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Abstract 
 
 
Onset of walking is a developmental milestone with wide individual differences and high 
heritability in humans. In this genome-wide association study meta-analysis of age at onset 
of walking (N=70,560 European-ancestry infants), SNP-based heritability was 24.13% 
(SE=1.16%) with ~11.9K variants accounting for about 90% of it, suggesting high 
polygenicity. We identified 11 independent genome-wide significant loci, including a 
“double hit” haplotype in which both decreased expression of RBL2 and a potentially 
deleterious missense variant in RBL2 are associated with delayed walking. Age at onset of 
walking (in months) was negatively genetically correlated with ADHD and BMI, and 
positively genetically correlated with intelligence, educational attainment, and adult brain 
gyrification. The polygenic score showed out-of-sample prediction of 3-5.6%, confirmed to 
be largely due to direct effects in sib-pair analyses, and was associated with volume of 
neonatal brain structures involved in motor control. This offers new biological insights of 
clinical relevance into neurodevelopment. 
 
 

Introduction 
 

 
The development of bipedal ambulation is a key human characteristic. Although most 
humans begin to walk independently by early childhood, typical attainment of this 
milestone can be achieved within a relatively wide developmental period, for most infants 
between 8 and 18 months old1. It is thought that age at onset of independent walking is a 
complex trait determined by multiple factors, including body dimensions, year of birth, 
gestational age and related neural maturation, opportunity to practice2,3, cultural context4 
and nutrition5. Many of these factors are thought to influence the structure and function of 
a network of brain areas implicated in motor control, including the cortex, basal ganglia, and 
cerebellum, with dysfunction in these brain regions resulting in movement disorders6.  
 
In early childhood, the onset of walking is a simple yet robust means to measure gross 
motor skill development, but also indexes broader aspects of brain and behavioral 
development. A major advantage of this milestone is that it is both memorable and clearly 
defined and therefore can be reliably identified and recalled by parents7. Moreover, whilst 
there is variability in the sequence and presence of some motor skills (for example, some 
children bottom shuffle but never crawl), walking is an exclusive and informative milestone 
for both typical and atypical developmental trajectories.  
 
In current clinical practice, an inability to walk independently by age 18 months is 
considered a criterion for referral for developmental delay1. This is because delayed walking 
could be due to a motor-specific issue such as a muscle disorder or generalised issues such 
as global developmental delay. The causes of these issues can be genetic or environmental, 
including genetic disorders and extreme prematurity8. However, historical data suggest that 
only a minority (about a third) of late walkers may have an underlying neurological 
abnormality or developmental disorder and that variation in age at onset of walking within 
the typical range was not strongly associated with IQ in childhood9. As such, late walking 
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children (later than 18 months) might either reflect an extreme of typical variation or relate 
to clinically meaningful conditions with a later age of onset. 
 
In addition to reflecting general developmental processes, the ability to walk independently 
may itself have cascading effects on other developmental domains10. The degree to which 
early attainment of motor milestones predicts early attainment in other domains (e.g., 
social or language) remains unknown. We do know that when children transition from 
crawling to standing and walking, the perspective at which they perceive the world changes, 
as do their means of interacting with the world11. Infants who can walk independently 
release their hands and consequently have more opportunities to carry and manipulate 
objects while moving around. However, it remains unclear what are the causal influences 
underlying the wide variability in age at onset of walking or whether these causal influences 
are also associated with later health, neurodevelopmental and cognitive outcomes.  
 
A greater understanding of the variability and causes of late walking has clear societal 
implications. It would inform many countries’ public health policy that aim to screen 
children for delay12. In addition to the resulting healthcare costs for assessment and 
investigation, many parents will also experience undue stress if their child’s late walking 
leads to clinical follow up in the context of normal variation, i.e. the child’s late walking is 
not signalling clinical need per se, but just their predisposition for later walking. Predictive 
factors, such as genetic information, have the potential to offer greater understanding 
regarding the etiology of this developmental milestone. Furthermore, they can contribute 
alongside screening tools to aid the prediction and early identification of clinically-relevant 
conditions associated with early or delayed onset of walking, and avoid missing time for 
potentially beneficial physical training when appropriate.  
 
There is substantial evidence for a genetic contribution to motor development. A recent 
meta-analysis of infant twin studies showed that the broad category of psychomotor 
function was one of the most heritable behavioural domains, with pooled heritability of 
59%13. For age at onset of walking specifically, a study of 2,274 twin pairs in England and 
Wales reported a heritability of 84%14. Polygenic scores for autism spectrum disorder (ASD, 
hereafter autism), schizophrenia and bipolar disorder have been found to be associated 
with infant neuromotor characteristics such as muscle tone, reflexes and senses15. Further, 
the ADHD polygenic score was associated with age at onset of walking16. As such, age at 
onset of walking appears to be an ideal candidate for locus discovery research. Identification 
of specific genetic loci is an important step towards uncovering the biological mechanisms 
underlying this neurodevelopmental milestone and potentially deriving clinically-
informative insights with respect to childhood motor disorders. 
 
In sum, there are several reasons for focusing on age of walking onset. It is easily 
measurable in large cohorts, reliably recalled by parents7 and varies substantially within the 
typical population. It is a key milestone with potential consequences for many other aspects 
of physical, social and cognitive development. It is a prime example of an emergent 
phenomenon in human development dependent on multiple interacting preceding factors. 
Finally, although it is used as a clinical marker in public health, the majority of late walkers 
are false positives in the sense that they do not have any clinically relevant need. 
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Here we present the first genome-wide association study (GWAS) meta-analysis of age at 
onset of walking on a sample of 70,560 children from four European-ancestry cohorts. First, 
we found that common genetic variation explained 24% of the interindividual variability in 
age at onset of walking and it was a highly polygenic trait. Second, we identified 11 
independent genetic loci associated with age at onset of walking, two of which colocalised 
with eQTLs in genes RBL2 and KANSL1, respectively. Third, we found significant genetic 
correlations between onset of walking and physical health indicators, neurodevelopmental 
conditions and cognitive traits, psychiatric disorders and cortical phenotypes. Fourth, the 
polygenic score showed out-of-sample prediction of 3-5.6% confirmed to be largely due to 
direct effects in sib-pair analyses. We also found that this polygenic score was positively 
associated with gross motor skills at age 18 months and with the volume of neonatal brain 
structures involved in motor control in independent samples. 
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Results 
 

 
Genomic loci associated with age at onset of walking 
 
We conducted a GWAS meta-analysis of age at onset of walking in a sample of 70,560 
children including data from four European-ancestry cohorts: Norwegian Mother, Father 
and Child Cohort Study17,18 (MoBa, N = 58,302), Netherlands Twin Register19 (NTR, N = 
6,251), Lifelines multi-generational prospective population-based birth cohort study20 (N = 
3,415) and Medical Research Council National Study for Health and Development21 (NSHD, 
N = 2,592). The quantile-quantile (QQ) plot for the MoBa GWAS (Supplementary Fig. S1) 
indicated a p-value deviation from a normal distribution (λGC = 1.23). The observed inflation 
is likely explained by trait polygenicity (LD Score Regression intercept = 1.008 (0.008)22,23, 
see Supplementary Note A for a detailed investigation of observed inflation). Furthermore, 
the other cohorts’ inflation factors were below the recommended threshold of 1.10 (NTR λGC 
= 0.975, Fig. S2, Lifelines λGC = 1.001, Fig. S3, NSHD λGC = 1.002, Fig. S4). Therefore, automatic 
correction for genomic control was not applied for all cohorts when performing the 
standard error-weighted meta-analysis using the METAL tool24. 
 
We identified 11 independent genome-wide significant (p < 5 × 10-8) loci with one lead 
variant per locus in GCTA conditional and joint analysis (COJO)25 (Table 1, Fig. 1, see also 
Supplementary Fig. S5 for the QQ-plot and Fig. S6 for the regional plots). All 11 lead SNPs 
remained significant after conditioning on the other significant SNPs on the same 
chromosome and were the only signal within each locus. The most strongly associated SNP 
was located on chromosome 12 (rs7956202 near HECTD4, p = 2.045 × 10-11). This variant has 
been previously associated with reaction time26 and variants in LD with rs7956202 have 
been associated with physical traits such as diastolic blood pressure27 and hip circumference 
adjusted for BMI28 (Supplementary Table S4). The second most significant lead SNP was 
located on chromosome 16 (rs16952251, near RBL2, p = 2.637 × 10-11), fine mapping of this 
locus is discussed later (see Results section “Colocalization with gene expression in the 
brain”). See Table 1 for a full list of significant loci and Supplementary Table S4 for previous 
associations with complex traits.  
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Table 1 Genome-wide significant loci associated with age at onset of walking. The allele frequency in the 1000 Genomes29 European-ancestry sample (EUR), 
the effect sizes and the standard errors (SE) refer to Allele 1 (A1). The p-values of association from the meta-analysis performed in METAL and p-values 
resulting from the conditional and joint (COJO)25 analysis are reported. The nearest genes were identified using FUMA30.  
 

