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ABSTRACT 35 

Background 36 

Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification 37 

of those who are at risk of developing PIs allows preventive interventions to be focused on patients 38 

who are at the highest risk. The considerable number of risk assessment scales and prediction 39 

models available underscore the need for a thorough evaluation of their development, validation 40 

and clinical utility. 41 

Our objectives were to identify and describe available risk prediction tools for PI occurrence, their 42 

content and development and validation methods used. 43 

Methods 44 

The umbrella review was conducted according to Cochrane guidance. MEDLINE, Embase, CINAHL, 45 

EPISTEMONIKOS, Google Scholar and reference lists were searched to identify relevant systematic 46 

reviews. Risk of bias was assessed using adapted AMSTAR-2 criteria. Results were described 47 

narratively. All included reviews contributed to build a comprehensive list of risk prediction tools. 48 

Results 49 

We identified 32 eligible systematic reviews only seven of which described the development and 50 

validation of risk prediction tools for PI.  Nineteen reviews assessed the prognostic accuracy of the 51 

tools and 11 assessed clinical effectiveness. Of the seven reviews reporting model development and 52 

validation, six included only machine learning models. Two reviews included external validations of 53 

models, although only one review reported any details on external validation methods or results. 54 

This was also the only review to report measures of both discrimination and calibration. Five reviews 55 

presented measures of discrimination, such as area under the curve (AUC), sensitivities, specificities, 56 

F1 scores and G-means. For the four reviews that assessed risk of bias assessment using the 57 

PROBAST tool, all models but one were found to be at high or unclear risk of bias.  58 

Conclusions 59 

Available tools do not meet current standards for the development or reporting of risk prediction 60 

models. The majority of tools have not been externally validated. Standardised and rigorous 61 

approaches to risk prediction model development and validation are needed. 62 

Registration 63 

The protocol was registered on the Open Science Framework (https://osf.io/tepyk). 64 

 65 

  66 
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INTRODUCTION 67 

Pressure injuries (PI) carry a significant healthcare burden. A recent meta-analysis estimated the 68 

global burden of PIs to be 13%, two-thirds of which are hospital-acquired PIs (HAPI).1 The average 69 

cost of a HAPI has been estimated as $11k per patient, totalling at least $27 billion a year in the 70 

United States based on 2.5 million reported cases.2 Length of hospital stay is a large contributing 71 

cost, with patients over the age of 75 who develop HAPI having on average a 10-day longer hospital 72 

stay compared to those without PI.
3
  73 

PIs result from prolonged pressure, typically on bony areas like heels, ankles, and the coccyx, and are 74 

more common in those with limited mobility, including those who are bedridden or wheelchair 75 

users. PIs can develop rapidly, and pose a threat in community, hospital and long-term care settings. 76 

Multicomponent preventive strategies are needed to reduce PI incidence
4
 with timely 77 

implementation to both reduce harm and burden to healthcare systems.
5
 Where preventive 78 

measures fail or are not introduced in adequate time, PI treatment involves cleansing, debridement, 79 

topical and biophysical agents, biofilms, growth factors and dressings6 7 8, and in severe cases, surgery 80 

may be necessary.5 9 81 

A number of clinical assessment scales for assessing the risk of PI are available (e.g. Braden10 11, 82 

Norton12, Waterlow13) but are limited by reliance on subjective clinical judgment. Statistical risk 83 

prediction models may offer improved accuracy over clinical assessment scales, however appropriate 84 

methods of development and validation are required.
14 15 16

 Although methods for developing risk 85 

prediction models have developed considerably,
14 15 17 18

 methodological standards of available 86 

models have been shown to remain relatively low.17 19-22 Machine learning (ML) algorithms to 87 

develop prediction models are increasingly commonplace, but these models are at similarly high risk 88 

of bias23 and do not necessarily offer any model performance benefit over the use of statistical 89 

methods such as logistic regression.24 Methods for systematic reviews of risk prediction model 90 

studies have also improved,
25-27

 with tools such as PROBAST (Prediction model Risk of Bias 91 

Assessment Tool)
28

 now available to allow critical evaluation of study methods.  92 

Although several systematic reviews of PI risk assessment scales and risk prediction models for PI 93 

(subsequently referred to as risk prediction tools) are available29-38, these have been demonstrated to  94 

frequently focus on single or small numbers of scales or models, use variable review methods and 95 

show a lack of consensus about the accuracy and clinical effectiveness of available tools.
39

 We 96 

conducted an umbrella review of systematic reviews of risk prediction tools for PI to gain further 97 

insight into the methods used for tool development and validation, and to summarise the content of 98 

available tools.  99 

METHODS  100 

Protocol registration and reporting of findings 101 

We followed guidance for conducting umbrella reviews provided in the Cochrane Handbook for 102 

Intervention Reviews.40 The review was reported in accordance with guidelines for Preferred 103 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)41 (see Appendix 1), adapted for 104 

risk prediction model reviews as required. The protocol was registered on the Open Science 105 

Framework (https://osf.io/tepyk).  106 

Literature search 107 

Electronic searches of MEDLINE, Embase via Ovid and CINAHL Plus EBSCO from inception to June 108 

2024 were developed, tested and conducted by an experienced information specialist (AC), 109 
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employing well-established systematic review and prognostic search filters42-44 combined with 110 

specific keyword and controlled vocabulary terms relating to PIs. Additional simplified searches were 111 

undertaken in EPISTEMONIKOS and Google Scholar due to the more limited search functionality of 112 

these two sources. The reference lists of all publications reporting reviews of prediction tools 113 

(systematic or non-systematic) were reviewed to identify additional eligible systematic reviews and 114 

to populate a list of PI risk prediction tools. Title and abstract screening and full text screening were 115 

conducted independently and in duplicate by two of four reviewers (BH, JD, YT, KS). Any 116 

disagreements were resolved by discussion or referral to a third reviewer. 117 

Eligibility criteria for this umbrella review   118 

Published English-language systematic reviews of risk prediction models developed for adult patients 119 

at risk of PI in any setting were included. Reviews of clinical risk assessment tools or models 120 

developed using statistical or ML methods were included, both with or without internal or external 121 

validation. The use of any PI classification system6 45-47 as a reference standard was eligible. Reviews 122 

of the diagnosis or staging of those with suspected or existing PIs or chronic wounds, reviews of 123 

prognostic factor and predictor finding studies, and models exclusively using pressure sensor data 124 

were excluded. 125 

Systematic reviews were required to report a comprehensive search of at least two electronic 126 

databases, and at least one other indicator of systematic methods (i.e. explicit eligibility criteria, 127 

formal quality assessment of included studies, sufficient data presented to allow results to be 128 

reproduced, or review stages (e.g. search screening) conducted independently in duplicate). 129 

Data extraction and quality assessment 130 

Data extraction forms (Appendix 3) were developed using the CHARMS checklist (CHecklist for critical 131 

Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) and Cochrane 132 

Prognosis group template.
48 49

 One reviewer extracted data concerning: review characteristics, model 133 

details, number of studies and participants, study quality and results. Extractions were 134 

independently checked by a second reviewer. Where discrepancies in model or primary study details 135 

were noted between reviews, we accessed the primary model development publications where 136 

possible.  137 

The methodological quality of included systematic reviews was assessed using AMSTAR-2 (A 138 

