the Braden scale to assess pressure
 2024,83:103686. doi: 10.1016/j.jccn.2024.103686 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1187/107.00000000000000000000000000000	703	injury risk in intensive care. A systematic review Intensive & critical care nursing
 67. Gaspar S, Peralta M, Marques A, et al. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. <i>International Wound Journal</i> 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1072/siz.000000000000000000000000000000000000	704	2024:83:103686. doi: 10.1016/i.iccn.2024.103686
 prevention: a systematic review. International Wound Journal 2019;16(5):1087-102. doi: 10.1111/iwj.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. Ontario health technology assessment series 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. International Journal of Nursing Studies 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. Journal of <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Wiles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. Journal of wound care 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. Cochrane Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. Scientific Reports 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. Cin-Computers Informatics Nursing 2020;38(8):415-23. doi: 10.0126/si2911-021-01604 	705	67. Gaspar S. Peralta M. Margues A. et al. Effectiveness on hospital-acquired pressure ulcers
 10.1111/iwij.13147 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. <i>Ontario health technology</i> <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.11002/000000000000 	706	prevention: a systematic review. International Wound Journal 2019:16(5):1087-102. doi:
 68. Ontario HQ. Pressure ulcer prevention: an evidence-based analysis. Ontario health technology assessment series 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. International Journal of Nursing Studies 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. Journal of <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. Journal of wound care 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. Cochrane Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. Scientific Reports 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. Cin-Computers Informatics Nursing 2020;38(8):415-23. doi: 10.1027/38(8):415-23. doi: 10.1027/38(8):415-23. doi: 10.1027/38(8):415-23. doi: 	707	10.1111/iwi.13147
 <i>assessment series</i> 2009;9(2):1-104. 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.10070200000000000000004 	708	68. Ontario HO. Pressure ulcer prevention: an evidence-based analysis. Ontario health technology
 69. Kottner J, Dassen T, Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk scale: A systematic review. <i>International Journal of Nursing Studies</i> 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1027/via 000000000000004 	709	assessment series 2009:9(2):1-104.
 scale: A systematic review. International Journal of Nursing Studies 2009;46:369-79. doi: 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. Journal of <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. Journal of wound care 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. Cochrane Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. Scientific Reports 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.100020000000000000000000000000000000	710	69. Kottner J. Dassen T. Tannen A. Inter- and intrarater reliability of the Waterlow pressure sore risk
 10.1016/j.ijnurstu.2008.09.010 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1027(<i>in</i> 000000000000000000000000000000000000	711	scale: A systematic review. International Journal of Nursina Studies 2009:46:369-79. doi:
 70. Lovegrove J, Ven S, Miles SJ, et al. Comparison of pressure injury risk assessment outcomes using a structured assessment tool versus clinical judgement: A systematic review. <i>Journal of</i> <i>Clinical Nursing</i> 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1027/air.000000000000000000000000000000000000	712	10.1016/i.inurstu.2008.09.010
 a structured assessment tool versus clinical judgement: A systematic review. Journal of Clinical Nursing 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. Journal of wound care 2018;27(12):862-75. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. Cochrane Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4 Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. Scientific Reports 2022;12(1):5044. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. Cin-Computers Informatics Nursing 2020;38(8):415-23. doi: 10.0107/sin 000000000000000000000000000000000000	713	70. Lovegrove J. Ven S. Miles SJ. et al. Comparison of pressure injury risk assessment outcomes using
 Clinical Nursing 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01] T1. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. Journal of wound care 2018;27(12):862-75. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. Cochrane Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4 Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. Scientific Reports 2022;12(1):5044. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. Cin-Computers Informatics Nursing 2020;38(8):415-23. doi: 10.1007/cire.000000000000000000000000000000000000	714	a structured assessment tool versus clinical judgement: A systematic review. Journal of
 716 71. Lovegrove J, Miles S, Fulbrook P. The relationship between pressure ulcer risk assessment and preventative interventions: a systematic review. <i>Journal of wound care</i> 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1027/air 000000000000000000000000000000000000	715	Clinical Nursing 2021 doi: 10.1111/jocn.16154 [published Online First: 2021/12/01]
 preventative interventions: a systematic review. Journal of wound care 2018;27(12):862-75. 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. Cochrane Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. Scientific Reports 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. Cin-Computers Informatics Nursing 2020;38(8):415-23. doi: 10.1007/sig 0000000000000004 	716	71. Lovegrove J. Miles S. Fulbrook P. The relationship between pressure ulcer risk assessment and
 718 72. Moore ZEH, Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i> <i>Database of Systematic Reviews</i> 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1027/sig.0000000000000004 	717	preventative interventions: a systematic review. <i>Journal of wound care</i> 2018:27(12):862-75.
 Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1027/sig.0000000000000004 	718	72. Moore 7FH. Patton D. Risk assessment tools for the prevention of pressure ulcers. <i>Cochrane</i>
 720 73. Walther F, Heinrich L, Schmitt J, et al. Prediction of inpatient pressure ulcers based on routine healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1007/sig.0000000000004 	719	Database of Systematic Reviews 2019 doi: 10.1002/14651858.CD006471.pub4
 healthcare data using machine learning methodology. <i>Scientific Reports</i> 2022;12(1):5044. 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1007/sig 00000000000004 	720	73. Walther F. Heinrich L. Schmitt J. et al. Prediction of inpatient pressure ulcers based on routine
 74. Anderson C, Bekele Z, Qiu Y, et al. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1007/sig.00000000000004 	721	healthcare data using machine learning methodology. Scientific Reports 2022:12(1):5044.
 patients using artificial intelligence. <i>BMC Med Inform Decis Mak</i> 2021;21(1):253. doi: 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1077/sig.000000000000004 	722	74. Anderson C. Bekele Z. Oju Y. et al. Modeling and prediction of pressure injury in hospitalized
 10.1186/s12911-021-01608-5 [published Online First: 20210830] 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 10.1007/sig 000000000000000000000000000000000000	723	patients using artificial intelligence. BMC Med Inform Decis Mak 2021:21(1):253 doi:
 725 75. Hu YH, Lee YL, Kang MF, et al. Constructing Inpatient Pressure Injury Prediction Models Using 726 Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi: 727 10.1007 /sig 000000000000000000000000000000000000	724	10.1186/s12911-021-01608-5 [published Online First: 20210830]
726 Machine Learning Techniques. <i>Cin-Computers Informatics Nursing</i> 2020;38(8):415-23. doi:	725	75. Hu YH. Lee YL. Kang MF. et al. Constructing Inpatient Pressure Injury Prediction Models Using
	726	Machine Learning Techniques. Cin-Computers Informatics Nursing 2020:38(8):415-23 doi:
727 10.1097/cin.00000000000004	727	10.1097/cin.000000000000604

It is made available under a CC-BY 4.0 International license .

728	76. Hyun S, Moffatt-Bruce S, Cooper C, et al. Prediction Model for Hospital-Acquired Pressure Ulcer
729	Development: Retrospective Cohort Study. Jmir Medical Informatics 2019;7(3) doi:
730	10.2196/13785
731	77. Nakagami G, Yokota S, Kitamura A, et al. Supervised machine learning-based prediction for in-
732	hospital pressure injury development using electronic health records: A retrospective
733	observational cohort study in a university hospital in Japan. International Journal of Nursing
734	<i>Studies</i> 2021;119 doi: 10.1016/j.ijnurstu.2021.103932
735	78. Cai JY, Zha ML, Song YP, et al. Predicting the Development of Surgery-Related Pressure Injury
736	Using a Machine Learning Algorithm Model. <i>Journal of Nursing Research</i> 2021;29(1) doi:
737	10.1097/jnr.000000000000411
738	79. Aloweni F, Ang SY, Fook-Chong S, et al. A prediction tool for hospital-acquired pressure ulcers
739	among surgical patients: Surgical pressure ulcer risk score. Int Wound J 2019;16(1):164-75.
740	doi: 10.1111/iwj.13007 [published Online First: 2018/10/05]
741	80. Cramer EM, Seneviratne MG, Sharifi H, et al. Predicting the Incidence of Pressure Ulcers in the
742	Intensive Care Unit Using Machine Learning. <i>EGEMS (Wash DC)</i> 2019;7(1):49. doi:
743	10.5334/egems.307 [published Online First: 20190905]
744	81. Ladios-Martin M, Fernández-de-Maya J, Ballesta-López FJ, et al. Predictive Modeling of Pressure
745	Injury Risk in Patients Admitted to an Intensive Care Unit. Am J Crit Care 2020;29(4):e70-e80.
746	doi: 10.4037/ajcc2020237
747	82. Su CT, Wang PC, Chen YC, et al. Data Mining Techniques for Assisting the Diagnosis of Pressure
748	Ulcer Development in Surgical Patients. <i>Journal of Medical Systems</i> 2012;36(4):2387-99. doi:
749	10.1007/s10916-011-9706-1
750	83. Kaewprag P, Newton C, Vermillion B, et al. Predictive models for pressure ulcers from intensive
751	care unit electronic health records using Bayesian networks. Bmc Medical Informatics and
752	<i>Decision Making</i> 2017;17 doi: 10.1186/s12911-017-0471-z
753	84. Yang Q, Wang G, Jiang B, et al. Study on risk prediction model of unavoidable pressure ulcers in
754	cancer patients based on decision tree. <i>Journal of Nursing Science</i> 2019;34(13):4-7.