Genomic 
Locus 

Lead SNPs Chromosome Position A1 A2 
A1 freq. in 

EUR 
Effect size SE p COJO p Nearest genes 

1 rs7956202 12 112661263 T G 0.831 0.098 0.015 2.045 x 10-11 1.856 x 10-11 HECTD4 

2 rs16952251 16 53483138 A G 0.697 -0.082 0.012 2.637 x 10-11 2.470 x 10-11 RBL2 

3 rs73030207 5 1902324 A C 0.014 0.230 0.040 5.454 x 10-9 5.691 x 10-11 CTD-2194D22.4 

4 rs28383314 6 32587213 T C 0.339 -0.078 0.012 1.028 x 10-10 9.863 x 10-11 HLA-DQA1 

5 rs10010217 4 80801911 T C 0.718 0.081 0.013 4.097 x 10-10 4.698 x 10-10 PCAT4, ANTXR2 

6 rs382362 17 43691377 T C 0.758 -0.098 0.016 5.370 x 10-10 5.209 x 10-10 RPS26P8 

7 rs4785475 16 50939789 A G 0.277 0.081 0.013 1.385 x 10-9 1.439x 10-9 RP11-883G14.1 

8 rs148420384 13 31826394 C G 0.668 -0.077 0.013 2.341 x 10-9 2.414 x 10-9 B3GALTL 

9 rs1559625 2 60173866 A G 0.390 0.068 0.012 2.329 x 10-8 2.564 x 10-8 RP11-444A22.1 

10 rs6058302 20 34290037 T C 0.140 -0.099 0.018 4.188 x 10-8 4.481 x 10-8 ROMO1, RBM39 

11 rs11958405 5 22247159 A G 0.515 0.060 0.011 5.289 x 10-8 4.810 x 10-8 CDH12 
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Fig. 1 Manhattan plot of the GWAS meta-analysis of age at onset of walking. The x axis shows genomic 
position (chromosomes 1-22) and the y axis shows statistical significance as -log10[p-value]. P-values 
are two-sided and based on an inverse-variance standard-error weighted fixed-effects meta-analysis. 
The horizontal red line indicates the p-value threshold for genome-wide statistical significance (p = 5 
x 10-8). The lead SNP for each genome-wide significant locus is labelled and indicated with a yellow 
diamond. The inflation factor λGC for this GWAS was 1.27 and LDSC intercept 1.00 (SE = 0.01), 
suggesting that inflation was due to polygenicity of age at onset of walking (see Supplementary Note 
A for a discussion). The meta-GWAS QQ-plot by allele frequency is presented on Fig. S5. 
 
 
Common genetic architecture of age at onset of walking 
 
SNP-based heritability of age at onset of walking estimated with LDSC22 was h2

SNP = 24.13% 
(SE = 1.16%, 95% CIs [21.86 - 26.40]). Heritability for the phenotype in males and females 
h2

SNP were estimated to be 23.06% (SE = 1.81%, 95% CIs [19.51 - 26.61) and 23.06% (SE = 
1.89%, 95% CIs [19.36 - 26.76]), respectively. The genetic correlation (rg) of the phenotype 
between males and females was 0.99 (SE = 0.06). 
 
There was no statistically genome-wide significant heterogeneity between cohorts as tested 
with I2 (maximum I2 = 95.3 for SNPs rs7864115 and rs148684045, c2(1) = 21.453 and 21.441, 
p = 3.63 x 10-6 and 3.65 x 10-6, respectively), indicating that variation of effects between 
individual GWASs was due to chance rather than heterogeneity between the cohorts31 (Fig. 
S7, see Supplementary Note C for genetic correlation between cohorts).  
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Biological annotation of associated loci and genes 
 
Analyses on prioritised genes annotated to significant SNPs 
 
The genome-wide significant SNPs were mapped to 233 genes based on genomic position, 
expression quantitative trait loci (eQTLs) and chromatin interaction information in FUMA30 

(Table S5). We tested these prioritised genes were differentially expressed in the brain 
across BrainSpan32 developmental stages and GTEx v833 tissues. We observed a significant 
down-regulation of the differentially expressed genes (DEGs) in multiple tissues including 
the brain (amygdala and hippocampus) and the heart left ventricle, and DEGs up-regulation 
in fibroblasts (Fig. S8). The enrichment of up-regulated or down-regulated DEGs across 
BrainSpan developmental stages was not significant. Gene sets associated with age at onset 
of walking were enriched in the Gene Ontology34 neurogenesis and generation of neurons 
pathways (see Table S6 for all the significantly enriched gene sets and gene sets-trait 
associations from previous studies). 
 
Genes associated with age at onset of walking 
 
The MAGMA35 gene-based test performed in FUMA on the meta-GWAS summary statistics 
indicated 50 genes which were associated with age at onset of walking at a Bonferroni 
corrected genome-wide significance threshold of 2.664 × 10-6 (p = 0.05 / 18,766, Table S7). A 
full list of previously reported genome-wide associations with complex traits for the 50 
WALK-associated genes is provided in Table S8.  
 
Using Genomics England PanelApp36, we found that 13 of the 47 genes with Ensembl IDs 
(27.6%) were associated with intellectual disability (ID, v5.557); this is over double the 
proportion (2.16 times) of ID-associated genes in the panels as a whole (2,624 out of 19,950, 
12.9%; p = 0.005, Chi-squared). These genes include ATXN2, AUTS2, CUX2, FOXP1, KANSL1, 
and RBL2 (Table S7). Furthermore, we found 7 of the 47 genes were associated with autism 
(14.9%), which is over four times the proportion of autism-associated genes in the panel 
(v0.36, largely based on SFARI-gene) as a whole (734 out of 19,950, 3.67%; p = 0.0004, Chi-
squared). 
 
To identify tissue specificity of age at onset of walking, MAGMA35 gene-property analyses 
performed in FUMA using gene-based association p-values for all the 18,766 genes revealed 
that gene expression was primarily enriched in the brain cerebellar hemispheres and 
cerebellum, although this result was not significant (see Fig. S9). Overall, expression of the 
genes associated with age at onset of walking were significantly enriched between 19 and 
24 (late mid-prenatal period) post-conceptional weeks (Fig. S10). The MAGMA gene-set 
analysis yielded no significant results (Table S9). 
 
Analyses on the meta-GWAS summary statistics 
 
Enrichment of age at onset of walking meta-GWAS signal by functional genomic annotation 
was tested using stratified LDSC37 analyses. These revealed that heritability of age at onset 
of walking was significantly enriched in genomic regions conserved in primates (17.98-fold 
enrichment, p = 4.68 × 10-7), mammals (14.58-fold enrichment, p = 2.90 × 10-6) and 
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vertebrates (9.76-fold enrichment, p = 9.17 × 10-6, see Fig. 2A). Full results of partitioned 
heritability by functional genomic annotation can be found in Table S10.  
We then tested whether heritability was enriched in specific cell types using stratified 
LDSC38 and found significant enrichment in the brain, particularly in the basal ganglia, 
cortex, amygdala and cerebellum (Fig. 2B). Complete stratified LDSC by cell type estimates 
are reported in Table S11. 
 
 
 

 
 
Fig. 2 Partitioned heritability enrichment by functional annotation and cell type A. Enrichment of age 
at onset of walking GWAS signal by functional genomic annotation. Points represent the heritability 
enrichment estimate and error bars enrichment standard errors. The dashed horizontal line 
represents statistical significance based on Bonferroni correction for multiple testing (Supplementary 
Table S10). Genomic annotations with significant enrichment for age at onset of walking are labelled. 
Dots are colored using a spectrum of colors based on alphabetical order. B. Tissue enrichment based 
on LDSC partitioned heritability. Statistically-significant enrichments are highlighted as yellow bars. 
 