Measurement Tool to Assess Systematic Reviews)50, adapted for systematic reviews of risk prediction 139 

models (Appendix 4). Quality assessment and data extraction were conducted by one reviewer and 140 

checked by a second (BH, JD, KS), with disagreements resolved by consensus. Our adapted AMSTAR-2 141 

contains six critical items, and limitations in any of these items reduce the overall validity of a 142 

review.
50

  143 

Synthesis methods  144 

Reviews were considered according to whether any information concerning model development and 145 

validation was reported. This specifically refers to reporting methods of model development or 146 

validation, and/or the presentation of measures of both discrimination and calibration. This is in 147 

contrast to evaluations of prognostic accuracy, where models are applied at a binary threshold (e.g., 148 

for high or low risk), and present only discrimination metrics with no further consideration of model 149 

performance. Available data were tabulated, and a narrative synthesis provided.  150 

All risk prediction models identified are listed in Appendix 5 Table S4, including those for which no 151 

information about model development or validation was provided at systematic review level. Risk 152 

prediction models were classified as ML-based or non-ML models, based on how they were classified 153 
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in included systematic reviews, including cases where models such as logistic regression were treated 154 

as ML-based models. Where possible, the predictors included in the tools were extracted at review 155 

level and categorised into relevant groups in order to describe the candidate predictors associated 156 

with risk of PI. No statistical synthesis of systematic review results was conducted.  157 

Reviews reporting results as prognostic accuracy (i.e. risk classification according to a binary decision) 158 

or clinical effectiveness (i.e. impact on patient management and outcomes) are reported 159 

elsewhere.39 Hereafter, the term clinical utility is used to encompass both accuracy and clinical 160 

effectiveness.  161 

RESULTS 162 

Characteristics of included reviews  163 

Following de-duplication of search results, 7200 unique records remained, of which 118 were 164 

selected for full text assessment. We obtained the full text of 111 publications of which 32 met all 165 

eligibility criteria for inclusion (see Figure 1). Seven reviews reported details about model 166 

development and internal validation36 37 51-55, two of which also considered external validation52 54; 19 167 

reported accuracy data29 31-35 38 54 56-66; and 11 reported clinical effectiveness data.30 56 58 61 66-72 One 168 

review
54

 reported both model development and accuracy data, and four reviews reported both 169 

accuracy and effectiveness data.
56 58 61 66

 170 

Table 1 provides a summary of systematic review methods for all 32 reviews according to whether or 171 

not they reported any tool development methods (see Appendix 5 for full details). The seven reviews 172 

reporting prediction tool development and validation were all published within the last six years 173 

(2019 to 2024) compared to reviews focused on the clinical utility of available tools (published from 174 

2006 to 2024). Reviews focused on model development methods almost exclusively focused on ML-175 

based models (all but one60 of the seven reviews limited inclusion to ML models), and frequently did 176 

not report study eligibility criteria related to study participants or setting (Table 1). In comparison, 177 

only two reviews (8%) concerning the clinical utility of models included ML-based models,38 54 but 178 

more often reported eligibility criteria for population or setting: hospital settings (n = 3),
33 38 54

 or 179 

surgical settings (n=8),
34 61 63 64 70

 
31

, hospital or acute settings (n=2)
67 71

, long-term care settings 180 

(n=2)29 35 or the elderly (n=1).60 181 

On average, reviews about tool development included more studies than reviews of clinical utility 182 

(median 22 compared to 15), more participants (median 408,504 compared to 7,684) and covered 183 

more prediction tools (median 21 compared to 3) (Table 1). Ten reviews (38%) about clinical utility 184 

included only one risk assessment scale, whereas reviews of tool development included at least 3 185 

different risk prediction models. The PROBAST tool for quality assessment of prediction model 186 

studies was used in 57% (n=4) of tool development reviews37 52-54, whereas validated test-accuracy 187 

specific tools such as QUADAS were used less frequently (10/26, 38%) in reviews of clinical utility.  188 

Two reviews of tool development did not report any quality assessment of included studies (29%), 189 

compared to 4 (15%) of reviews of clinical utility. Meta-analysis was conducted in two of seven (29%) 190 

reviews of tool development compared to more than half of reviews of clinical utility (15, 58%). 191 

Methodological quality of included reviews  192 

The quality of included reviews was generally low (Table 2; Appendix 5 for full assessments). The 193 

majority of reviews (71% (5/7) reviews on tool development and 78% (18/23) reviews on clinical 194 

utility) partially met the AMSTAR-2 criteria for the literature search (i.e. searched two databases, 195 

reported search strategy or key words, and justified language/publication restrictions), with only 196 

three (two reviews
56 72

 on clinical utility, and one review
54

 on both tool development and clinical 197 
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utility) meeting all criteria for ‘Yes’ (i.e. searching grey literature and reference lists, with the search 198 

conducted within 2 years of publication). Twenty-two reviews (69%) conducted study selection in 199 

duplicate (5/7 (71%) of reviews about tool development and 17/26 (65%) of clinical utility reviews). 200 

Conflicts of interest were reported in all seven tool development reviews and 77% of clinical utility 201 

reviews (20/26). Reviews scored poorly on the remaining AMSTAR-2 items, with around 50% or fewer 202 

reviews meeting the stipulated AMSTAR-2 criteria. Nine reviews (28%) used an appropriate method 203 

of quality assessment of included studies and provided itemisation of judgements per study. No 204 

review scored ‘Yes’ for all AMSTAR-2 items in either category.  205 

Figure 1. PRISMA
41

 flowchart: identification, screening and selection process 206 

 

List of full-text articles excluded, with reasons, is given in Appendix 5. *Note that one review
54

 is included in both. 207 

Identification of studies via databases  
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in
g 

 

In
cl
ud
ed 

Records identified (n = 10,326): 
MEDLINE (n = 1,872) 
EMBASE (n = 2,390) 
CINAHL (n = 4,200) 
Epistemonikos (n = 1,426) 
Google Scholar (n = 437) 
Reference lists (n = 1) 

Duplicate records removed 
through automated 
deduplication (n = 3,126) 

Records screened 
(n = 7,200) 

Records excluded 
(n = 7,082) 

Articles selected for retrieval 
(n = 118) 

Articles not retrieved 
(n = 7) 

Full-text articles assessed for 
eligibility 
(n = 111) 

Full-text articles excluded (n=79) 
Not a systematic review (n = 32) 
No risk prediction models (n = 14) 
Wrong research question (n = 17) 
No English language translation (n = 7) 
Duplicate (n = 3) 
Wrong outcome (n = 2) 
Updated version included (n = 2) 
Wrong population (n = 1) 
No results (n = 1) 

Total reviews included (n = 32) 

Reviews reporting details about 
tool development or validation  

(n = 7)* 

Reviews reporting about 
accuracy or clinical 

effectiveness (n = 26)* 
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Table 2. Summary of AMSTAR-2 assessment results  208 

  
Reviews reporting model development 

and/or validation (n=7) 
  

Reviews reporting prognostic accuracy 

and/or clinical effectiveness (n=26) 
ITEM 1 Research question / inclusion criteria 1 6 5 21 

              

ITEM 2 Protocol 2 5 8 1 17 

              

ITEM 3 Study design inclusions 1 6 2 24 

              

ITEM 4 Search strategy 1 6 3 18 5 

              

ITEM 5 Study selection in duplicate 5 2 17 9 

              

