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Abstract 

Objectives Recent advancements have extended the treatment window for large vessel 

occlusion in acute ischemic stroke, prompting a shift in the standard of care for patients 

presenting within 6 to 24 hours. We developed and externally validated an automated deep 

learning algorithm for detecting thrombectomy amenable vessel occlusion (TAVO) in 

computed tomography angiography (CTA). 

Methods The algorithm was trained on 2,045 acute ischemic stroke patients who underwent 

CTA, and validation was conducted using two external datasets comprising 64 (external 1) 

and 313 (external 2) patients with ischemic stroke. TAVO was defined as occlusion in the 

intracranial internal carotid artery (ICA), or M1/M2 segment of the middle cerebral artery 

(MCA). Utilizing U-Net for vessel segmentation and EfficientNetV2 for TAVO prediction, 

the algorithm's diagnostic performance was assessed using the area under the receiver 

operating characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV). 

Results The mean age in the training and validation dataset was 68.7±12.6; 56.3% were men, 

and 18.0% had TAVO. The algorithm achieved AUC of 0.950 (95% CI, 0.915–0.971) in the 

internal test. For the external datasets 1 and 2, the AUCs were 0.970 (0.897–0.997) and 0.971 

(0.924–0.990), respectively. Notably, the algorithm demonstrated robust sensitivity and 

specificity (approximately 0.95) for intracranial ICA or M1-MCA occlusion, but a slight 

reduction in performance for isolated M2-MCA occlusion. 

Conclusion This validated algorithm has potential applications in identifying TAVO and 

could aid less-experienced clinicians, potentially expediting the treatment process for eligible 

patients.  
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Introduction 

Advancements in stroke imaging and procedural devices have extended the 

endovascular treatment (EVT) window for patients with hyperacute ischemic stroke.1,2 The 

DAWN (DWI or CTP Assessment with Clinical Mismatch in the Triage of Wake-Up and Late 

Presenting Strokes Undergoing Neurointervention with Trevo) and DFFUSE 3 (Endovascular 

Therapy Following Imaging Evaluation for Ischemic Stroke) trials have changed the standard 

of care for ischemic stroke patients who present within 6 to 24 hours of their last well known 

status. 

Triage entry for clinical trials primarily relies on magnetic resonance imaging (MRI) 

or computed tomography perfusion (CTP) to identify clinical or tissue mismatch and is now 

endorsed in guidelines. However, access to acute MRI or CTP is limited and not commonly 

available in the majority of primary stroke centers worldwide. Recent studies have brought 

attention to more readily available imaging techniques, such as CT angiography.3 The CT for 

Late Endovascular Reperfusion (CLEAR) trial4 revealed no significant differences in clinical 

outcomes between patients selected using non-contrast CT with CT angiography and those 

selected using CTP or MRI. In addition, a sub-study5 of the HERMES collaboration (Highly 

Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials) has extended this 

approach to the early time window (0-6 hours) by demonstrating that the rates of favorable 

functional outcomes were comparable between patients who underwent CTP and those who 

did not. 

Two-thirds of EVT candidates were initially routed to centers not equipped for EVT,6 

despite better outcomes and higher chances of receiving EVT at EVT-capable centers. 

Consequently, non-EVT-capable centers must consistently identify large vessel occlusion 

(LVO) around the clock, ensuring quick reporting to facilitate patient transfer to EVT-capable 

centers. However, a lack of vascular specialists poses challenges for many smaller, non-EVT-

capable centers. Even in EVT-capable centers, the ability to screen CTAs for the presence of 

LVOs can streamline workflow, staffing, and door-to-puncture times by facilitating LVO 

detection. Machine learning has been employed to automate LVO detection in CTA, which is 

now in clinical use in a few countries.7,8 However, independent external evaluation of these 

automated LVO detection algorithms have shown only modest sensitivity.7,8 Moreover, 

machine learning algorithms contingent on Hounsfield unit and hemisphere asymmetry 
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information have limited its applicability in patients with bilateral occlusions, such as 

Moyamoya disease.9 

In contrast to initial focus on intracranial LVO, recent advancements in 

neurointerventional devices and cerebrovascular imaging have expanded the application of 

EVT to medium vessel occlusions. Consequently, the selection of appropriate EVT 

candidates has become more complex, necessitating advanced imaging. This complexity 

poses a challenge for less experienced clinicians in making treatment decision.10 

In the context of current clinical practice, we have developed and validated a fully 

automated deep learning algorithm to detect comprehensive EVT target vessels. This includes 

not only the well-known LVOs but also other relevant vessel occlusions. Out development 

utilized a dataset from multiple centers in Korea, encompassing 2,441 patients with acute 

ischemic stroke. The deep learning algorithms were specifically designed for 1) selecting the 

appropriate slices for consistent maximal intensity projection (MIP) image generation, 2) 

segmenting vessels on MIP images, and 3) identifying vessel occlusions using the vessel 

segmentation mask. We further validated the algorithm with two independent external 

datasets. 