 
Colocalization with gene expression in the brain 
 
We investigated whether the 11 genome-wide significant loci (p < 5 x 10-8)39, as well as 50 
genes significantly associated with age at onset of walking (Table S7), were enriched for 
expression quantitative trait loci (eQTLs) for nearby genes in an independent dataset of 
post-mortem bulk RNA-seq from 261 samples of the human adult cerebellum39. We 
identified significant eQTLs for the gene RBL2 (which encodes a transcriptional regulator by 
the same name) in genomic locus 2 on chromosome 16 (Table 1). Comparing the statistical 
evidence of association with age at onset of walking (GWAS) against the statistical evidence 
of association with RBL2 expression, we noticed a distinct pattern; both the GWAS and eQTL 
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p-values had two groups of significantly associated SNPs distinguished by their linkage 
disequilibrium correlation with a lead GWAS SNP (rs17800727, Fig. 3A). Group 1 had the 
strongest evidence for GWAS association (min p = 2.95 x 10-11) but slightly weaker evidence 
of eQTL association (min p = 2.72 x 10-13 cerebellum eQTL), while Group 2 had weaker 
evidence for GWAS association (min p = 9.51 x 10-8) but stronger evidence of eQTL 
association (min p = 6.41 x 10-24 cerebellum eQTL, Fig. 3A). We investigated the probability 
that the same SNPs in this locus influence both age at onset of walking and RBL2 expression 
(colocalization, Fig. 3). Our colocalization analysis at this locus suggested an independent 
causal variant in the GWAS (rs17800727; chr16:53481010:A:G GRCh37; chr16:53447098:A:G 
GRCh38) and the eQTL data (rs7203132; chr16:53429775:G:A GRCh37; chr16:53395863:G:A 
GRCh38) with a posterior probability of 0.9640 that the causal SNP is distinct in each dataset. 
 
To understand these two groups, we assessed their distribution across the 2Mb genomic 
locus (± 1 MB around the gene) and observed that they overlapped throughout a 125kb 
peak with well-defined margins for both the GWAS and RBL2 eQTL analysis (Fig. 3B). We 
next considered how these SNPs were distributed based on minor allele frequency (MAF, 
Fig. 3C). The Group 1 SNPs (strongest GWAS evidence) had a MAF of 30%, while the Group 2 
SNPs (strongest eQTL evidence) had a MAF of 50%. Using whole-genome sequencing data 
from 176 individuals with paired post-mortem RNA-seq data from prefrontal cortex41, we 
used the MAF distribution to identify five haplotypes (Fig. 3D) and each individual’s 
genotype. Group 2 SNPs (strongest eQTL evidence, MAF 50%) are found in three haplotypes 
(dark blue and red, dark blue and yellow, dark blue alone, Fig. 3D) resulting in the high MAF 
of 50%. Homozygous status for the Group 2 SNPs is associated with decreased expression of 
RBL2 (p = 0.007, Wilcoxon). We infer that one of the SNPs shown in dark blue (Fig. 3C) 
impacts RBL2 expression, though no clear candidate SNP was evident when considering 
epigenetic data. 
 
Group 1 SNPs are only found on one haplotype (dark blue and red, Fig. 3D) resulting in a 
lower MAF of 30% than the Group 2 SNPs. We infer that one of the Group 1 SNPs has a 
functional impact above and beyond the decrease in RBL2 expression mediated by the 
Group 2 SNPs, to yield the stronger evidence of association with age at onset of walking. 
Annotation of the 125kb locus with VEP42 identified rs17800727 as a likely candidate for this 
effect, since it results in a missense variant (MANE isoform: ENST00000262133.11, 
p.Tyr210Cys) (Fig. 3E) that is predicted to impact function by some severity metrics (e.g., 
‘Damaging’ based on PolyPhen243, CADD44 score of 25) but not all (e.g., ‘Tolerated’ based on 
SIFT); future functional studies would be required to validate this functional impact.  
 
The presence of the rs17800727 RBL2 missense variant on a haplotype associated with 
decreased RBL2 expression (red co-occurs with dark blue, Fig. 3D) would be a parsimonious 
explanation for the two observed groups of SNPs. Group 2 SNPs reflect three haplotypes 
that decrease RBL2 expression, resulting in stronger eQTL association than association with 
age at onset of walking (dark blue, dark blue and red, dark blue and yellow, Fig. 3D). Group 1 
SNPs reflect one of these three haplotypes (dark blue and red, Fig. 3D). An RBL2 missense 
variant in the Group 1 SNPs (red, Fig. 3C) leads to the stronger evidence in the GWAS for 
association with age at onset of walking (Fig. 3B). If the missense variant had a loss-of-
function effect it would be on a haplotype that magnifies the functional impact through 
decreased expression of RBL2.  
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Fig. 3 Colocalization of variants in genomic locus 2. Genomic locus 2 overlaps with a region in which 
SNPs are predicted to alter RBL2 expression in the human brain (eQTLs). A. The GWAS evidence for 
association with age at onset of walking (-log10(P), x-axis) is plotted against the statistical evidence of 
being an eQTL for RBL2 in human adult cerebellum1 (-log10(P), y-axis) for each SNP (points) within a 
2Mb window around the GWAS peak. Points are colored by linkage disequilibrium (LD) correlation 
with the lead SNP (rs17800727) and these values are used to define two groups. B. The SNPs from ‘A’ 
are shown in the 2Mbp genomic region (x-axis, GRCh37) with protein-coding genes (top), GWAS 
evidence for association with age at onset (-log10(P), middle) and statistical evidence for RBL2 
expression in human cerebellum39 (-log10(P), y-axis, bottom). Point color matches ‘A’. C. A zoomed in 
view of the peak indicated by dashed vertical lines in ‘B’ shows the GWAS evidence for association 
with age at onset of walking (-log10(P), y-axis) by genomic position (x-axis, GRCh37). Color indicates 
the Minor Allele Frequency (MAF) of each SNP. The locations of protein-coding genes in the region are 
indicated at the top. A SNP (rs17800727) that results in a missense variant (p.Tyr210Cys) in RBL2 is 
marked. D. Swarm, violin, and box-plots showing the distribution of RBL2 expression (transcripts per 
million (TPM), y-axis). Each point represents the expression of RBL2 in one of 87 prenatal human 
cortices (BrainVar41) split by genotype into three groups based on zygosity for the Group 2 50% MAF 
SNPs. The P-value represents the difference between the homozygous alternate and homozygous 
reference groups (Wilcoxon, two-sided). Bars at the bottom indicate pairs of haplotypes (derived from 
the data shown in ‘C.’ making up each genotype. E. Structure of RBL2 protein predicted by AlphaFold45 
with the location of rs17800727, p.Tyr210Cys in red46. 
 
 
We also identified colocalization of SNPs associated with expression of KANSL1 in the 
cerebellum with SNPs associated with age at onset of walking in genomic locus 6 on 
chromosome 17 (Table 1). Colocalization analysis40 identified rs1078268 as the shared 
causal variant in both GWAS and eQTL datasets at this locus (PP=0.79; chr17:44075901:A:G 
GRCh37; chr17-44075901-A-G GRCh38; Fig. S11). The alternate allele (G) for this variant is 
associated with increased age at onset of walking and increased expression of KANSL1.  
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Polygenic score analysis  
 
In a leave-one-out design, we calculated a polygenic score (PGS) based on meta-analyses of 
all samples, leaving out either Lifelines, NTR or NSHD. In the Lifelines cohort, the PGS from 
the meta-GWAS of the other cohorts (MoBa, NTR and NSHD) was significantly associated 
with age at onset of walking (β = 0.19, SE = 0.02, p < 2 × 10-16, R2 = 0.034). Using the same 
method, the PGS was significantly associated with age at onset of walking in the NTR cohort 
(β = 0.18, SE = 0.02, p < 2 × 10-16, R2 = 0.032) and in the NSHD cohort (β = 0.18, SE = 0.02, p < 
2 × 10-16, R2 = 0.030). The MoBa sample comprised a high proportion of the data such that it 
would be inappropriate as a “left out” sample in a leave-one-out design. Therefore, we 
applied five-fold cross-validation to this cohort, yielding five within-sample PGS with a mean 
variance explained of R2 = 0.056 (SE = 0.001).  
 