ITEM 6 Data extraction in duplicate 3 4 15 11 

              

ITEM 7 Excluded studies list 7 2 24 

              

ITEM 8 Included studies descriptions 1 6 7 7 12 

              

ITEM 9 RoB / quality assessment 3 1 3 7 6 13 

              

ITEM 10 Funding of included studies 7 2 24 

              

ITEM 11 Appropriate statistical synthesis 2 5 4 12 10 

              

ITEM 12 RoB – impact on synthesis 1 1 5 4 12 10 

              

ITEM 13 RoB – impact on results 2 5 14 12 

              

ITEM 14 Heterogeneity investigation 2 5 15 11 

              

ITEM 15 Conflicts of interest 7 20 6 

 0%                 20%              40%                60%                80%   100%    0%        20%                40%                60%                80%  100% 

  Yes  Partial Yes  No  N/A  

AMSTAR – A MeaSurement Tool to Assess systematic Reviews; Item 1 – Adequate research question/ inclusion criteria?; Item 2 – Protocol and justifications for deviations?; Item 3 – Reasons 

for study design inclusions?; Item 4 – Comprehensive search strategy?; Item 5 – Study selection in duplicate?; Item 6 – Data extraction in duplicate?; Item 7 – Excluded studies list (with 

justifications)?; Item 8 – Included studies description adequate?; Item 9 – Assessment of RoB/quality satisfactory?; Item 10 – Studies’ sources of funding reported?; Item 11 – Appropriate 

statistical synthesis method?; Item 12 – Assessment of impact of RoB on synthesised results?; Item 13 – Assessment of impact of RoB on review results?; Item 14 – Discussion/investigation of 

heterogeneity?; Item 15 – Conflicts of interest reported?; N/A – not applicable; RoB – risk of bias. Further details on AMSTAR items are given in Appendix 4, and results per review are given in 

Appendix 5. Note that where AMSTAR-2 assessment was applied to overlapping reviews (n=3) for prognostic accuracy and clinical effectiveness separately, and resulted in differing judgements 

for each review question, the judgements for the prognostic accuracy review question are displayed here for simplicity. 
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Findings 209 

Of the 32 reviews, 26 reviews focused on the clinical utility (accuracy or effectiveness) of prediction 210 

tools. These clinical utility reviews provided no details about the development or validation of 211 

included models (except for one review54), and gave only limited detail about setting and study 212 

design (see Appendix 5). Reviews reporting the accuracy of prediction tools largely treated the tools 213 

as diagnostic tests to be applied at a single threshold (e.g., for high or low risk) and they did not focus 214 

on the broader aspects of prognostic model performance, such as calibration and the temporal 215 

relationship between prediction and the outcome, PI occurrence. These reviews included a total of 216 

70 different prediction tools, predominantly derived by clinical experts, as opposed to empirically-217 

derived models (that is, with statistical or ML methods). The methodology underlying their 218 

development is not always explicit, with scales in routine clinical usage apparently based on 219 

epidemiological evidence and clinical judgment about predictors that may not meet accepted 220 

principles for the development and reporting of risk prediction models. The most commonly 221 

included tools were the Braden10 11 (included in 21 reviews), Waterlow13 (n=14 reviews), Norton12 222 

(n=11 reviews), and Cubbin and Jackson scales97 98 (n=8 reviews). 223 

The seven systematic reviews that reported detailed information about model development and 224 

validation included 70 prediction models, 48 of which were unique to these seven reviews. Between 225 

three51 and 3536 model development studies were included; one review52 also included eight external 226 

validation studies and another review54 included one external validation study. Electronic health 227 

records (EHRs) were used for model development in all studies in one review
37

 and for the majority 228 

of models (>66%) in the remaining reviews, where reported.
51 54 55 53

 Three reviews
52 54 55

 reported the 229 

use of prospectively or retrospectively collected data. No review included information about the 230 

thresholds used define whether a patient is at risk of developing PIs. Five reviews included detail 231 

about the predictors included in each model.  232 

The largest review
36

 reported that logistic regression was the most commonly reported modelling 233 

approach (20/35 models), followed by random forest (n=18), decision tree (n=12) and support vector 234 

machine (n=12) approaches. Logistic regression was also the most frequently used approach in three 235 

other reviews (18/2355, 16/2152 and 15/2253). Primary studies frequently compared the use of 236 

different ML methods using the same datasets, such that ‘other’ ML methods were reported with 237 

little to no further detail (e.g. 19 studies in the review by Dweekat and colleagues
36

).   238 

Approaches to internal validation were not well reported in the primary studies. One review52 found 239 

no information on internal validation for 76% (16/21) of studies; with re-sampling reported in two 240 

and tree-pruning, cross-validation and split sample reported in one study each. Another review36 241 

reported finding no information about internal validation for 20% of studies (7/35) and the use of 242 

cross-validation (n=10), split sample (n=10) techniques, or both (n=8) for the remainder. Cross-243 

validation was used in more than half (12/22) of studies in another.53  244 

Only one review reported details on methods for selection of model predictors52: 29% (6/21) 245 

selected predictors by univariate analysis prior to modelling and 9 used stepwise selection for final 246 

model predictors; 11 (52%) clearly reported candidate predictors, and all 21 clearly reported final 247 

model predictors. Another review54 stated that feature selection (or predictor selection) was 248 

performed improperly and that some studies used univariate analyses to select predictors, but 249 

further details were not provided. One review52 reported 15 models (71%) with no information about 250 

missing data, and only two using imputation techniques (imputation using another data set, and 251 

multiple imputation by chained equations). Another review
54

 reported 7 models (39%) with no 252 
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information about missing data, missing data excluded or negligible for 4 models (22%), and single or 253 

multiple imputation techniques used for 5 (28%) and 3 (17%) models, respectively.  254 

Model performance measures were reported by three reviews37 52 53, all of which noted considerable 255 

variation in reported metrics and model performance including C-statistics (0.71 to 0.89 in 10 256 

studies
53

), F1 score (0.02 to 0.99 in 9 studies
53

), G-means (0.628 to 0.822 in four studies
37

), and 257 

observed versus expected ratios (0.97 to 1 in 3 studies
52

). Four reviews
37 53-55

 reported measures of 258 

discrimination associated with included models. Across reviews, reported sensitivities ranged 259 

between 0.04 and 1, specificities ranged between 0.69 and 1, and AUC values ranged between 0.50 260 

and 1. 261 

Shi and colleagues
52

 included eight external validations using data from long-term care (n=4) or acute 262 

hospital care (n=4) settings (Appendix 5 Table S5). All were judged to be at unclear (n=4) or high 263 

(n=4) risk of bias using PROBAST. Model performance metrics for five models (TNH-PUPP89, Berlowitz 264 

11-item model99, Berlowitz MDS adjustment model90, interRAI PURS88, Compton ICU model94) 265 

included C-statistics between 0.61 and 0.9 and reported observed versus expected ratios were 266 

between 0.91 and 0.97. The review also reported external validation studies for the ‘SS scale’
100

 and 267 

the prePURSE study tool
91

, but no model performance metrics were given. A meta-analysis of C-268 

statistics and O/E ratios was performed, including values from both development and external 269 

validation cohorts (Table 3). Parameters related to model development were not consistently 270 

reported: C-statistics ranged between 0.71 and 0.89 (n = 10 studies); observed versus expected ratios 271 

ranged between 0.97 and 1 (n=3 studies).  272 

Pei and colleagues54 reported that one81 (1/18, 6%) of the model development studies included in 273 

their review also conducted an external validation. However, review authors presented accuracy 274 

metrics that originated from the internal validation, as opposed to the external validation 275 