 

 

Materials and methods 

Datasets 

Training validation, and internal test 

From May 2011 and June 2013, 1,745 patients were recruited from two hospitals. 

Additionally, 389 patients were included from a university hospital between August 2020 and 

May 2021. After combining these groups, a total of 2,134 patients who were suspected with 

ischemic stroke and who underwent CT angiography were initially considered (refer to 

Supplemental Figure 1). Following the exclusion of 89 patients, the final cohort consisted of 

2,045 patients. These were divided into training, validation, and internal test datasets, with 

1,277, 144, and 624 patients in each group, respectively.  

External test  
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Between April 2011 and July 2013, a total of 71 patient were included from two 

tertiary hospitals. After excluding 7 patients, 64 were assigned to external test dataset 1. In 

addition, 337 patients from a university hospital were included for the period between 

February 2017 and March 2022. After excluding 24 patients from this group, 313 were 

assigned to external test dataset 2. The study procedure was approved by the institutional 

review boards of Korea University Guro Hospital (2023GR280), and written consent was 

waived due to the retrospective and anonymized nature of the study design.  

 

Definition of Thrombectomy Amenable Vessel Occlusion 

In our study, the vascular occlusions we aimed to investigate are termed as 

Thrombectomy Amenable Vessel Occlusion (TAVO) which include any arterial occlusion 

involving the intracranial internal carotid artery (ICA), middle cerebral artery (MCA)-M1, 

and MCA-M2 segments. Intracranial ICA is defined as the segment of the ICA from the 

petrous part to the MCA-ACA bifurcation. MCA-M1 indicates the MCA segment from the 

MCA-ACA bifurcation to the MCA branching point, and the MCA-M2 refers to the segment 

of the MCA ascending vertically along with Sylvian fissure from its branching point. For the 

subsequent analysis, TAVO patients were divided into intracranial LVO and isolated MCA-

M2 occlusion in our study.11 In cases of early division of the MCA, a functional rather than 

traditional angiographic definition was adopted; the short proximal trunk was called the M1 

segment and the branches distal to division were defined as M2 segments. To determine the 

presence of TAVO, each image used in the study was reviewed by an experienced neurologist 

along with the subject’s MR image (MRI) scans and patient symptom data. The neurologist’s 

TAVO diagnosis was cross-referenced with the stroke registry, which was independently 

verified by attending vascular neurologists at each hospital. In case of disagreement, a 

consensus was made. 

 

Algorithm Description 

Slices selection for maximal intensity projection image generation 

In order to maintain the uniformity of the input image for the deep learning model, 

we have developed an automated approach for selecting slices from the source images 
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(Figure 1). These slices are then used to create a maximum intensity projection (MIP) image. 

We constructed a sagittal bone array by summing the pixel values of the source images. This 

process automatically outlines the skull, enabling the automatic determination of the vertex 

and the C1 atlas.12 Using this method on the training data, we effectively identified target 

slices in 1240 cases, which accounts for 97.1% of the total. We calculated the mean and 

standard deviation of the distance between the vertex and C1 atlas in these patients. For cases 

falling outside the mean ± 2SD range, we utilized the second method, a deep learning-based 

algorithm. This model, modified Inception,13 classifies CTA source images from the vertex to 

the C1 atlas as target regions. We used 100 randomly selected cases (4,020 CTA source 

images), where the first method correctly identified the vertex and C1 atlas. Of these, 89 

cases were used for training and 11 cases for validation. The method accurately identified 

target slices within a 5% margin of error in all cases in the validation dataset. By combining 

these two techniques, we successfully produced MIP images with a uniform range across all 

patients in the training and validation dataset. Following skull stripping using our in-house 

algorithm, we created axial MIP images suitable for the deep learning method, utilizing 

software developed at our institution.14 

 