Genetic effects identified by GWAS can be confounded by indirect genetic effects, for 
example through population structure, assortative mating and passive gene-environment 
correlation (prGE)47. To identify possible confounding from indirect genetic effects, we used 
a within- and between- sib-pair PGS analysis. We generated a PGS from a meta-analysis of 
the MoBa, Lifelines and NSHD GWAS summary statistics and used to conduct within-family 
associations in the NTR dataset. Among 2,586 dizygotic twin pairs, within- and between-
family standardised regression coefficients in a linear mixed-effects model were not 
significantly different from each other (χ2(1) = 0.04, p = 0.70), indicating that the genetic 
signal is not biassed by prGE, or effects such as stratification and assortative mating. Fig. 4 
shows the beta estimates of the age at onset of walking PGS prediction in all the cohorts.  
 

 
Fig. 4 Beta estimates of the prediction of age at onset of walking for the five MoBa subsamples, 
Lifelines, NSHD, NTR between and NTR within sib-pair polygenic score analysis. Error bars represent 
the standard error of the beta estimate.  
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Genetic correlations with other traits 
 
Next, we tested for genetic correlations between age at onset of walking and a pre-
registered selection of physical health, neurodevelopmental, psychiatric, cognitive and 
cortical phenotypes. Age at onset of walking was negatively genetically correlated with 
childhood BMI48 (rg =-0.14, SE = 0.04, 95%CI [-0.22, -0.07]), adult BMI49 (rg = -0.10, SE = 0.02, 
95%CI [-0.14, -0.06]) and ADHD50 (rg = -0.18, SE = 0.03, 95%CI [-0.24, -0.12]) and positively 
genetically correlated with educational attainment51 (rg = 0.12, SE = 0.02, 95%CI [0.08, 
0.16]), IQ52 (rg = 0.09, SE = 0.03, 95%CI [0.04, 0.14]), and bipolar disorder53 (rg = 0.07, SE = 
0.02, 95%CI [0.03, 0.12]).  
 
Among thirteen adolescent and adult cortical phenotypes54, we observed a significant 
genetic correlation between age at onset of walking and folding index (rg = 0.14, SE = 0.04, 
95%CI [0.06, 0.21]), the local gyrification index (rg = 0.10, SE = 0.04, 95%CI [0.03, 0.17]) and 
cortical surface area (rg = 0.07, SE = 0.04, 95%CI [0.002, 0.15]), all of which are measures of 
cortical expansion, and isotropic volume fraction, that indicates water diffusion in the brain 
related to ventricles and cerebrospinal fluid (rg = 0.10, SE = 0.04, 95%CI [0.01, 0.17]). There 
were no significant genetic correlations with the other complex traits tested (see 
Supplementary Table S12 and Fig. 5A). Non pre-registered exploratory analyses showed that 
age at onset of walking was genetically correlated with self-reported walking pace in adults 
(rg = 0.06, SE = 0.03, 95%CI [0.01, 0.11]), but not with other motor phenotypes (Table S12). 
 
In a genetic multivariable regression performed with GenomicSEM55, we observed that the 
relationship between the genetic components of ADHD and age at onset of walking 
remained significant after conditioning for educational attainment (standardized β = -0.160, 
SE = 0.045, p = 3.8 x 10-4), while the conditional standardized association between 
educational attainment and age at onset of walking was non-significant (β = 0.038, SE = 
0.033, p = 0.246, Fig. S12). 
 
We applied MiXeR univariate and bivariate Gaussian mixture modelling56, which calculates 
the polygenicity of age at onset of walking, as the number of SNPs that explain 90% of the 
h2

SNP , and the genetic overlap between age at onset of walking and other phenotypes, 
including SNPs of both concordant and discordant effect directions. We applied bivariate 
mixture modelling to age at onset of walking with all other phenotypes with which there 
was a significant genetic correlation as calculated by LDSC, after correction for multiple 
testing (as per Fig. 5A). MiXeR bivariate models were only applied if the phenotype met the 
criterion of h2

SNP x GWAS sample size > 6,00057. The BIC values did not support the bivariate 
models between age at onset of walking and local gyrification index, isotropic volume 
fraction and bipolar disorder; for the bivariate models with childhood BMI and folding index, 
BIC values did not support the models but the AIC values did, so these results should be 
interpreted with caution. For all other models, we found support (as evaluated using BIC), 
for the MiXeR model above the ‘minimal model’, which contains the minimum polygenic 
overlap needed to explain the LDSC genetic correlations. AIC and BIC values for all models, 
and negative log-likelihood plots are provided in Supplementary Table S13 and 
Supplementary Fig. S13 respectively. 
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The polygenicity of age at onset of walking was 11,857 SNPs, confirming the hypothesis that 
the inflation observed in the QQ-plot could be explained by trait polygenicity 
(Supplementary Note A). MiXeR presents the genetic overlap between two traits as Venn 
diagrams (Fig. 5B). In terms of the proportion of the SNPs contributing to the polygenicity of 
age at onset of walking that overlap with other phenotypes investigated, the traits 
investigated that showed the most overlap were educational attainment and IQ (82.44% 
and 91.07% respectively). Of these overlapping SNPs between age at onset of walking and 
educational attainment and IQ, the fractions of SNPs that had concordant directions of 
effect were 55.10% and 53.70% for educational attainment and IQ respectively. A summary 
of all the bivariate MiXeR analysis results can be found in Table 2.   
 
 
 
Table 2 MiXeR results showing the composition of the genetic overlap between age at onset of walking 
and 9 traits for which there was a significant genetic correlation as measured using LDSC. Fraction 
shared = the proportion of the SNPs that explain 90% of the age at onset of walking h2

SNP that are 
shared with the correlated trait. Fraction concordant within shared = the proportion of the shared 
SNPs that have concordant effect direction between the two traits. rg = LDSC genetic correlation as 
calculated within the MiXeR bivariate analysis software. The rg values in Table 2 (LDSC rg values 
reported by MiXeR) can vary slightly from those reported above because of subtle differences in the 
pre-processing of summary statistics prior to analysis. The magnitude of the estimates of the fraction 
of shared SNPs from MiXeR bivariate analyses do not correlate positively with the magnitude of the 
genetic correlation estimated by LDSC because the fraction of shared SNPS from MiXeR includes SNPs 
that have both concordant and discordant effect directions between the two traits, which counteract 
each other in the calculation of rg by LDSC.  
 

Correlated 
trait 

Fraction 
shared (%) rg (M) rg (SD) Fraction concordant 

within shared (M) 
Fraction concordant 
within shared (SD) 

Educational 
attainment 82.44% 0.124 0.007 55.10% 0.57% 

IQ 91.07% 0.109 0.008 53.71% 0.26% 

Adult BMI 77.38% -0.112 0.010 45.46% 0.73% 

ADHD 64.87% -0.191 0.009 42.32% 0.51% 

Folding index 15.84% 0.100 0.016 58.72% 2.12% 

Childhood BMI 11.80% -0.137 0.015 36.44% 2.38% 
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Fig. 5 Genetic overlap between age at onset of walking and other complex traits. A Genetic correlation 
between age at onset of walking and physical health (purple), neurodevelopmental conditions and 
cognitive traits (blue), psychiatric disorders (orange), cortical (grey) and non pre-registered motor 
phenotypes (green). Error bars indicate 95% confidence intervals (CIs). Significant correlations based 
on CIs are marked with the full point. Correlations that remain significant after adjusting for multiple 
testing using the Bonferroni correction are marked with a squared full point. B Venn diagrams 
representing MiXeR bivariate analyses between age at onset of walking and the 9 other phenotypes 
with which it has significant genetic correlations. The size of the circles and the numbers within them 
represent the relative polygenicity of each trait (i.e., how many genetic variants contribute to 90% of 
the SNP heritability). The overlap between each pair of circles represents the degree of genetic overlap 
between the two phenotypes, that is, the number of shared variants in thousands, along with the 
standard error. Numbers and standard errors in sections of the circles that do not overlap represent 
the number of variants unique to that phenotype. The corresponding rg, estimated using LDSC, is 
shown below each Venn diagram. Bivariate results are shown for age at onset of walking (WALK), with 
Educational Attainment (EA), adult Body-Mass Index (BMI), Attention Deficit/Hyperactivity Disorder 
(ADHD), Intelligence (IQ), childhood Body-Mass Index (cBMI) and brain Folding Index (FI). 