(determined from inspection of the primary study). Additionally, no details on external validation 276 

methods and no measures of calibration were presented. Pei and colleagues
54

 judged this study to be 277 

of high risk of bias using PROBAST, as with the majority of studies (16/18, 89%) included in their 278 

review. More detailed information about individual models, including predictors, specific model 279 

performance metrics and sample sizes, is presented in Appendix 5. 280 

Included tools and predictors 281 

A total of 124 risk prediction tools were identified (Table 4); 111 tools were identified from the 32 282 

included systematic reviews and 13 were identified from screening the reference lists of literature 283 

reviews that used non-systematic methods that were considered during full text assessment. Full 284 

details obtained at review-level are reported in Appendix 5 Table S4. 285 

Tools were categorised as having been developed with (60/124, 48%) or without (64/124, 52%) the 286 

use of ML methods (as defined by review authors). Prospectively collected data was used for model 287 

development for 21% of tools (26/124), retrospectively collected data for 41% (51/124), or was not 288 

reported (47/124). Information about the study populations was poorly reported, however study 289 

setting was reported for 112 prediction tools. Twenty-seven tools were reported to have been 290 

developed in hospital inpatients, and 22 were developed in long-term care settings, rehabilitation 291 

units or nursing homes or hospices. Where reported (n=100), sample sizes ranged from 15
101

 to 292 

1,252,313.102 The approach to internal validation used for the prediction tools (e.g. cross-validation 293 

or split sample) was not reported at review-level for over two thirds of tools (83/124, 67%). 294 

We could extract information about the predictors for only 66 of the 124 tools (Table 5 and Appendix 295 

5). The most frequently included predictor was age (33/66, 50%), followed by pre-disposing 296 
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diseases/conditions (32/66, 48%), medical treatment/care received (28/66, 42%) and mobility 297 

(27/66, 41%). Tools often (31/66, 47%) included multiple pre-existing conditions or comorbidities 298 

and multiple types of treatment or medication as predictors. Other common predictors include 299 

laboratory values, continence, nutrition, body-related values (e.g. weight, height, body temperature), 300 

mental status, activity, gender and skin assessment (27% to 35% of tools). Ten tools incorporated 301 

scores from other established risk prediction scales as a predictor, with eight including Braden10 11 302 

scores, one including the Norton
12

 score and one including the Waterlow
13

 score. 303 

Only one review52 reported the presentation format of included tools, coded as ‘score system’ 304 

(n=11), ‘formula equation’ (n=3), ‘nomogram scale’ (n=2), or ‘not reported’ (n=6). 305 

  306 
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Table 4. Summary of tool characteristics, extracted at review-level  307 

Tool characteristics 
ML-based models 

(N=60, 48%) 

Non-ML tools 

(N=64, 52%) 

Total 

(N=124) 

No. of included reviews
A
 considered in    

0 0 (0) 13 (20) 13 (10) 

1 31 (52) 23 (36) 54 (44) 

2 6 (10) 9 (14) 15 (12) 

>2 23 (38) 19 (30) 42 (34) 

Development study details    

Median (range) year of publication 2020 (2000 – 2023) 1998 (1962 – 2015) 2008 (1962 – 2023) 

Source of data    

Prospective 8 (13) 18 (28) 26 (21) 

Retrospective 41 (68) 10 (16) 51 (41) 

NS 11 (18) 36 (56) 47 (38) 

Setting    

Hospital 16 (27) 11 (17) 27 (22) 

Long-term care (incl. end-of-life and rehab) 8 (13) 14 (22) 22 (18) 

Acute care (incl. surgical and ICU) 33 (55) 24 (38) 57 (46) 

Mixed settings 1 (2) 1 (2) 2 (2) 

Other 2 (3) 2 (3) 4 (3) 

NS 0 (0) 12 (19) 12 (10) 

Study population age    

Adults 36 (60) 34 (53)  70 (56) 

Any 4 (7) 3 (5) 7 (6) 

NS 20 (33) 27 (42) 47 (38) 

Baseline condition    

PIs at baseline 1 (2) 0 (0) 1 (1) 

No PIs at baseline 11 (18) 19 (30) 30 (24) 

NS 48 (80) 45 (70) 93 (75) 

Development methods    

Development method/algorithm
B 

   

ML algorithms 48 (80) 0 (0) 48 (39) 

Logistic regression 40 (67) 15 (23) 
C
 55 (44) 

Cox regression 0 (0) 5 (8) 5 (4) 

Fine-Gray model 2 (3) 0 (0) 2 (2) 

Clinical expertise 0 (0) 2 (3) 2 (2) 

NS 0 (0) 44 (69) 
D
 44 (35) 

Internal validation method
B
    

Cross-validation 21 (35) 3 (5) 
G
 24 (19) 

Data splitting 28 (47) 0 (0) 28 (23) 

Not done / NS 22 (37) 
F
 61 (95) 83 (67) 

Median (range) no. of final predictors
E
 7 (3 – 23) 8 (3 – 12) 7 (3 – 23) 

Study cohort    

Median (range) total sample size 2674 (27 – 1252313) 285 (15 – 31150) 686 (15 – 1252313) 

Median (range) number of events 207 (8 – 86410) 51 (9 – 1350) 98 (8 – 86410) 

Median (range) proportion of events 

(% of sample size) 

10.43% (0.42% – 

80.00%) 

14.84% (1.18% – 

46.67%) 

14.69% (0.42% – 

80.00%) 

Note that tools were categorised as ML or non-ML tools based on the descriptions from authors of the included systematic 308 
reviews that the tools were identified in. 

 A
 the 32 included systematic reviews; 

B
 tools use multiple methods, therefore total 309 

number not equal to N (100%); 
C
 one study also used discriminant analysis for model development; 

D
 many seemed to use 310 

clinical expertise, but development methods were not clearly reported; 
E
 counting of final predictors may vary between 311 

models: some authors may count individual factors, while others consider domains or subscales; 
F
 one review

36
 implies 5 312 

models did not implement internal validation; 
G
 ‘resampling’ (not described further) was used for the development of 2 313 

models; ML – machine learning; NS – not stated; ICU – intensive care unit; PI – pressure injury. 314 
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Table 5. Predictor categories and frequency (%) of inclusion in N=66 tools. 315 

Predictor category 
No. of tools 

predictor appears in 

Age 33 (50) 

Pre-disposing conditions 32 (48) 

Receiving medical treatment/care 28 (42) 

Mobility 27 (41) 

Laboratory values 23 (35) 

Continence 22 (33) 

Nutrition 22 (33) 

Body 21 (32) 

Mental Status 21 (32) 

Activity 21 (32) 

Gender 21 (32) 

Skin 18 (27) 

General Health 14 (21) 

Braden
10 11

 score 8 (12) 

Length of stay 8 (12) 

Pressure injury 7 (11) 

Surgery duration 6 (9) 

Ability to ambulate  6 (9) 

Medical unit, ward, visit 5 (8) 

Ethnicity or place of birth 5 (8) 

Friction, shear, pressure 3 (5) 