755	85. Deng X, Wang Q, Li M, et al. Predicting the risk of hospital-acquired pressure ulcers in intensive
756	care unit patients based on decision tree. <i>Chin J Prac Nurs</i> 2016;32:485-89.
757	86. Alderden J, Pepper GA, Wilson A, et al. Predicting Pressure Injury in Critical Care Patients: A
758	Machine-Learning Model. <i>Am J Crit Care</i> 2018;27(6):461-68. doi: 10.4037/ajcc2018525
759	87. Chen HL, Yu SJ, Xu Y, et al. Artificial Neural Network: A Method for Prediction of Surgery-Related
760	Pressure Injury in Cardiovascular Surgical Patients. Journal of Wound Ostomy and Continence
761	Nursing 2018;45(1):26-30. doi: 10.1097/won.000000000000388
762	88. Poss J, Murphy KM, Woodbury MG, et al. Development of the interRAI Pressure Ulcer Risk Scale
763	(PURS) for use in long-term care and home care settings. <i>BMC geriatrics</i> 2010;10:67. doi:
764	10.1186/1471-2318-10-67
765	89. Page KN, Barker AL, Kamar J. Development and validation of a pressure ulcer risk assessment tool
766	for acute hospital patients. <i>Wound Repair and Regeneration</i> 2011;19(1):31-37. doi:
767	10.1111/j.1524-475X.2010.00647.x
768	90. Berlowitz DR, Brandeis GH, Morris JN, et al. Deriving a risk-adjustment model for pressure ulcer
769	development using the Minimum Data Set. Journal of the American Geriatrics Society
770	2001;49(7):866-71. doi: 10.1046/j.1532-5415.2001.49175.x
771	91. Schoonhoven L, Grobbee DE, Donders ART, et al. Prediction of pressure ulcer development in
772	hospitalized patients: a tool for risk assessment. Quality & Safety in Health Care
773	2006;15(1):65-70. doi: 10.1136/qshc.2005.015362
774	92. Perneger TV, Raë AC, Gaspoz JM, et al. Screening for pressure ulcer risk in an acute care hospital:
775	development of a brief bedside scale. <i>J Clin Epidemiol</i> 2002;55(5):498-504. doi:
776	10.1016/s0895-4356(01)00514-5

777	93. Berlowitz DR, Ash AS, Brandeis GH, et al. Rating long-term care facilities on pressure ulcer
778	development: importance of case-mix adjustment. Annals of Internal Medicine
779	1996;124(6):557-63.
780	94. Compton F, Hoffmann F, Hortig T, et al. Pressure ulcer predictors in ICU patients: nursing skin
781	assessment versus objective parameters. J Wound Care 2008;17(10):417-20, 22-4. doi:
782	10.12968/jowc.2008.17.10.31304
783	95. Song WY, Kang MJ, Zhang LY, et al. Predicting pressure injury using nursing assessment
784	phenotypes and machine learning methods. Journal of the American Medical Informatics
785	Association 2021:28(4):759-65. doi: 10.1093/jamia/ocaa336
786	96. Delparte JJ, Flett HM, Scovil CY, et al. Development of the spinal cord injury pressure sore onset
787	risk screening (SCI-PreSORS) instrument: a pressure injury risk decision tree for spinal cord
788	iniury rehabilitation. Spinal Cord 2021:59(2):123-31. doi: 10.1038/s41393-020-0510-v
789	97. Cubbin B. Jackson C. Trial of a pressure area risk calculator for intensive therapy patients.
790	Intensive Care Nursing 1991:7(1):40-44
791	98 Jackson C. The revised Jackson/Cubbin Pressure Area Risk Calculator. Intensive Crit Care Nurs
792	1999:15(3):169-75 doi: 10.1016/s0964-3397/99)80048-2
793	99 Berlowitz DR Ash AS Brandeis GH et al Bating long-term care facilities on pressure ulcer
79/	development: Importance of case-mix adjustment. Annals of Internal Medicine
795	1996:124/6):557-63 doi: 10.7326/0003-4819-124-6-199603150-00003
796	100 Suriadi Sanada H. Sugama I. Thignen B. et al. Development of a new risk assessment scale for
700	predicting processro ulcore in an intensive care unit. Nursing in critical care 2008;13(1):34,42
797	101 Lowery MT A pressure area rick calculator for intensive care patients: 'the Sunderland
790	ovportionsol ¹ Intensive Crit Care Nurs 1995:11/6):344-53 doi: 10.1016/s0964.3397/95)80452
<u>800</u>	o
000 001	o 102 Sprigle S. McNair D. Sananhlum S. Draccura Ulcar Pick Eastars in Parsans with Mability Palatad
801 802	Disabilities Adv Chin Mound Care 2020:22/21/146 E4 doi:
80Z	Disabilities. Adv Skill Would Cale 2020,55(5),140-54. doi.