 
 
 
Polygenic score association with measurable differences in brain volume at birth 
 
In an exploratory analysis we tested whether the PGS for age at onset of walking was 
associated with measurable differences in infant brain volume at birth. We used neonatal T2 
imaging data from a European subsample of 264 term-born infants (137 male, 127 female), 
acquired as part of the Developing Human Connectome Project (dHCP)58.  
 
The effect of the age at onset of walking PGS on brain volume was investigated across the 
whole-brain at the voxel-level using log-Jacobian determinants, calculated using non-linear 
deformation fields between subjects and the dHCP neonatal standardised atlas. In the 
resultant maps, higher log-Jacobian values represent brain regions that contracted during 
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image registration (i.e., larger brain volumes), while smaller values represent volume 
reductions59. We performed a tensor-based morphometry (TBM) analysis, applying a 
general linear model (GLM) and permutation testing for statistical inference. We found a 
significant positive correlation between the age at onset of walking PGS and regional brain 
volume in the right basal ganglia, right posterior thalamus, bilateral anterior thalami, 
bilateral cerebellum and cerebellar peduncles, pons, medulla, primary visual cortex and 
superior temporal sulcus after correcting for multiple comparisons and thresholding at a 
corrected p < 0.05 (Fig. 6). Increased brain volume in these regions was associated with a 
higher PGS (predisposing for later age at onset of walking).  
 
Finally, for the European term-born infants in dHCP infants that had also been assessed 
using the Bayley-III Scales of Infant and Toddler Development60 at an age 18-month follow-
up (N = 217), we explored the relationship between scaled gross motor score and the age at 
onset of walking PGS using a regression model. Sex, gestational age at birth, birth weight z-
score, home environment score (as a proxy for socioeconomic status) and 10 ancestral PCs 
were included as covariates. We found that higher age at onset of walking PGS was 
significantly associated with lower Bayley’s gross motor score, indicating worse/possibly 
delayed gross motor skills (β = -0.161, SE = 0.070, p = 0.022).   

 

 
 

Fig. 6 Brain regions where there is a statistically significant positive correlation between tissue volume 
and age at onset of walking polygenic score. Thresholding t-statistic image at t > 0.95, significant voxels 
were overlaid on the 40-week neonatal brain template in sagittal, coronal and axial planes. White 
arrows indicate significant brain structures involved in motor control.  
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Discussion 

 
 

The present study identified age at onset of walking as a polygenic phenotype with 
significant SNP-based heritability of 24%. We identified 11 independent genome-wide 
significant loci in this first GWAS of age at onset of walking, based on a sample size of 70,560 
children, and these included 2 loci that colocalised with eQTLs. We discuss four main 
conclusions from these results.  
 
Past models of gross motor skills, as well as neurodevelopment more generally, have put a 
primary emphasis on environmental factors such as nutrition5 and cultural factors4,61 . Our 
results show for the first time that the phenotype of age at onset of walking is also 
associated with common genetic variants operating in the brain.  
 
Significantly enriched cell type tissues were exclusively brain-based tissues, and moreover, 
strongest signals included tissues in the basal ganglia, cortex and cerebellum. In line with 
these findings, the polygenic score for age at onset of walking was associated with neonatal 
brain volume of the basal ganglia, thalami, medulla, pons and cerebellum. This is consistent 
with the known role of these brain areas in motor function6,62. Moreover, no non-brain 
tissue types showed significant enrichment. Based on our results, if other cell types are 
associated with age at onset of walking (e.g., adipose subcutaneous tissue or 
musculoskeletal), their involvement does not appear to be influenced by common genetic 
variation.  
 
Second, the novel loci that were discovered here involve genes of highly plausible biological 
relevance to the onset of walking. We identify common variant association with age at 
onset of walking at a locus overlying Retinoblastoma-like protein 2 (RBL2, 
ENSG00000103479, genomic locus 2 in Table 1). Assessing the allele frequencies in a 
population, we identify five haplotypes, three of which are associated with decreased RBL2 
expression in the human cortex and one of these three also contains an RBL2 missense 
variant (rs17800727). This haplotype therefore represents a “double hit”, both decreasing 
RBL2 expression and including an RBL2 missense variant. This locus has also been associated 
with intelligence63, educational attainment64, and height49; assessing the top SNP in each of 
these GWAS, we find they are on the same RBL2 eQTL/missense haplotype. Based on 
gnomAD 65 v4.0, this haplotype is observed at 24-30% allele frequency in cohorts from 
Europe and the Middle East, 10% in South Asia, and <5% in East Asia and Africa or African 
Americans 65.  
 
RBL2 is also associated with an autosomal recessive neurodevelopmental disorder (eponym 
Brunet-Wagner)66,67. Homozygous loss of RBL2 has been observed in five individuals across 
three families, each with a different allele 66,67. Affected individuals had infantile hypotonia, 
severe developmental delay, delayed/absent walking, and were minimally verbal. Seizures 
were reported in three cases. Three cases had microcephaly (-2.4SD to -4.7SD), while two 
had normal head circumference (65th and 50th centiles) but cerebral atrophy on MRI. 
Height was normal for two cases, unreported for one, and low for two (3rd centile, -3.4SD). 
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In Balb/c mice, homozygous loss of Rbl2 is embryonic lethal with a disorganized neural tube 
and neuronal loss67. 
 
Heterozygous loss of RBL2 has not been associated with a human phenotype and is 
observed in 0.03% of the population in gnomAD16. This is about half the expected number of 
RBL2 null alleles, suggesting modest selective constraint, as has been observed for genes 
associated with other recessive disorders (LOEUF = 0.60, gnomAD65 v4.0).  
 
Through colocalization analysis40 we also found evidence to support a shared causal variant 
(rs1078268) affecting both age at onset of walking and expression of KANSL1. KANSL1 
encodes a protein of the same name which is a conserved regulator of the chromatin 
modifier KAT868. Heterozygous deletions at chromosome 17q21.31, that include the KANSL1 
gene, lead to an autosomal dominant neurodevelopmental disorder (eponym Koolen-de 
Vries), characterised by psychomotor delay in all patients, with delayed age at independent 
walking, as well as hypotonia, epilepsy, developmental delay/intellectual disability, 
congenital malformations in multiple organ systems and a characteristic facial 
dysmorphism69. Haploinsufficiency of KANSL1 is sufficient to phenocopy the 17q21.31 
microdeletion syndrome68. Thus, our results bring together, via genetic loci with different 
inheritance patterns, the complex trait of walking onset in the general population and rare 
genetic disorders that involve delayed or absent walking.  
 
Third, we found genetic correlations between later age at onset of walking and higher 
cognitive performance and years in education, lower likelihood of ADHD, higher folding 
index, local gyrification index, cortical surface area and isotropic volume fraction. We note 
that the direction of the associations was consistent in all four individual cohorts as well as 
the meta-analysed results, indicating robust findings. In post hoc exploratory genetic 
correlation analyses as well as polygenic score analyses with infant brain imaging 
measures, we found evidence of significant positive genetic associations between age at 
onset of walking and infant, childhood, and adult cortical expansion phenotypes. 
 
Research on the timing of milestones in prenatal brain development across humans, 
primates and other mammals shows that longer duration (more prolonged development) is 
associated with larger brain volumes, and in particular, enlargement of later developing 
brain structures70. Stemming from our findings reported here, a testable hypothesis is that, 
to the extent that onset of walking can index a general rate of brain development, the later 
the onset of walking, the more prolonged is that individual’s time course of brain 
development, associating later with greater gyrification and higher IQ and educational 
attainment. 
 
The mechanisms underlying the genetic correlations between later age of walking and 
higher IQ, more years in education, higher gyrification, folding indices, cortical surface area 
and water diffusion in the cortex (indicated by the isotropic volume fraction metric) should 
be explored in future research. The ability to walk requires practice and movement61. One 
behavioural hypothesis is that prior to walking, infants who have longer attention spans and 
average or lower activity levels may spend more time stationary. Infants with higher activity 
levels or shorter attention spans may — on average — move about more, thus gaining more 
practice in movement and muscle strengthening and training, ultimately resulting in earlier 
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walking onset. From a neuroscience perspective, one could speculate that enhanced 
practice in the first year of life would lead to faster learning, since brain plasticity in the 
motor system is maximal during this period71. Thus, attention and activity levels may 
influence motor system training in young children. In support of the hypothesis that shorter 
attention span and higher activity levels would be associated with earlier walking, a recent 
study of over 25,000 children from MoBa found that the ADHD polygenic score was 
associated with earlier walking16. Further, the ADHD polygenic score was associated with 
better gross motor skills, such as walking, climbing stairs, and jumping, in 7,498 18-month-
old children from the Avon Longitudinal Study of Parents and Children (ALSPAC)72. 
Consistent with these findings, a recent GWAS of infant language found that ADHD is also 
genetically correlated with better early expressive vocabulary73. 
 