Vessel segmentation on maximal intensity projection image 

We developed a 2D U-Net based on the Inception Module specifically for vessel 

segmentation in axial MIP images.15 This model was trained to segment vessels from the 

generated MIP images. The U-Net architecture integrates structural information from the 

network with the semantic information from the Inception Module, enabling more precise 

segmentation of vessels in MIP images. After generating MIP images, researchers manually 

segmented intracranial arteries in 208 randomly selected patients (16% of whom had TAVO) 

from the training (n = 189) and validation dataset (n = 19). This manual segmentation was 

conducted under the supervision of an experienced vascular neurologist (W-S Ryu). The 

trained model achieved a Dice similarity coefficient of 0.80, indicating strong agreement with 

the manual segmentation performed by a vascular neurologist. 

 

Vessel occlusion detection algorithm 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.07.24306974doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.07.24306974
http://creativecommons.org/licenses/by-nd/4.0/


After automatically segmenting blood vessels on the axial MIP image, the vessel 

masks from each slice were combined to create a two-dimensional compressed image of the 

vessel masks. These compressed images serve as inputs for our deep learning model, trained 

for TAVO classification. We observed that using multiple compressed images of vessel masks 

at constant intervals as input significantly reduced performance compared to using a single 

compressed image. This was primarily due to overfitting of the algorithm on MCA slices 

where most TAVOs are located in a specific slice of the 3D volume. The issue of overfitting 

became more pronounced with an increase in the number of compressed images. Therefore, 

to mitigate this overfitting, we compressed the segmented vessel masks into a single image 

for this study. EfficientNetV2 was employed to train the TAVO classification model.16 Data 

augmentation was applied during the training process to prevent overfitting and alleviate 

domain shift problems. The augmentation algorithm was implemented using albumentations, 

a Python library for image augmentations.17 A batch size of 32 was maintained, with TAVO 

and non-TAVO cases sampled at a 1:1 ratio in each batch. For the deep learning training, 

intracranial LVO and isolated MCA-M2 occlusion were combined into a single category as 

TAVO. 

For the training process, we used the AdamW optimizer with a batch size of 32, and a 

StepLR learning rate Scheduler with a step size of 7 and gamma of 0.1. Additionally, we 

addressed class imbalance by using a Weighted Random Sampler to sample the TAVO cases 

more frequently. The training utilized libraries including Python, PyTorch, TensorFlow, 

Pydicom, OpenCV, ITK, and was performed on an NVIDIA RTX A6000 GPU. The 

developed software operates on Window 10 or higher. 

 

Statistical analysis 

Data were presented as mean ± standard deviation, median (interquartile range), or 

number (percentage). To compare baseline characteristics between training and validation, 

internal test, external test 1, external test 2, we employed ANOVA or Kruskal-Wallis test for 

continuous variables and chi-square test or Fisher exact test, as appropriate. The diagnostic 

performance of the algorithm for detecting TAVO was assessed using sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV), calculated through 

receiver operating characteristics (ROC) analysis. The Youden index was utilized to 
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determine the optimal threshold.18 We then stratified the patients into two groups: intracranial 

LVO and isolated MCA-M2 occlusion, and repeated the analysis. In this subgroup analysis, 

external test 1 and external test 2 dataset were combined due to small number of subjects in 

the external test 1 dataset. The DeLong test was used to compare the area under the curve 

(AUC) among the models.19 Bootstrap analysis with 1000 repetitions was conducted to 

calculate 95% confidence intervals for all parameters. All statistical analyses were performed 

using STATA 16.0 (STATA Corp., Texas, USA), with p < 0.05 considered statistically 

significant. 

 

 

Results 

Baseline characteristics 

The mean ages for the training and validation, internal test, external test 1, and 

external test 2 were 68.7, 68.3, 68.8, and 67.1 years, respectively, as shown in Table 1. The 

prevalence of male, atrial fibrillation, and history of prior stroke were similar across all 

groups. However, the occurrence of TAVO was less frequent in the external test 2 dataset 

compared to the others  (13.4% vs. 18.0% to 23.4%). Notably, the CT vendors and imaging 

parameters, including slick thickness and pixel spacing, significantly varied between the 

groups (see Supplementary Table 1). For 100 randomly selected cases from the internal test 

dataset, the mean processing time from the input of source images to the output of results was 

178 ± 11 seconds. 