Body position 3 (5) 

Pain 3 (5) 

Hygiene 2 (3) 

Isolation 2 (3) 

Smoking 2 (3) 

Norton
12

 or Waterlow
13

 score 2 (3) 

'Special' (not explained) 2 (3) 

Figures are given as count (% out of 66 tools with information on predictors). Note that multiple predictors may fall within 316 
the same predictor category. For instance, the category ‘skin’ may encompass both 'skin moisture' and 'skin integrity’, with 317 
the frequency count reflecting the entire predictor category rather than individual predictors.  318 

  319 
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DISCUSSION 320 

This umbrella review summarises data from 32 eligible systematic reviews of PI risk prediction tools. 321 

Quality assessment using an adaptation of AMSTAR-2 revealed that most reviews were conducted to 322 

a relatively poor standard. Critical flaws were identified, including inadequate or absent reporting of 323 

protocols (23/32, 72%), inappropriate statistical synthesis methods (13/17, 76%) and lack of 324 

consideration for risk of bias judgements when discussing review results (17/32, 53%). Despite the 325 

large number of risk prediction models identified, only seven reviews reported information about 326 

model development and validation, predominantly for ML-based prediction models. The remaining 327 

reviews reported the accuracy (sensitivity and specificity), or effectiveness of identified models. The 328 

studies included in the ‘accuracy’ reviews that we identified, typically reported a binary classification 329 

of participants as high or low risk of PI based on the risk prediction tool scores, rather than 330 

constituting external validations of models. For many (44/64, 69%) prediction tools that were 331 

developed without the use of ML, we were not able to determine whether reliable and robust 332 

statistical methods were used or whether models were essentially risk assessment tools developed 333 

based on expert knowledge. For nearly half (58/124, 47%) of the identified tools, predictors included 334 

in the final models were not reported. Details of study populations and settings were also lacking. It 335 

was not always clear from the reviews whether the poor reporting occurred at review level or in the 336 

original primary study publications.  337 

Model development algorithms included logistic regression, decision trees and random forests, with 338 

a vast number of ML-based models having been developed in the last five years. Although logistic 339 

regression is considered a statistical approach
107

, it does share some characteristics with ML 340 

methods.
108

 Modern ML frameworks and libraries have streamlined the automation of logistic 341 

regression, including feature selection, hyperparameter optimisation, and cross-validation, solidifying 342 

its role within the ML ecosystem; however, logistic regression may still appear in non-ML contexts, as 343 

some developers continue to apply it using more traditional methods. Most (6/7, 86%) of our set of 344 

reviews reported the use of logistic regression as part of an ML-based approach, however this 345 

reflects the classifications used by included systematic reviews as opposed to our own assessment of 346 

the methods used in the primary studies, and may therefore be an overestimation of the use of ML 347 

models.  348 

In contrast to logistic regression approaches, decision trees and random forests may not produce a 349 

quantitative risk probability. Instead, they commonly categorise patients into binary ‘at risk’ or ‘not 350 

at risk’ groups. Although the risk probabilities generated in logistic regression prediction models can 351 

be useful for clinical decision making, it was not possible to derive any information about thresholds 352 

used to define ‘at risk’ or ‘not at risk’, and for most reviews, it was unclear what the final model 353 

comprised of. This lack of transparency poses potential hurdles in applying these models effectively 354 

in clinical settings. 355 

A recent systematic review of risk of bias in ML-developed prediction models found that most 356 

models are of poor methodological quality and are at high risk of bias.23 In our set of reviews, of the 357 

four reviews that conducted a risk of bias assessment using the PROBAST tool, all models but one103 358 

were found to be at high or unclear risk of bias.37 52-54 This raises significant concerns about the 359 

accuracy of clinical risk predictions. This issue is particularly critical in light of emerging evidence
104

 360 

on skin tone classification versus ethnicity/race-based methods in predicting pressure ulcer risk. 361 

These results underscore the need for developing bias-free predictive models to ensure accurate and 362 

equitable healthcare outcomes, especially in diverse patient populations. 363 
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Where the method of internal validation was reported, split-sample and cross-validation were the 364 

most commonly used techniques, however, detail was limited, and it was not possible to determine 365 

whether appropriate methods had been used. Although split-sample approaches have been favoured 366 

for model validation, more recent empirical work suggests that bootstrap-based optimism 367 

correction105 or cross-validation106 are preferred approaches. None of the included reviews reported 368 

the use of optimism correction approaches. 369 

Only two reviews included external validations of previously developed models52 54, however limited 370 

details of model performance were presented. External validation is necessary to ensure a model is 371 

both reproducible and generalisable109 110, bringing the usefulness of the models included in these 372 

reviews into question. The PROGRESS framework suggests that multiple external validation studies 373 

should be conducted using independent datasets from different locations.
15

 In the two reviews that 374 

included model validation studies
52 54

, it is unclear whether these studies were conducted in different 375 

locations. Where reported, they were all conducted in the same setting as the corresponding 376 

development study. PROGRESS also suggests that external validations are carried out in a variety of 377 

relevant settings. Shi and colleagues52 described four of eight validations as using ‘temporal’ data, 378 

which suggests that the validation population is largely the same as the development population but 379 

with use of data from different timeframes. This approach has been described as lying somewhere 380 

‘between’ internal and external validation, further emphasising the need for well-designed external 381 

validation studies.109 382 

Importantly, model recalibration was not reported for any external validations. Evidence suggests 383 

greater focus should be placed on large, well-designed external validation studies to validate and 384 

improve promising models (using recalibration and updating
111

), rather than developing a multitude 385 

of new ones.15 18 Model validation and recalibration should be a continuous process, and this is 386 

something that future research should address. Following external validation, effectiveness studies 387 

should be conducted to assess the impact of model use on decision making, patient outcomes and 388 

costs.15  389 

The effective use of prediction tools is also influenced by the way in which the model’s output is 390 

presented to the end-user. Only one review52 reported the presentation format of included tools, 391 

such as formula equations and nomograms. In conjunction with this, identifying and mitigating 392 

modifiable risk factors can help prevent PIs. Additional effort is needed in the development of risk 393 

prediction tools to extract predictors that are risk modifiers and provide end-users with this 394 

information, to make the predictions more interpretable and actionable. 395 

Risk stratification in itself is not clinically useful unless it leads to an effective change in patient 396 

management. For instance, in high-risk groups, additional types of preventive interventions can be 397 

triggered, or default preventive measures can be applied more intensively (e.g., more frequent 398 

repositioning) based on the results of the risk assessment. While sensitivity and specificity are valid 399 

performance metrics, their optimisation must consider the cost of misclassification. Net benefit 400 

calculations, which can be visualised through decision curves,112 provide a more reliable means of 401 

evaluating the clinical utility of risk assessment for PIs across a range of thresholds at which clinical 402 

action is indicated. These calculations can assist in providing a balanced use of resources while 403 

maximising positive health outcomes, such as lowering incidence of PI. 404 

It is also important to assess whether the tool can improve outcomes with existing preventive 405 

interventions and whether it integrates well into clinical workflows (i.e., clinical effectiveness).  A 406 

well-developed tool with good calibration and discrimination properties may be of limited value if 407 

these practical concerns are not addressed. Therefore, model developers should check the expected 408 
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value of prognosis and how the tool can guide prevention when employed in practice, before 409 

planning model development. If it’s determined that there is no value in predicting certain outcomes 410 