A second hypothesis relates to a protracted phase of development across the cortex and, in 
particular, in the primary motor cortex (M1) over the first year after birth74. If the M1 takes 
longer to develop and build connections in some children, this would put a constraint on 
when children begin to walk, with later walking associated with higher cognition. In line with 
this hypothesis, we found that gene sets involved in age at onset of walking are involved in 
the generation of neurons. Further, we observed that genes associated with age at onset of 
walking are enriched in the brain between 19 and 24 weeks post conception (Fig. S10). 
Additionally, the polygenic score predisposing to later onset of walking is associated with 
larger volumes of brain areas involved in motor control at birth (Fig. 6). Since advantages 
and costs to early walking might vary based on the individual’s environmental conditions, 
wide individual differences in the duration of the sensitive period to learn to walk might be 
the result of the ability of human beings to adapt successfully to their local environment3,75. 
 
Current public health policy employs late walking (> 18 months) as a red flag for 
developmental delay which typically triggers referral for clinical assessment aimed to 
identify the reason for a departure from the normal range of achievement of this 
milestone1. A better understanding of the entire variation of age at onset of walking can 
help in more precise intervention planning. In the absence of a deleterious, highly penetrant 
factor known to cause developmental delay (rare genetic effects and environmental factors 
leading to an acquired condition such as cerebral palsy, for example), our results suggest 
that age at onset of walking is part of typical species variation and that late walking may be 
associated with larger brain volume and surface area, and improved cognitive outcomes. 
Historical data suggests the majority of late walkers do not have a medically-recognised 
developmental disorder9. Future research should explore whether early walking may also be 
a useful red flag that may offer early information about likelihood of ADHD or learning 
difficulties. Further, Mendelian Randomization approaches can be used to understand 
whether early walking has a causal effect on other domains of neurodevelopment. 
 
Finally, our results from within-family polygenic score analyses suggest that the majority of 
the signal identified through our GWAS of age at onset of walking captures direct genetic 
effects and is not confounded with indirect effects such as gene-environment correlation, 
assortative mating and stochastic effects47. Future genetic research should test the relative 
role of direct and indirect effects for other infant phenotypes once more infant GWAS 
become available. If true, this offers evidence for an important conceptual point about how 
genes and environment operate together across the lifespan.  
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In our study design, we took a comprehensive approach to the phenotype and samples. 
Relevant samples were searched for using multiple database resources, research council 
websites and bibliographies. Samples were only included if they had a highly similar 
phenotype (age at onset of walking in months) and a sample size of greater than 1000 to 
ensure reliable effect sizes in individual samples. Several forms of evidence, including out-
of-sample prediction and measurement harmonisation, supported meta-analysing across 
our four cohorts. Nevertheless, the potential attrition and participation biases present in 
population cohorts should be considered in relation to our findings76,77. An important 
limitation of this study is that our meta-analysis only included Western European cohorts, as 
at the time of conducting the study information on age at onset of walking was not available 
in other genotyped cohorts that have the power to conduct a GWAS. Extending this 
investigation to a more diverse population is vital to produce robust findings on the shared 
biology underlying the onset of bipedal ambulation, especially given the perceived role of 
different cultural practices in the achievement of this milestone. Some of the phenotypes, 
such as schizophrenia, major depression and a cross-disorder 
psychiatric/neurodevelopmental construct did not show significant genetic correlations with 
age at onset of walking. It remains to be seen, as sample sizes for neuropsychiatric disorder 
GWAS become larger, whether age at onset of walking will show larger genetic correlations 
with these phenotypes. It is noted that bipolar disorder shows a significant positive genetic 
correlation with years in education53 and as such, the positive genetic correlation with age 
at onset of walking is in line with previous findings.  
 
In summary, we identified the first common genetic loci associated with age at onset of 
walking and report that it is a highly polygenic and heritable phenotype. The results 
provided candidate causal genes, and implicated genes expressed in the brain, especially 
between 19 and 24 postconceptional weeks, and genes involved in neurogenesis. The 
genetic variants identified were highly plausible for a motor phenotype, being previously 
associated with disorders that disrupt the development of walking and are linked to motor 
disorders, such as the Brunet-Wagner neurodevelopmental syndrome and the Koolen-de 
Vries syndrome. Rare mutations of these genes are associated with both motor and 
cognitive phenotypes (neurodevelopmental disorder and intellectual disability), and for 
common genetic variation, age at onset of walking was genetically correlated with IQ. We 
identified a “double hit” haplotype in one of these genes, RBL2, which both decreases gene 
expression and contains a potentially deleterious missense variant associated with delayed 
walking.  The polygenic score explained 3-5.6% variance in age at onset of walking, the 
majority of which was direct genetic effects, predicted gross motor skills in an independent 
cohort and was associated with increased brain volume at birth in regions involved in motor 
control. Age at onset of walking showed significant genetic correlations with both later 
outcomes and adult brain structures including IQ, educational attainment, ADHD, BMI, and 
water diffusion in the cortex, brain gyrification and folding indices.   
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Methods 

 
Samples  
 
The meta-analysis was conducted using data from four birth cohort samples of European 
ancestry. Full details of the samples are provided in the Supplementary Note A.  
Analyses were pre-registered on the Open Science Framework 
(https://doi.org/10.17605/OSF.IO/M2QV3 ).  
 
Lifelines  
Lifelines is a multi-generational prospective population-based birth cohort study examining 
the health and health-related behaviours of 167,729 persons living in the North of the 
Netherlands. lt employs a broad range of investigative procedures in assessing the 
biomedical, socio-demographic, behavioural, physical and psychological factors that 
contribute to the health and disease of the general population, with a special focus on 
multi-morbidity and complex genetics 20,78. Individuals aged 25 to 50 were recruited from 
the Northern region of the Netherlands between 2006 and 2013 and, during their first study 
visit, were asked for consent for the study team to approach family members with an 
invitation to participate. This included any children (≥ 6 months) of cohort members. 
Questionnaires about children were answered by parents based on retrospective 
recollection. The final sample size of Lifelines children with good quality phenotype and 
genotype data included in the GWAS was 3,415 (1,768 females, 1,647 males). 
 
The Norwegian Mother, Father and Child Cohort Study (MoBa) 
MoBa is a population-based pregnancy cohort study conducted by the Norwegian Institute 
of Public Health 17,18. Participants were recruited from all over Norway from 1999-2008. The 
women consented to participation in 41% of the pregnancies. Blood samples were obtained 
from both parents during pregnancy and from mothers and children (umbilical cord) at 
birth79. The cohort includes approximately 114,500 children, 95,200 mothers and 75,200 
fathers. The current study is based on version 12 of the quality-assured data files released 
for research in January, 2019. The establishment of MoBa and initial data collection was 
based on a licence from the Norwegian Data Protection Agency and approval from The 
Regional Committees for Medical and Health Research Ethics. The MoBa cohort is currently 
regulated by the Norwegian Health Registry Act. The current study was approved by The 
Regional Committees for Medical and Health Research Ethics (2016/1702). Phenotype 
information used in this study (year of birth and sex of the participants) was obtained from 
the Medical Birth Registry (MBRN), a national health registry containing information about 
all births in Norway. 
 
After post-imputation quality control, the MoBa dataset includes 207,569 individuals of 
whom 76,577 were children80. The final sample size of children from MoBa with European 
genetic ancestry and good quality genotype and phenotype information included in the 
GWAS was 58,302 (28,456 females, 29,846 males). 
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MRC National Study for Health and Development (NSHD) 
NSHD is a population-based prospective birth cohort study whose participants were infants 
from single births born in England, Scotland and Wales during one week in March 1946 
(N=5,362) to women with husbands21. The dataset includes 2,939 genotyped individuals 
whose DNA was collected at age 5381. The sample was roughly representative of the 
national population of the same age at the time according to a comparison with census 
data. The final NSHD GWAS sample size including children with available genotype and 
phenotype was 2,592 (1,295 females, 1,297 males). 
 