 

Diagnostic performance for overall TAVO 

Representative examples of TAVO detection using deep learning in four patients with 

intracranial LVO or isolated MCA-M2 occlusion are illustrated in Figure 2. In the internal 

test dataset, the deep learning algorithm achieved an area under the AUC of 0.950 (95% CI, 

0.915 – 0.971, see Figure 3). For the external test datasets 1 and 2, the AUCs were 0.970 

(0.897 – 0.997) and 0.971 (0.924 – 0.990), respectively. Using a cutoff threshold of 0.5, the 

sensitivity ranged from 0.800 to 0.860 (Table 2), and specificity varied from 0.956 to 1.000. 

The result of the combined external test dataset is visualized in Supplementary Figure 2. 
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Density plots of TAVO probability demonstrated that the deep learning algorithm could 

robustly differentiate between TAVO and non-TAVO in both internal and external datasets (as 

shown in Supplementary Figure 3A and 3B). 

The Youden indices in the internal test, external test 1, and external test datasets were 

0.824, 0.826, and 0.855, respectively, as detailed in Table 2. In addition, the Youden indices 

remained stable across a wide range of cutoff points (Supplementary Figure 3C and 3D). At 

the optimal cutoff points, the sensitivities recorded were 0.860, 0.867, and 0.929, respectively, 

with corresponding specificities of 0.964, 0.959, and 0.926. When the external test datasets 

were combined, at the optimal cutoff point, sensitivity, specificity, PPV, and NPV were 0.895 

(0.785 – 0.960), 0.934 (0.901 – 0.959), 0.708 (0.589 – 0.810), and 0.980 (0.958 – 0.993), 

respectively (see Supplementary Table 2). With a fixed sensitivity of 0.900, the specificities 

and PPVs for the internal test, external test 1, and external test 2 were 0.891, 0.796, and 0.930 

and 0.665, 0.583, and 0.667, respectively. 

  

Diagnostic performance for intracranial Large Vessel Occlusion 

Excluding subjects with isolated MCA-M2 occlusion from the analysis significantly 

improved the performance of the deep learning algorithms. The AUC increased up to 0.967 in 

the internal dataset and to 0.993 in the combined external datasets, as shown in Table 3 and 

Supplementary Figure 4. With a cutoff point of 0.5, the sensitivity and specificity in the 

internal test were 0.943 (0.872 – 0.981) and 0.956 (0.935 – 0.972), respectively. The 

corresponding values in the combined external dataset were 0.947 (0.823 – 0.994) and 0.975 

(0.951 – 0.989). 

 

Diagnostic performance for isolated MCA-M2 occlusion 

When subjects with intracranial LVO were excluded from the analysis, the diagnostic 

performance of deep learning algorithm was somewhat diminished. The AUC of internal and 

combined external datasets were 0.903 (0.812 – 0.944) and 0.916 (0.816 – 0.963), 

respectively. The sensitivities were 0.636 in the internal test and 0.632 in the combined 

external dataset. However, the specificities remained high at 0.956 and 0.975, respectively.  
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False positive and false negative samples in external test datasets 

In the combined external test datasets, eight cases were incorrectly classified as 

TAVO, as (Supplementary Table 3). Among these, three patients had occlusions in the MCA-

M3 or MCA-M4 segments, which are not considered candidate for EVT. Of the nine patients 

misclassified as non-TAVO, seven had isolated occlusions in the MCA-M2 segment. Two 

patients with false negative results and intracranial LVO had marginal TAVO probability 

score of 0.155 and 0.355, respectively. 

 

 

Discussion 

In this study, we developed a fully automated deep learning algorithm to detect 

intracranial anterior circulation arterial occlusions in CTA, which are likely candidates for 

EVT in hyperacute ischemic stroke. The algorithm underwent external validation in two 

different datasets and demonstrated high diagnostic sensitivity and specificity. When 

analyzing occlusion sites separately, the algorithm performed well for intracranial LVO. 

Although the performance for isolated MCA-M2 occlusion was slightly lower than for 

intracranial LVO, it remained competitive. 

Until recently, a number of studies have reported on AI detection of LVO or TAVO 

(see Supplementary Table 4). However, these algorithms were either lacked external 

validation in previous research, or if validated, it was in a limited number of cases.20-23 

Moreover, earlier studies reported that the artificial intelligence algorithms achieved AUC 

scores ranging from 0.74 to 0.86, which may not sufficiently support less experienced 

physicians.20-23 Notably, in external validation sets with adequate sample sizes, our deep 

learning algorithm achieved AUCs of 0.961, 0.993, and 0.913 for total TAVO, intracranial 

LVO, and isolated MCA-M2 occlusion, respectively. 