– that brings into question whether the model should even be developed.113 411 

Despite the advances in methods for developing risk prediction models, scales developed using 412 

clinical expertise such as the Braden Scale
10 11

, Norton Scale
12

, Waterlow Score
13

 and Cubbin-Jackson 413 

Scales
97 98

 are extensively discussed in numerous clinical practice guidelines for patient risk 414 

assessment, and are commonly used in clinical practice.6 114 Although guidelines recognise their low 415 

accuracy, they are still acknowledged, while other risk prediction models are not even considered. 416 

This may be due to the availability of at least some clinical trials evaluating the clinical utility of 417 

scales.39 Some scales, such as the Braden scale10 11, are so widely used that they have become an 418 

integral component of risk assessment for PI in clinical practice, and have even been incorporated 419 

into EHRs. Their widespread use may impede the progress towards development, validation and 420 

evaluation of more accurate and innovative risk prediction models. Striking a balance between 421 

tradition and embracing advancements is crucial for effective implementation in healthcare settings 422 

and improving patient outcomes. 423 

Strengths and limitations 424 

Our umbrella review is the first to systematically identify and evaluate systematic reviews of risk 425 

prediction models for PI. The review was conducted to a high standard, following Cochrane 426 

guidance40, and with a highly sensitive search strategy designed by an experienced information 427 

specialist. Although we excluded non-English publications due to time and resource constraints, 428 

where possible these publications were used to identify additional eligible risk prediction models. To 429 

some extent our review is limited by the use of AMSTAR-2 for quality assessment of included 430 

reviews. AMSTAR-2 was not designed for assessment of diagnostic or prognostic studies and, 431 

although we made some adaptations, many of the existing and amended criteria relate to the quality 432 

of reporting of the reviews as opposed to methodological quality. There is scope for further work to 433 

establish criteria for assessing systematic reviews of prediction models.  434 

The main limitation, however, was the lack of detail about risk prediction models and risk prediction 435 

model performance that could be determined from the included systematic reviews. To be as 436 

comprehensive as possible in model identification, we were relatively generous in our definition of 437 

‘systematic’, and this may have contributed to the often-poor level of detail provided by included 438 

reviews. It is likely, however, that reporting was poor in many of the primary studies contributing to 439 

these reviews. Excluding the ML-based models, more than half of available risk prediction scales or 440 

tools were published prior to the year 2000. The fact that the original versions of reporting 441 

guidelines for diagnostic accuracy studies115 and risk prediction models116 were not published until 442 

2003 and 2015 respectively, is likely to have contributed to poor reporting. In contrast, the ML-based 443 

models were published between 2000 and 2023, with a median year of 2020. Reporting guidelines 444 

for development and validation of ML-based models are more recent
117 118

, but aim to improve the 445 

reporting standards and understanding of evolving ML technologies in healthcare.  446 

CONCLUSIONS 447 

There is a very large body of evidence reporting various risk prediction scales, tool and models for PI 448 

which has been summarised across multiple systematic reviews of varying methodological quality. 449 

Only five systematic reviews reported the development and validation of models to predict risk of 450 

PIs. It seems that for the most part, available models do not meet current standards for the 451 

development or reporting of risk prediction models. Furthermore, most available models, including 452 

ML-based models have not been validated beyond the original population in which they were 453 
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developed. Identification of the optimal risk prediction model for PI from those currently available 454 

would require a high-quality systematic review of the primary literature, ideally limited to studies 455 

conducted to a high methodological standard. It is evident from our findings that there is still a lack 456 

of consensus on the optimal risk prediction model for PI, highlighting the need for more standardised 457 

and rigorous approaches in future research. 458 

459 
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Table 1. Summary of included systematic review characteristics 460 

Review characteristics 

Reviews on model 

development 

and validation (N=7) 

Reviews on accuracy 

or clinical effectiveness 

(N=26) 

All included reviews 

(N=32) 

Median (range) year of publication 2022 (2019 – 2023) 2017 (2006 – 2024) 2019 (2006 – 2024) 

Eligibility criteria    

Participants    

Adults only 2 (29) 
A
 15 (58) 

B
 16 (50) 

A,B 

Any age 0 (0) 2 (8) 2 (6) 

No age restriction reported 5 (71) 9 (35) 14 (44) 

Presence of PI at baseline    

No PIs at baseline 0 (0) 6 (23) 6 (19) 

NS 7 (100) 20 (77) 26 (81) 

Setting    

Any healthcare setting 0 (0) 2 (8) 2 (6) 

Hospital 3 (43) 3 (12) 5 (16) 

Acute care (incl. surgical and ICU) 0 (0) 8 (31) 8 (25) 

Hospital or acute care 0 (0) 2 (8) 2 (6) 

Long-term care 0 (0) 2 (8) 2 (6) 

Long-term, acute or community settings 0 (0) 1 (4) 1 (3) 

NS 4 (57) 8 (31) 12 (38) 

Risk assessment tools    

Any prediction tool or scale 0 (0) 9 (35) 9 (28) 

Specified clinical scale(s) 0 (0) 12 (46) 12 (38) 

ML-based prediction models 6 (86) 2 (8) 7 (22) 

ML or statistical models 1 (14) 0 (0) 1 (3) 

PI prevention strategies 0 (0) 1 (4) 1 (3) 

NS 0 (0) 2 (8) 2 (6) 

PI classification system    

Any 0 (0) 1 (4) 1 (3) 

Accepted standard classifications 0 (0) 2 (8) 2 (6) 

Several specified classification systems 

(NPUAP, EPUAP, AHCPR or TDCPS) 

0 (0) 3 (12) 3 (9) 

Other 0 (0) 1 (4) 1 (3) 

NS 7 (100) 19 (73) 25 (78) 

Source of data     

Prospective only 0 (0) 4.5 (17) 
C
 4.5 (14) 

C 

Prospective or retrospective 1 (14) 2.5 (10) 
C
 3.5 (41) 

C 

NS 6 (86) 19 (73) 24 (75) 

Study design restrictions    

Yes 1 (14) 14 (54) 15 (47) 

No 0 (0) 3 (12) 3 (9) 

NS 6 (86) 9 (35) 14 (44) 

Review methods    

Median (range) no. sources
D
 searched 5 (2 – 9) 6 (2 – 14) 5 (2 – 14) 

Publication restrictions:    

End date (year)    

2000-2009 0 (0) 3 (12) 3 (9) 

2010-2019 1 (14) 16 (62) 17 (53) 

2020-2023 6 (86) 7 (27) 12 (38) 

Language    

English only 5 (71) 10 (38) 15 (47) 

2 languages 1 (14) 3 (12) 3 (9) 

>2 languages 0 (0) 3 (12) 3 (9) 

No restrictions 0 (0) 4 (15) 4 (13) 
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NS 1 (14) 6 (23) 7 (23) 

Quality assessment tool 
E
    

PROBAST 4 (57) 1 (4) 
F 

4 (13) 
F 

QUADAS 0 (0) 2 (8) 2 (6) 

QUADAS-2 0 (0) 8 (31) 8 (25) 

JBI tools 1 (14) 3 (12) 4 (13) 

CASP 0 (0) 2 (8) 2 (6) 

Cochrane RoB tool 0 (0) 1 (4) 1 (3) 