Netherlands Twin Register (NTR) 
The NTR consists of twins, multiples, and their family members. NTR twins and multiples 
were recruited into the register as new-borns up to a few months after birth starting in 
198782. There were no exclusion criteria. Genotyping has been performed on 7,392 
individuals for whom there is parent-report data in infancy83. For NTR, 6,251 children (3,399 
females, 2,852 males) with good quality genotype and available phenotype data were 
included in the GWAS.  
 
Phenotype coding 
 
In all samples, individuals whose age at onset of walking was less than 6 months or greater 
than 36 months were excluded as outside the normative range1. MoBa, NSHD and NTR all 
recorded age at onset of walking in months as an integer variable. In the Lifelines sample, 
age at first walking was measured as an ordinal scale, using bins of months of age at first 
walking. These were recorded using the midpoint for each age bin. The upper and lower 
bins (‘10 months or younger’ and ‘24 months or older’ respectively), were winsorized, re-
coding them to 10 and 24 months respectively. The phenotype descriptives for each cohort 
are reported in the Supplementary Table S1. 
 
Genotyping, imputation and quality control 
 
Pre- and post-imputation quality control (QC) and imputation procedures were conducted 
for each cohort following individual study protocols, and according to a Standard Operating 
Procedure, which was based on the Rapid Imputation for COnsortias PipeLIne (RICOPILI) 
pipeline84. In all the individual cohorts, samples were excluded from the GWAS if they 
presented excess autosomal heterozygosity, mismatch between self-reported and genetic 
sex, XXY genotype and other aneuploidies, individual genotyping rate < 90%. Duplicate 
samples and samples whose genetically determined ancestry did not overlay with the 
European ancestry cluster based on a reference panel were also excluded. Autosomal SNPs 
were excluded from the GWAS if they had minor allele frequency (MAF) < 0.5%, Hardy-
Weinberg Equilibrium (HWE) exact test at p<1 x 10-6, call-rate < 98%. Full details of the pre- 
and post-imputation QC are provided in the Supplementary Note A and in Supplementary 
Table S2. 
 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.07.24306845doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.07.24306845
http://creativecommons.org/licenses/by/4.0/


24 

Genome-wide association analyses 
 
GCTA85 fastGWA86 was used for association analyses in MoBa, Lifelines and NTR, and PLINK87 
1.9 was used for association analyses in NSHD, where all related individuals (PI-HAT > 0.2) 
were excluded from the analysis and the sample size was too small to use fastGWA.  
 
Association analyses of the age at onset of walking, as a continuous variable, were carried 
out using a mixed linear model. Each primary GWAS included the first 10 ancestry principal 
components as continuous covariates, and sex and genotyping batch as discrete covariates. 
MoBa included year of birth, and NTR and Lifelines included age at data collection as 
continuous covariates. NTR included two dummy variables for the genotyping platform as 
covariates. In MoBa, Lifelines and NTR, where fastGWA was used, a sparse (0.05 cut-off) 
Genetic Relatedness Matrix was included in the model to account for relatedness in the 
sample.  
 
GWAS analyses were performed for each of the samples, using the whole dataset and also 
with the samples stratified by sex.  
 
GWAS meta-analysis 
 
Summary statistics QC was performed using the R GWASinspector88 package on the cohorts’ 
summary statistics separately. Variants were excluded if they presented invalid or missing 
value in the chromosome, position, effect and other allele, beta, standard error columns, 
duplicated alleles, if they were monomorphic (with allele frequency of 0 or 1 and variants 
with identical alleles), allosomal or mitochondrial, or if they had imputation quality score < 
0.8. Results of the summary statistics QC are provided in the Supplementary Information 
and Supplementary Table S3.  
 
Summary statistics for the four samples were meta-analysed with a standard-error weighted 
meta-analysis in METAL24 on SNPs with MAF > 1%. SNPs were matched between cohorts 
using rsIDs, which had been assigned according to their chromosome, base-pair positions 
and alleles based on the 1000 Genomes29 reference panel in GWASinspector. Meta-analyses 
were performed separately for the whole sample, and for sex-stratified samples. Finally, 
only SNPs for which the minimum sample size was 10,000 were retained for further analyses 
(6,902,401 variants).  
 
Fine mapping and functional annotation  
 
In order to identify significant independent SNPs associated with age at onset of walking at 
each locus at a p-value threshold of p < 5 x 10-8 89, we conducted conditional and joint 
association analyses (COJO)25 in GCTA85. This analysis conditions on the lead SNP at a locus, 
and tests for further independent significant SNPs within the same chromosome using a 
stepwise selection procedure. The MoBa genotype data were used to estimate Linkage 
Disequilibrium (LD), in line with the COJO guidelines.  
Fine mapping, functional annotation and gene-based analyses were carried out in FUMA30 
(version 1.5.2) and MAGMA35 (version 1.08), indicating the list of independent lead SNPs 
from the COJO analysis. We defined significant SNPs to be independent if they had pairwise 
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LD r2 < 0.6. Lead SNPs were defined as having pairwise LD r2 < 0.190. Loci were merged if LD 
blocks distance was < 250 kb. 
For gene-mapping in FUMA, SNPs were mapped to genes at a maximum distance of 1 Mb30 
based on position, eQTL for selected relevant tissues such as the brain, lung, muscles, heart 
and adipose tissue and chromatin interaction in the brain (see Table S5). Annotation of 
genes was performed by ANNOVAR within FUMA (date of download 2017-07-17).  
A subset of genes prioritised based on mapping using only significant SNP-gene pairs at a 
False Discovery Rate (FDR) corrected p-value < 0.05, were tested for differential expression 
in 54 Genotype-Tissue Expression (GTEx) v833 and 11 BrainSpan32 tissues and gene-set 
enrichment using GENE2FUNC in FUMA. The gene set analysis in FUMA was performed to 
test whether the prioritised genes were over-represented in predefined gene sets obtained 
from the Molecular Signatures Database91,92 (MSigDB) v7.0, WikiPathways93 (v 20191010) 
and GWAS Catalog94 (v e0_r2022-11-29) databases, after excluding the MHC region and 
applying Bonferroni correction for multiple testing.  
For MAGMA analyses, the MHC region was excluded and SNPs within 1 kb from a gene were 
assigned to each gene90. The MAGMA gene-based test identified genes associated with age 
at onset of walking from all 18,766 mapped genes using a Bonferroni correction to define 
statistical significance (Table S7). The MAGMA gene-property analysis used 53 GTEx v833 and 
11 BrainSpan32 RNAseq datasets to test tissue specificity of genes associated with age at 
onset of walking, based on association p-values of all the 18,766 genes mapped in FUMA.  
 
Colocalization 
 
We used coloc.SuSiE40 to identify colocalization of GWAS and eQTL signals, using an LD 
reference panel of 1,444,196 HapMap3 SNPs with LD calculated in European-ancestry 
individuals from the UK Biobank95,96. Pairs of variants further than 3 cM apart are assumed 
to have 0 correlation. The eQTL data is from 261 post-mortem bulk RNA-seq samples of 
human cerebellum39. We used a two-sided Wilcoxon rank test to test for differences in RBL2 
expression in the human cortex by genotype for GWAS and eQTL significant SNPs at MAF 
~50% using bulk RNA-seq data of prefrontal cortex from BrainVar41 (periods 4-6). Missense 
variants in the chromosome 16 locus were annotated using the Variant Effect Predictor 
(VEP)42. Protein structure for RBL2 was predicted using AlphaFold45. Annotation of 
p.Tyr210Cys on RBL2 was done using the Genomics 2 Proteins Portal46. 
 
LD score regression 
 
LD score regression (LDSC22) was used to calculate h2

SNP and bivariate genetic correlations, 
using the 1000 Genomes Phase 329 European ancestry LD scores reference panel. Bivariate 
genetic correlations were calculated between age at onset of walking and multiple infant, 
psychiatric, neurodevelopmental and global cortical phenotypes, specifically: birth weight97, 
childhood Body-Mass Index (BMI)48, adult BMI49, autism98, ADHD50, educational attainment 
(EA)51, intelligence (IQ)52, schizophrenia99, general loading for psychiatric disorders100, major 
depression101, bipolar disorder53, and 13 cortical phenotypes102 (see Fig. 5A). Genetic 
correlation was also calculated between the age at onset of walking in each of the cohorts.  
Additionally, LDSC was used to calculate h2

SNP for the female and male meta-GWAS and 
genetic correlation between the sex-stratified analyses. Statistical significance was 
evaluated based on 95% confidence intervals as per the pre-registration. Bonferroni-
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adjusted p-values correcting for 28 multiple testing are reported in the Supplementary Table 
S12.  
As post-hoc analyses, which were not pre-registered, we also used LDSC to test the genetic 
correlation between age at onset of walking and four other motor phenotypes; self-
reported walking pace103, clinically ascertained muscle weakness in the pincer grip in elderly 
people104, motor coordination in childhood105 and Parkinson’s Disease106. 
 