The ability of our deep learning algorithm to accurately predict isolated MCA-M2 

occlusion with good performance is of significant importance. Although isolated MCA-M2 

occlusion is an important and emerging target of the EVT,24 it was reported that the rate of 

misdiagnosis for isolated MCA-M2 occlusion is substantially higher than that for intracranial 

LVO even among the neuroimaging specialists (35.0% vs. 9.7%, respectively),25 and the use 
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of previously developed deep learning models has yielded worse results (50.8%).20 This 

characteristic of isolated MCA-M2 occlusion have influenced our model as well, leading to 

improved specificity and NPV compared to previous studies,20,21 despite with somewhat less 

satisfactory sensitivity and PPV. This issue was largely due to false negatives in cases of 

short-segment (where collaterals reconstituted the M2 segment immediately distal to the 

occlusion) and incomplete (with antegrade flow) occlusions, where the reduction in the inter-

hemispheric vessel density was too small for the algorithm to detect. However, in terms of 

TAVO detection, these occlusions missed due to false negative may not be ideal candidates 

for emergent intra-arterial thrombectomy.26 

Our study may have a few potential clinical implications. First, our deep learning 

model can provide decent assistance to healthcare professionals who may not have much 

experience with ischemic strokes. Regardless of the reason for admission, the majority of 

ischemic strokes are initially encountered by non-specialized physicians.27 In such scenarios, 

identifying vascular occlusion and its location in brain imaging is a complex and demanding 

task, potentially delaying appropriate stroke treatment. Second, considering that our model 

processes vascular images in less than 180 seconds, it could significantly reduce the time 

taken to make EVT decision. In clinical practice, formal interpretation of brain imaging often 

requires several hours, and sometimes even more than a day.28 Therefore, rapid primary 

interpretation of vascular status through our model can play a crucial role in shortening the 

time to initiate EVT. Third, the objective and reproducible nature of our artificial intelligence 

software can aid in refining EVT process. This includes the preparation protocol for 

interventional devices based on occlusion patterns, which is another important factor in 

reducing reperfusion time. 

 

Limitation of the study 

One limitation of our study is the relatively small dataset size used for training the 

deep learning algorithm. This is particularly true for isolated MCA-M2 occlusion, where 

fewer cases were enrolled compared to intracranial LVO, influencing the sensitivity and PPV 

performance of the model. The second caveat is that this study was conducted within a single 

country and given the higher prevalence of intracranial atherosclerosis in East Asian 

populations compared to Western ones, the assessment of the complete occlusion over pre-
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existing stenosis may have been challenging.29 Such factors could contribute to model’s less 

favorable performance, underscoring the need for further research involving diverse ethnic 

groups. Therefore, radiologists and neurologists should be aware of the potential and causes 

of false negatives in the algorithm’s output. 

 

Future Directions 

Collateral score and collateral status on CTA serve as important tools in evaluating 

collateral circulation in patients with TAVO.26 In CTA in patients with TAVO, collateral score 

and collateral status are used as important parameters to evaluate cerebral hemodynamics and 

tissue perfusion. These assessments help understand the adequacy of compensatory collateral 

circulation, which is essential for determining treatment strategies and predicting tissue 

viability in patients with ischemic stroke. Our developed system can estimate the course of 

collateral circulation by detecting and displaying the location of TAVO as a heat map. 

Collateral status involves a comprehensive assessment of the collateral circulation, 

considering factors such as collateral filling rate, extent of collateral vessels, and final tissue 

perfusion achieved through collateral flow.30 This assessment plays a pivotal role in 

predicting the likelihood of ischemic tissue salvage. Appropriate adjuvants contribute to 

increasing the likelihood of viable tissue despite vascular occlusion, potentially influencing 

treatment decisions such as endovascular reperfusion therapy. Therefore, auxiliary evaluation 

of collateral status may be considered in future studies. 