Other 0 (0) 6 (23) 6 (19) 

None 2 (29) 4 (15) 6 (19) 

Meta-analysis included 2 (29) 15 (58) 16 (50) 

Method of meta-analysis 

(% of reviews incl. meta-analysis) 
  

 

Univariate RE/FE model (depending on 

heterogeneity assessment) 

1 (50) 
G
 2 (13) 

G
 3 (19) 

Univariate RE model 1 (50) 6 (40) 
G
 6 (38) 

G 

Hierarchical model (for DTA studies) 0 (0) 2 (13) 2 (13) 

Unclear/NS 0 (0) 5 (33) 
G
 5 (31) 

G 

Volume of evidence    

Median (range) no. studies 22 (3 – 35) 15 (1 – 70) 17 (1 – 70) 

Median (range) no. participants 
408,504 (6,674 – 

1,278,148) 

7,684 (528 – 408,504) 11,729 (528 – 1,278,148) 

Median (range) no. tools 21 (3 – 35) 3 (1 – 28) 4 (1 – 35) 

Figures are number (%) of reviews, unless otherwise specified. 
A
 one review

55
 specified restricting to “adult” populations, 461 

but only restricted by aged ≥14 years; 
B
 one review

60
 restricted to aged >60 years; 

C
 one review 

56
 states either prospective 462 

or retrospective data eligible for Research Question 1, but prospective only for Research Question 2, hence 0.5 added to 463 
each category; 

D
 including databases, bibliographies or registries; 

E
 reviews may fall into multiple categories, therefore total 464 

number within domain not necessarily equal to N (100%); 
F
 one review

38
 reported use of PROBAST in methods, but did not 465 

present any PROBAST results; 
G
 one review conducts univariate meta-analysis for a single estimate, e.g. c-statistic

52
, AUC

62
, 466 

RR
57

, or OR.
58

 467 
AHCPR – Agency for Health Care Policy and Research; CASP – Critical Appraisal Skills Programme; DTA – diagnostic test 468 
accuracy; EPUAP – European Pressure Ulcer Advisory Panel; FE – fixed effects; ICU – intensive care unit; JBI – Joanna Briggs 469 
Institute; ML – machine learning; NPUAP – National Pressure Ulcer Advisory Panel; NS – not stated; PI – pressure injury; 470 
PROBAST – Prediction model Risk of Bias Assessment; QUADAS (2) – Quality Assessment of Diagnostic Accuracy Studies 471 
(Version 2); RE – random effects; TDCPS – Torrance Developmental Classification of Pressure Sore. 472 

  473 
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Table 3. Results of reviews reporting model development and validation 474 

Review author 

(publication 

year) 

DEV/ 

VAL 

(no. studies) 

Setting of included studies; data 

sources 

Model 

development 

algorithms  

Internal validation 

methods  

Brief description of study quality Summary of model performance results 

Barghouthi
55

 

(2023) 

DEV (23) Setting of included studies NS, 

but the review’s inclusion criteria 

specified hospital settings 

 

Retrospective n=15; prospective 

n=5;  

both retrospective and 

prospective n=1;  

case-control study n=1; 

experimental study design n=1 

 

EHRs n=20; international or 

national database n=3 

LR n=18; RF n=13; 

DT n=5; NN n=5; 

SVM n=5; Fine-

Gray Model n=2; 

KNN n=2; XGBoost 

n=2; Adaboost n=1; 

BART n=1; EBM 

n=1; Gaussian 

Naïve Bayes n=1; 

GB n=1; GBM n=1; 

LDA n=1; NB n=1 

Split sample n=17; 

NS n=6 

RoB assessed using JBI critical 

appraisal checklist for cohort 

studies, and only summary results 

provided. 

 

Only one domain was low RoB 

across all included studies, which 

was whether the participants were 

free from the outcome (PIs) at the 

start of the study. 

 

Domains with mostly high-risk 

(<50%) or moderate-risk (51-81%) 

results related to statistical 

analysis methods, follow-up time, 

dealing with confounding factors, 

and measurement of the exposure. 

Only reported measures of discrimination: 

Accuracy ranged between 0.52 (ML Walther
73

) 

and 0.99 (ML Anderson
74

); 

Sensitivity ranged between 0.04 (ML 

Walther
73

) and 1 (ML Hu
75

, ML Anderson
74

); 

Specificity ranged between 0.69 (ML Hyun
76

, 

ML Nakagami
77

) and 1 (ML Cai
78

, ML 

Walther
73

); 

PPV ranged between 0.01 (ML Nakagami
77

) 

and 1 (ML Cai
78

); 

NPV ranged between 0.08 (ML SPURS
79

, ML 

Cramer
80

) and 1 (ML Hu
75

, ML Anderson
74

, ML 

Ladios-Martin
81

); 

AUC ranged between 0.50 (ML Cai
78

) and 1 

(ML Hu
75

, ML Cai
78

) 

Dweekat
36

 

(2023) 

DEV (34); 

unclear (1)
A 

HAPI/CAPI n=32; SRPI n=2; 

detection of PI (effect on length 

of stay) n=1; nursing home 

residents n=2 

 

Data sources NS 

 

LR n=20; RF n=18; 

DT n=12; SVM 

n=12; MLP n=9; 

KNN n=4; LDA n=1; 

other n=19 

CV n=10; split 

sample n=10; split 

sample and CV 

n=8; NS n=7 

No RoB assessment Results not reported; review focused on 

methods only 

Jiang
37

 (2021) DEV (9) ICU n=3; operating room n=2; 

acute care hospital n=1; 

oncology department n=1; end-

of-life care n=1; mobility-related 

disabilities n=1 

 

EHRs used in all models 

DT n=5; LR n=3; NN 

n=2; SVM n=2; BN 

n=1; GB n=1; MTS 

n=1; RF n=1  

Split sample n=4; 

NS n=9 

RoB assessed using PROBAST. 

Overall RoB high for all predictive 

models. All models at high RoB in 

analysis domain.  

Only reported measures of discrimination: 

F-score ranged between 0.377 (ML Su MTS
82

) 

and 0.670 (ML Su LR
82

); 

G-means ranged between 0.628 (ML 

Kaewprag BN
83

) and 0.822 (ML Su MTS
82

); 

Sensitivity ranged between 0.478 (ML 

Kaewprag
83

) and 0.848 (ML Yang
84

); 

Specificity ranged between 0.703 (ML Deng
85

) 

and 0.988 (ML Su LR
82

) 

Pei
54

 (2023) DEV (17); 

DEV+VAL (1) 

DEV 

ICU n=4; hospitalised patients 

n=8; hospitalised patients 

RF n=12; LR n=11; 

DT n=9; SVM n=8; 

NN n=5; MTS n=1; 

CV n=1; Split 

sample n=5; split 

sample and CV 

RoB assessed using PROBAST. 