Stratified LDSC37 was conducted to obtain estimates of partitioned heritability by functional 
annotation and cell-type. HapMap3107 SNPs (excluding the HLA region) from the meta-
GWAS summary statistics weighted by LD score obtained from a European 1000 Genomes29 
reference panel were used in the regression, as recommended by Finucane and 
colleagues37. To estimate the proportion of genome-wide h2

SNP attributable to functional 
categories, we run the stratified LDSC ‘full baseline model’ (described elsewhere37) that 
evaluates whether heritability in a functional category is greater than heritability outside the 
category. This was tested for 96 functional categories provided by the stratified LDSC 
developers, including coding, UTRs, promoter and intron annotations from UCSC108, 
genomic annotations for all cell types and fetal cell types only from ENCODE109 and the 
Roadmap Epigenomics Consortium110, region conserved in mammals from Lindblad-Toh et 
al.111, FANTOM5 enhancers from Andresson et al.112. The p-value for enrichment was 
adjusted for multiple testing using the Bonferroni method, as in previous similar research113. 
To calculate whether heritability was enriched in specific cell types, we applied stratified 
LDSC to 53 sets of specifically expressed genes38 using multi-tissue gene expression data 
from the GTEx33 project. Bonferroni correction was applied to correct for multiple testing. 
 
Genomic SEM 
 
A non- pre-registered Genomic SEM55 analysis was conducted to test whether the 
association of the genetic components of age at onset of walking with ADHD remained 
significant after conditioning for educational attainment. To this aim, we performed a 
genetic multivariable regression using the same ADHD50 and EA51 summary statistics that 
were entered in the LDSC analysis. For ADHD, the sample size was defined as effective 
sample = 4v*(1-v)*(N cases + N controls) and the sample prevalence as 50%, as indicated by 
the Genomic SEM developers (https://github.com/GenomicSEM/GenomicSEM/wiki/2.-
Important-resources-and-key-information ). The summary statistics were munged using 
HapMap3 SNPs. Both standardised and unstandardised results are reported in 
Supplementary Fig. S12. 
 
MiXeR 
 
Univariate causal mixture models were applied using MiXeR56, to obtain estimates of 
polygenicity, defined as the proportion of variants that contribute to 90% of the h2

SNP
114. We 

fitted bivariate models in MiXeR to estimate the genetic overlap that is due to both 
concordant and discordant SNP effects, between age at onset of walking and eight other 
phenotypes which had a significant genetic correlation with it (calculated using LDSC). When 
the summary statistics for the second phenotype in these bivariate analyses came from the 
case-control GWAS, the Neff was calculated as 4 / (1 / Ncase + 1 / Ncontrol). The MHC 
(6:26000000-34000000) was excluded from MiXeR analyses due to its complex LD structure. 
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MiXeR v1.3 was used for these analyses, and the data were prepared using scripts 
developed by the same group (https://github.com/precimed/python_convert).  
 
Polygenic score analysis 
 
Polygenic scores (PGSs) were calculated using PRS-cs115,116; a leave-one-out design was 
employed whereby additional GWAS meta-analyses were conducted, leaving out one of 
each of the smaller samples (NSHD, NTR and Lifelines) in turn to be used as a target dataset 
and meta-analysing the remaining samples as a training dataset for estimation of SNP 
weights. The MoBa sample comprises most of the overall sample size, and thus could not be 
used as a target dataset, so a within-MoBa cross-validation was employed. The MoBa 
dataset was split randomly into five samples of roughly equal size by removing one fifth of 
the data in turn (with no overlap in these fifths) from the whole dataset to create five new 
samples, each comprising four fifths of the data. GWASs were then conducted on each of 
these five new samples, and the summary statistics used for estimation of PGS SNP weights 
applied to the left-out fifth of the data. This was performed five times, using each of the 
fifths as target data in turn. 
 
For all leave-one-out PGS analyses, including the within-MoBa design, we derived weights 
for each chromosome using the 1000 Genomes phase 3 European panel29 as a reference for 
LD, and the following PRS-cs parameters: parameter a and b in the gamma-gamma prior = 1 
and 0.5, respectively, global shrinkage parameter phi = 0.01, 1000 MCMC iterations, 500 
burn-ins and five as a thinning factor of the Markov chain. PLINK 2.0117 was used to compute 
the PGS in the target sample. The proportion of variance explained by the PGS, scaled so 
that mean = 0 and SD = 1, was quantified in the NTR cohort by the squared beta-coefficient 
from a linear regression model between the scaled phenotype and the PGS, including 10 
PCs, age, sex and genotyping platform in the model, and was quantified in all other cohorts 
with adjusted R2 of the linear regression between the scaled phenotype regressed on 10 PCs 
and the genotype batch and the PGS.  
 
Within- and between-family polygenic score analysis 
 
Within- and between-family analyses were performed using the NTR cohort dataset. The 
method is described in47, and scripts were used from  118 
(https://github.com/PerlineDemange/GeneticNurtureNonCog/).  
 
A PGS was generated from a meta-analysis of the MoBa, Lifelines and NSHD GWAS 
(calculated as above), and the predictive power of this PGS was quantified in the whole NTR 
sample using the above method. We used a random intercept mixed-effects linear model in 
R using the dizygotic twins-only subsample of NTR (N = 2,586 individuals in 1,293 twin pairs), 
after ensuring that a mixed-effects model was justified by calculating a bootstrapped 
intraclass correlation (ICC). PGS entered into the model were first scaled to mean = 0 and SD 
= 1. Within-family PGS effects were calculated by subtracting the family mean PGS from 
each individual PGS. Between-family effects were modelled using the mean family PGS. The 
linear model included age, sex, the first 10 PCs and a genotyping platform dummy variable 
as covariates. The within- and between-family standardised regression coefficients were 
compared by a χ2 test.  
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Polygenic score in the Developing Human Connectome Project 
 
Genetic data  
Infant saliva DNA was genotyped for SNPs genome-wide on the Illumina Infinium Omni5-4 
array and standard quality control was performed. The dataset was imputed to the 
Haplotype Reference Consortium reference panel119 on the Michigan Imputation Server. The 
imputed data were used to compute an age at onset of walking PGS for each of the 264 
unrelated European infants using summary statistics from the age at onset of walking meta-
GWAS and the PRS-cs software115, as previously described.  
 
Imaging data: Acquisition and processing  
T2-weighted MRI data were acquired at term equivalent age (median postmenstrual age = 
41.9 weeks) as part of the Developing Human Connectome Project (dHCP58). T2 images were 
registered to the 40-week dHCP neonatal atlas (https://brain-development.org/brain-
atlases/atlases-from-the-dhcp-project/)120 via an age-matched intermediate using 
Symmetric Diffeomorphic Image Registration, implemented using Advanced Neuroimaging 
Tools (ANTs)121,122 as a measure of individual variation in brain volume, the log-Jacobian 
determinant images were calculated by applying ANTs algorithms to the non-linear 
transformation deformation tensor fields. Log-Jacobian maps were then smoothed using a 3 
mm full-width half-maximum Gaussian filter and down sampled to 1 mm isotropic 
resolution (to increase computational efficiency). A 4D volume was created by merging the 
1 mm log-Jacobian maps across all subjects (N = 264), then subsequently used as the input 
to the randomise algorithm (described below). 
 
Imaging data: Tensor based morphometry 
The randomise function, part of the FMRIB Software Library (FSL)23,123  was used to apply a 
general linear model, including gestational age, postmenstrual age at scan, sex, weight-z-
score and 10 ancestral PCs as covariates. Threshold-Free Cluster Enhancement (TFCE) and 
Family-Wise Error (FWE) rate were applied to correct for multiple comparisons between 
voxels. Significant areas were identified with permutation testing using 5,000 random 
permutations. We show results at a significance level of p < 0.05 in the FWE-corrected 
contrast. 
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