 

Conclusion 

We developed and validated a novel, fully automated deep learning algorithm derived 

from CTA to detect vascular occlusion suitable for EVT. While the algorithm could benefit 

from further improvements and real-world clinical evaluations, its potential as a tool to assist 

in the diagnosis of acute ischemic stroke in patients through detection of TAVO has been 

firmly established.
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Figures Legends 

Figure 1. Depiction of the algorithm used to detect automatic Thrombectomy Amenable 

Vessel Occlusion (TAVO). (I) the acquisition of unprocessed CT angiogram images in 

DICOM (Digital Imaging and Communications in Medicine) format, accompanied by the 

automated selection of slices from the vertex and C1 atlas. (II) Skull removal, standard 

template registration, and maximal intensity projection (MIP) image rendering. (III) Using a 

rendered axial MIP image to segment blood vessels and merging the blood vessel masks. (IV) 

Predicting TAVO using the merged blood vessel mask and generating a heatmap that 

identifies the region that influences the deep learning decision the most. 

 

 

Figure 2. Representative cases for deep learning based Thrombectomy Amenable Vessel 

Occlusion (TAVO) detection. A, A woman in 70s with cervical internal carotid artery (ICA) 

occlusion (red arrows) without reconstruction of distal flow. B, A man in 50s man with left 

distal carotid and left proximal middle cerebral artery (MCA)-M1 occlusion (blue arrows). C, 

A woman in 70s with bilateral proximal MCA-M1 occlusion (green arrows). D, A woman in 

60s with occlusion of the proximal left inferior M2 division (yellow arrows). In all cases, the 

heatmap visualize the occlusion site or a paucity of distal flow.  

 

 

Figure 3. ROC analysis. ROC curves for detection of Thrombectomy Amenable Vessel 

Occlusion (TAVO) occlusions. (A) Internal test, (B) External test 1, (C) External test 2. Red 

dots indicate optimal cutoff points with the maximum Youden index. ROC=receiver 

operating characteristics; AUC=area under the curve. 
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Tables  

Table 1. Baseline characteristics of training and validation, internal test, and external test datasets 

 
Training & validation (n = 

1,421) 
Internal test (n = 624) External test 1 (n = 64) External test 2 (n = 313) p value 

Agea 68.7 ± 12.6 68.3 ± 11.9 68.8 ± 12.7 67.1 ± 12.3 0.45 

Sex, mena 797 (56.3%) 353 (57.0%) 35 (61.4%) 199 (63.6%) 0.11 

Onset to image, houra 20.5 (6.4 – 51.0) 20.4 (5.3 – 52.9) 29.5 (16.4 – 72.1) 22.0 (8.2 – 78.1) < 0.001c 

Admission NIHSSa 4 (2 – 9) 4 (2 – 7) 4 (2 – 7) 3 (1 – 5) 0.001c 

Atrial fibrillationa 290 (20.5%) 116 (18.7%) 5 (9.0%) 52 (16.6%) 0.08 

History of prior strokea 314 (22.2%) 146 (23.6%) 14 (24.6%) 64 (20.5%) 0.71 

Slice thickness of raw image     < 0.001 

0.75 mm 564 (40.0%) 256 (41.0%) 59 (92.2%) 0  

1.0 mm 473 (33.3%) 232 (37.2%) 5 (7.8%) 313 (100%)  

1.25 mm  321 (22.6%) 105 (16.8%) 0 0  

1.5 mm 63 (4.4%) 31 (5.0%) 0 0  

Location of TAVO b 255 (18.0%) 122 (20.0%) 15 (23.4%) 42 (13.4%) 0.08 

Any Intracranial ICA 94 (6.6%) 26 (4.2%) 4 (6.3%) 7 (2.2%) 0.007 

Any M1-MCA 192 (13.5%) 84 (13.5%) 10 (15.6%) 28 (9.0%) 0.15 

Any M2-MCA 234 (16.5%) 101 (16.2%) 15 (24.4%) 39 (12.5%) 0.12 

Isolated M2-MCA 55 (3.9%) 33 (5.3%) 5 (7.8%) 14 (4.5%) 0.28 
aClinical data were missing in 4, 5, and 7 patients in training & validation, internal test, and external test 1 datasets, respectively. 

bIsolated M2-MCA occlusion was considered as TAVO.  

cKruskal-Wallis test was used.  
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MCA indicates middle cerebral artery; NIHSS, National Institutes of Health Stroke Scale; TAVO, Thrombectomy Amenable Vessel Occlusion  
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Table 2. Diagnostic performance of deep learning algorithm detecting TAVO 