Overall, 16/18 (88.9%) papers 

were at high RoB, 1 (5.6%) was at 

Only reported measures of discrimination: 

Summary AUC 

0.9449 
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Review author 

(publication 

year) 

DEV/ 

VAL 

(no. studies) 

Setting of included studies; data 

sources 

Model 

development 

algorithms  

Internal validation 

methods  

Brief description of study quality Summary of model performance results 

awaiting surgery n=3; cancer 

patients n=1; end-of-life 

inpatients n=1 

 

Retrospective n=14; prospective 

n=3 

 

EHRs n=12; MIMIC-IV database 

n=1; CONCERN database n=1 

 

DEV+VAL 

ICU n=1 

Retrospective n=1 

EHRs n=1 

NB n=3; KNN n=2; 

MLP n=1; XGBoost 

n=2; BART n=1; 

LASSO n=1; BN 

n=1; ANN n=1; EN 

n=1; GBM n=1; 

Other
B
 n=1 

n=10; NS n=2 unclear RoB and only 1 (5.6%) was 

at low RoB. 

14 (77.8%) studies were at high 

RoB in the analysis domain. The 

most common factors contributing 

to the high risk of bias in the 

analysis domain included an 

inadequate number of events per 

candidate predictor, poor handling 

of missing data and failure to deal 

with overfitting. 

 

Summary sensitivity 

0.79 (95% CI: 0.78, 0.80); Ncases = 19,893 

 

Summary specificity 

0.87 (95% CI: 0.88, 0.87); Nnon-cases = 388,611 

 

Summary likelihood ratios 

PLR 10.71 (95% CI: 5.98, 19.19)  

NLR 0.21 (95% CI: 0.08, 0.50) 

 

Pooled odds ratio 

52.39 (95% CI: 24.83, 110.55) 

Ribeiro
51

 

(2021) 

DEV (3) SRPI cardiovascular n=2; SRPI 

critical care n=1 

 

EHRs used in n=2 models 

ANN n=1; RF n=1; 

XGBoost n=1 

Split sample n=2; 

NS n=1 

No RoB assessment  Only reported measures of discrimination:  

Accuracy ranged between 0.79 (ML Alderden 
86

) and 0.82 (ML Chen
87

).  

Shi
52

 (2019) DEV (21); VAL 

(7) 

DEV 

General acute care hospital n=7; 

long-term care n=5; specific 

acute care (e.g. ICU) n=4; 

cardiovascular surgery n=2; 

trauma and burn centres n=1; 

rehabilitation units n=1; unclear 

n=1 

 

Retrospective n=11; prospective 

n=10 

 

VAL 

Long-term care n=3; specific 

acute care (e.g. ICU) n=2; general 

(acute care) hospital n=2 

 

Retrospective n=4; prospective 

n=3 

LR n=16; cox 

regression n=5; 

ANN n=1; C4.5 ML 

(DT induction 

algorithm) n=1; DA 

n=1; DT n=1; NS 

n=1 

 

 

CV n=1; tree-

pruning n=1; split 

sample n=1; re-

sampling n=2; NS 

n=16 

RoB assessed using PROBAST. 

DEV 

Overall RoB unclear for two 

models. Overall RoB high for the 

remaining 19 models. Analysis and 

outcome domains were mostly at 

high RoB. 

VAL 

Overall RoB unclear for three 

validation studies. Overall RoB high 

for the remaining four validation 

studies. Analysis and outcome 

domains were mostly at high RoB. 

C-statistics
C
 ranged between 0.61 (interRAI 

PURS
88

) and 0.90 (TNH-PUPP
89

); 

O/E ratios
C
 ranged between 0.91 (Berlowitz 

MDS
90

) and 1.0 (prePURSE study tool
91

) 

 

Pooled C-statistics
C
  

TNH-PUPP
89

: 0.86 (95% CI 0.81–0.90), n=2 

Fragmment scale
92

: 0.79 (95% CI 0.77–0.82), 

n=1
D 

Berlowitz 11-item model
93

: 0.75 (95% CI 0.74–

0.76), n=2 

Berlowitz MDS model
90

: 0.73 (95% CI 0.72–

0.74), n=2 

interRAI PURS
88

: 0.65 (95% CI 0.60–0.69), n=3 

Compton
94

: 0.81 (95% CI 0.78–0.84), n=2 

 

Pooled O/E ratios
C 

Berlowitz 11-item model
93

: 0.99 (95% CI 0.95–

1.04), n=2 
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Review author 

(publication 

year) 

DEV/ 

VAL 

(no. studies) 

Setting of included studies; data 

sources 

Model 

development 

algorithms  

Internal validation 

methods  

Brief description of study quality Summary of model performance results 

Berlowitz MDS
90

: 0.94 (95% CI 0.88–1.01), n=2 

Zhou
53

 (2022) DEV (22) SRPI n=3; ICU n=11; hospitalised 

n=6; rehabilitation centre n=1; 

hospice n=1 

 

EHR n=18; MIMIC-III database 

n=4 

LR n=15; RF n=10; 

DT n=9; SVM n=9; 

ANN n=8; BN n=3; 

XGBoost n=3; GB 

n=2; AdaBoost n=1; 

CANTRIP n=1; 

LSTM n=1; EN n=1; 

KNN n=1; MTS n=1; 

NB n=1 

CV n=12; NS n=10 RoB assessed using PROBAST. 

Overall RoB unclear for five 

studies. Overall RoB high for 15 

models. RoB not assessed in two 

studies due to use of unstructured 

data. 

Only reported measures of discrimination: 

F1 score ranged between 0.02 (ML 

Nakagami
77

) and 0.99 (ML Song [2]
95

); 

AUC ranged between 0.78 (ML Delparte
96

) and 

0.99 (ML Song [2]
95

); 

Sensitivity ranged between 0.08 (ML Cai
78

) and 

0.99 (ML Song [2]
95

); 

Specificity ranged between 0.63 (ML 

Delparte
96

) and 1 (ML Cai
78

) 
A 

Appears to be a model validation study but the review only included model development studies. 475 
B
 Other includes: average perception, Bayes point machine, boosted DT, boosted decision forest, decision jungle and locally deep SVM. All reported for one study

81
. 476 

C 
Values from fixed-effects meta-analyses, pooling development and external validation study estimates together. 477 

D 
One data source but included two C-statistic values (one for model development and one for internal validation) that were subsequently pooled. 478 

AUC – area under curve; ANN – artificial neural network; BART – Bayesian additive regression tree; BN – Bayesian network; CAPI – community-acquired pressure injury; CANTRIP - reCurrent 479 

Additive Network for Temporal RIsk Prediction; CONCERN – Communicating Narrative Concerns Entered; CV – cross-validation; DEV – development; DOR – diagnostic odds ratio; DT – decision 480 

tree; EBM – explainable boosting machine; EHRs – electronic health records; EN – elastic net; GB(M) – gradient boosting (machine); HAPI – hospital-acquired pressure injury; ICU – intensive 481 

care unit; JBI – Joanna Briggs Institute; KNN – k-nearest neighbours; LASSO – least absolute shrinkage and selection operator; (L)DA – (linear) discriminant analysis; LSTM – long short-term 482 

memory; LR – logistic regression; MIMIC – Medical Information Mart for Intensive Care; ML – machine learning; MLP – multilayer perceptron; MTS – Mahalanobis-Taguchi system; N/A – not 483 

applicable; NB – naïve Bayes; NN – neural network; NLR – negative likelihood ratio; NS – not stated; O/E – observed vs expected; PI – pressure injury; PLR – positive likelihood ratio; PROBAST – 484 

Prediction model Risk of Bias ASsessment Tool; RF – random forest; RoB – risk of bias; SRPI – surgery-related pressure injury; SVM – support vector machine; VAL – validation; XGBoost – 485 

extreme gradient boosting486 
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