803	10.1097/01.ASW.0000055152.36482.70
804	103. DO Q, Lipatov K, Ramar K, et al. Pressure injury Prediction Model Using Advanced Analytics for
805	At-Risk Hospitalized Patients. Journal of patient safety 2022;18(7):e1083-e89.
806	104. Miccreath HE, Bates-Jensen BM, Nakagami G, et al. Use of Munsell color charts to measure skin
807	tone objectively in nursing nome residents at risk for pressure licer development. Journal of
808	Advanced Nursing 2016;72(9):2077-85. doi: 10.1111/jan.12974
809	105. Austin PC, Steverberg EW. Events per variable (EPV) and the relative performance of different
810	strategies for estimating the out-of-sample validity of logistic regression models. Stat
811	Methods Med Res 2017;26(2):796-808. doi: 10.1177/0962280214558972 [published Online
812	First: 2014/11/19]
813	106. Smith GC, Seaman SR, Wood AM, et al. Correcting for optimistic prediction in small data sets.
814	Am J Epidemiol 2014;180(3):318-24. doi: 10.1093/aje/kwu140 [published Online First:
815	
816	107. Riley RD, Collins GS. Stability of clinical prediction models developed using statistical or machine
81/	learning methods. <i>Biometrical Journal</i> 2023;65(8):2200302. doi: 10.1002/bimj.202200302
818	108. Salazar D, Vélez J, Salazar Uribe J. Comparison between SVM and Logistic Regression: Which One
819	is Better to Discriminate? <i>Revista Colombiana de Estadística</i> 2012;35:223-37.
820	109. Ramspek CL, Jager KJ, Dekker FW, et al. External validation of prognostic models: what, why,
821	how, when and where? Clin Kidney J 2021;14(1):49-58. doi: 10.1093/ckj/sfaa188 [published
822	Online First: 2020/11/24]
823	110. de Hond AAH, Shah VB, Kant IMJ, et al. Perspectives on validation of clinical predictive
824	algorithms. <i>npj Digital Medicine</i> 2023;6(1):86. doi: 10.1038/s41746-023-00832-9
825	111. Binuya MAE, Engelhardt EG, Schats W, et al. Methodological guidance for the evaluation and
826	updating of clinical prediction models: a systematic review. BMC Med Res Methodol
827	2022;22(1):316. doi: 10.1186/s12874-022-01801-8 [published Online First: 2022/12/12]

It is made available under a CC-BY 4.0 International license .

828	112. Riley RD, Archer L, Snell KIE, et al. Evaluation of clinical prediction models (part 2): how to
829	undertake an external validation study. BMJ 2024;384:e074820. doi: 10.1136/bmj-2023-
830	074820
831	113. Hingorani AD, Windt DAvd, Riley RD, et al. Prognosis research strategy (PROGRESS) 4: Stratified
832	medicine research. <i>BMJ : British Medical Journal</i> 2013;346:e5793. doi: 10.1136/bmj.e5793
833	114. Qaseem A, Mir TP, Starkey M, et al. Risk Assessment and Prevention of Pressure Ulcers: A
834	Clinical Practice Guideline From the American College of Physicians. Annals of Internal
835	<i>Medicine</i> 2015;162(5):359-69. doi: 10.7326/m14-1567
836	115. Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for
837	reporting diagnostic accuracy studies. <i>BMJ</i> 2015;351:h5527. doi: 10.1136/bmj.h5527
838	[published Online First: 2015/10/28]
839	116. Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction
840	model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann
841	Intern Med 2015;162(1):W1-73. doi: 10.7326/m14-0698
842	117. Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, et al. MINIMAR (MINimum Information for
843	Medical AI Reporting): Developing reporting standards for artificial intelligence in health
844	care. Journal of the American Medical Informatics Association 2020;27(12):2011-15. doi:
845	10.1093/jamia/ocaa088
846	118. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting
847	clinical prediction models that use regression or machine learning methods. BMJ
848	2024;385:e078378. doi: 10.1136/bmj-2023-078378