  
Internal test External test 1 External test 2 

Threshold of 0.50 

Confusion matrix 

 
Prediction Prediction Prediction 

TAVO no TAVO TAVO no TAVO TAVO no TAVO 

GT 
TAVO 104 17 12 3 36 6 

no TAVO 22 481 0 49 8 263 

Sensitivity (95% CI) 0.860 (0.785 – 0.916) 0.800 (0.519 – 0.957) 0.857 (0.715 – 0.946) 

Specificity (95% CI) 0.956 (0.935 – 0.972) 1.000 (0.927 – 1.000) 0.970 (0.943 – 0.987) 

PPV (95% CI) 0.825 (0.748 – 0.887) 1.000 (0.735 – 1.000) 0.818 (0.673 – 0.918) 

NPV (95% CI) 0.966 (0.946 – 0.980) 0.942 (0.841 – 0.988) 0.978 (0.952 – 0.992) 

 Youden (J) index (95% CI) 0.824 (0.755 – 0.883) 0.826 (0.653 – 0.933) 0.855 (0.709 – 0.915) 

 Jmax cutoff point 0.5286 0.1284 0.3001 

Optimal threshold 

 

Jmax Sensitivity (95% CI) 0.860 (0.785 – 0.916) 0.867 (0.595 – 0.983) 0.929 (0.805 – 0.985) 

Jmax Specificity (95% CI) 0.964 (0.944 – 0.979) 0.959 (0.860 – 0.995) 0.926 (0.888 – 0.954) 

Jmax PPV (95% CI) 0.852 (0.777 – 0.910) 0.867 (0.595 – 0.983) 0.661 (0.526 – 0.779) 

Jmax NPV (95% CI) 0.966 (0.946 – 0.980) 0.959 (0.860 – 0.995) 0.988 (0.966 – 0.998) 

Fixed sensitivity of 0.90 Sens90 Specificity (95% CI) 0.891 (0.691 – 0.955) 0.796 (0.657 – 0.898) 0.930 (0.893 – 0.957) 
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Sens90 PPV (95% CI) 0.665 (0.587 – 0.736) 0.583 (0.366 – 0.779) 0.667 (0.529 – 0.786) 

Sens90 NPV (95% CI) 0.974 (0.955 – 0.986) 0.975 (0.868 – 0.999) 0.984 (0.960 – 0.996) 

Sens90 cutoff point 0.1595 0.0436 0.3248 

a Jmax represents, across all thresholds, the maximum Youden index (sensitivity + specificity –1). As a secondary reference point, Jmax provides an optimality criterion with 

equal weighting for sensitivity and specificity.  

CI indicates confidence interval; GT, ground truth; LVO, large vessel occlusion; NPV, negative predictive value; PPV, positive predictive value; TAVO, Thrombectomy 

Amenable Vessel Occlusion   
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Table 3. Diagnostic performance of deep learning algorithm stratified by location of occlusion. 

 
Intracranial LVO Isolated M2-MCA occlusion 

 
Internal test Combined external test Internal test Combined external test 

AUC 0.967 (0.925 – 0.976) 0.993 (0.975 – 0.999) 0.903 (0.812 – 0.944) 0.916 (0.816 – 0.963) 

Confusion matrix 
Prediction Prediction Prediction Prediction 

TAVO No TAVO TAVO No TAVO TAVO No TAVO TAVO No TAVO 

GT, TAVO 83 5 36 2 21 12 22 7 

GT, no TAVO 22 481 8 312 22 481 8 312 

Sensitivity (95% CI) 0.943 (0.872 – 0.981) 0.947 (0.823 – 0.994) 0.636 (0.451 – 0.796) 0.632 (0.384 – 0.837) 

Specificity (95% CI) 0.956 (0.935 – 0.972) 0.975 (0.951 – 0.989) 0.956 (0.935 – 0.972) 0.975 (0.951 – 0.989) 

PPV (95% CI) 0.790 (0.700 – 0.864) 0.818 (0.673 - 0.918) 0.488 (0.333 – 0.645) 0.600 (0.361 – 0.809) 

NPV (95% CI) 0.990 (0.976 – 0.997) 0.994 (0.977 – 0.999) 0.976 (0.958 – 0.987) 0.978 (0.955 – 0.991) 

CI indicates confidence interval; GT, ground truth; NPV, negative predictive value; PPV, positive predictive value; TAVO, Thrombectomy Amenable Vessel Occlusion   . 
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