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Abstract— Analyzing anatomic shapes of tissues and
organs is pivotal for accurate disease diagnostics and
clinical decision-making. One prominent disease that de-
pends on anatomic shape analysis is osteoarthritis, which
affects 30 million Americans. To advance osteoarthritis di-
agnostics and prognostics, we introduce ShapeMed-Knee,
a 3D shape dataset with 9,376 high-resolution, medical-
imaging-based 3D shapes of both femur bone and cartilage.
Besides data, ShapeMed-Knee includes two benchmarks
for assessing reconstruction accuracy and five clinical
prediction tasks that assess the utility of learned shape
representations. Leveraging ShapeMed-Knee, we develop
and evaluate a novel hybrid explicit-implicit neural shape
model which achieves up to 40% better reconstruction
accuracy than a statistical shape model and implicit neu-
ral shape model. Our hybrid models achieve state-of-
the-art performance for preserving cartilage biomarkers;
they’re also the first models to successfully predict lo-
calized structural features of osteoarthritis, outperforming
shape models and convolutional neural networks applied to
raw magnetic resonance images and segmentations. The
ShapeMed-Knee dataset provides medical evaluations to
reconstruct multiple anatomic surfaces and embed mean-
ingful disease-specific information. ShapeMed-Knee re-
duces barriers to applying 3D modeling in medicine, and
our benchmarks highlight that advancements in 3D mod-
eling can enhance the diagnosis and risk stratification for
complex diseases. The dataset, code, and benchmarks will
be made freely accessible.

Index Terms— Osteoarthritis, Neural Networks, Magnetic
Resonance Imaging, Shape Analysis, Deep Learning

I. INTRODUCTION

Osteoarthritis (OA) is the leading cause of pain and disabil-
ity in developed countries, impacting 30.8 million US adults
[1] with an annual US cost of $180 billion [2]. OA affects
all tissues in a joint, with emphasis on bone and cartilage.
The majority of deep learning research in OA focuses on 2D
convolutional neural networks (CNNs) applied to X-rays, 2D
and 3D CNNs for segmentation of magnetic resonance images
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(MRI), and few studies using 3D CNNs for classification of
MRIs [3], [4], [5], [6]. OA research largely focuses on X-rays
due to the limitations of efficiently processing large 3D image
volumes, however, X-rays are a 2D projection of the joint and
are thus prone to errors, particularly with repositioning [7].

Characterizing OA relies on medical imaging to discern the
shape of anatomic tissues [8]. As OA progresses, osteophytes
grow at the edges of cartilage, and cartilage is thinned.
Diagnosis of OA is based on these shape features [8]. Beyond
OA, shape analysis also serves as the basis for numerous health
conditions and diagnoses. For example, shape modeling is cru-
cial for diagnosis and treatment of craniosynostosis, a pediatric
condition where skull bones fuse early, causing deformity and
potential brain damage [9]. Numerous orthopedic conditions
are related to bone shape; both gross shape [10], [11] and
nuanced curvatures of joint articulations [12] are important
for diagnosing, treating, and preventing disease.

Shape modeling provides an efficient way to analyze 3D
anatomic data [13]. However, current shape models, and shape
model research has limitations. Widely adopted statistical
shape models (SSMs) require anatomic point matching, which
is not guaranteed and, in disease, may not be possible. For
example, osteophytes that form in OA are not present in
healthy bones, and thus no true matching points exist. Once
matching points are obtained, SSMs are typically fit using
linear statistical representations, namely principal components
analysis (PCA); shape features of disease are unlikely to be
purely linear in nature. Applications of SSMs in medicine
are typically used to identify gross features or predict dis-
ease in general [14], [15]; accurate quantification of specific,
localized, biomarkers of disease are required for clinical
applications. To advance shape analysis in medicine, we re-
quire benchmarks that assess clinically relevant reconstruction
metrics, and whether a model can localize relevant disease
features.

With our overarching objective to enable the advancement
of medical domain-specific 3D modeling, we provide the
following contributions (Fig. 1):

• We introduce ShapeMed-Knee: a 3D anatomic dataset
with 9,376 shapes, each including two interrelated objects
(femur bone and cartilage). We publicly share segmenta-
tion masks, and 3D shapes.

• We define seven medically relevant benchmark tasks with
our ShapeMed-Knee dataset: surface reconstruction, car-
tilage biomarker calculation from reconstructions, disease
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Fig. 1. The ShapeMed-Knee dataset was created by segmenting and meshing 9,376 knee MRIs (orange box). We fit three shape models, two
neural shape models (NSM) and one statistical shape model (SSM) to the ShapeMed-Knee training data and evaluated reconstruction tasks,
including average symmetric surface distance (ASSD) (blue box). To test latent vectors z learned by the shape models, we train and evaluate
classifiers for five clinical tasks (green box).

diagnosis, localized disease staging, and future surgical
event prediction.

• We develop hybrid explicit-implicit neural shape models
(NSM) that outperform both SSMs and implicit NSMs for
bone and cartilage reconstruction (7-20% lower average
symmetric surface distance).

• We demonstrate that our hybrid NSM outperforms an
SSM, implicit NSM, and CNN in disease staging, disease
diagnosis, and localization of specific features of disease.

• We show that interpolation in NSM latent space produces
interpretable smooth interpolation of physical shape, clin-
ical shape features, and clinical predictions.

• We demonstrate precise control over localized disease
features by interpolating latent space along classifier-
fitted vectors, enabling targeted manipulations of disease
characteristics.

• We publicly share our NSM model and the code used for
training and inference. A tutorial on how to download
and used the data is provided at https://github.
com/gattia/shapemedknee.

II. RELATED WORK

Neural representations have advanced computer graph-
ics [16]. ShapeNet data has been central to the advancement of
generative 3D shape models [17]. The recently proposed Med-
ShapeNet is similar to ShapeNet, but includes 3D anatomic
shapes with multiple inter-related tissues [18]. However, there
still exists a gap in 3D anatomic models with curated disease-
specific reconstruction metrics and clinical tasks; these data
are needed to enable focused research that advances methods
for quantifying anatomic shapes and understanding how these
shapes influence health and disease.

A. Generative Implicit Neural Representations
DeepSDF was the first reported use of a generative im-

plicit neural representation [19]. DeepSDF uses a multilayer
perceptron (MLP) to generate shapes conditioned on a latent
vector z. DeepSDF enables shape compression, interpola-
tion, and completion from partial observations. Numerous
DeepSDF advances have been proposed. Curriculum DeepSDF
using curriculum learning [20]. Modulated Periodic Activa-
tions combine two MLPs as a means of leveraging periodic

(sinusoidal) activations, which outperformed rectified linear
unit (ReLU) MLPs for single object reconstruction [21], [22].

To improve reconstruction of large scenes or fine details, in-
stead of a single global z, a spatially localized z is input into the
MLP [23], [24]. Hybrid explicit-implicit formulations generate
localized z by leveraging the expressivity of CNNs [24], [25],
[26], [27]. Both generative adversarial network and variational
autoencoder (VAE) frameworks have been used in these hybrid
explicit-implicit models [25], [26].

B. Shape Modeling

Shape modeling has many important applications for
biomedical data. In just the OA community, shape models have
been used for automated segmentation [28], [29], disease pre-
diction and staging [15], [30], [31], and generating synthetic
data for physics-based simulations [12], [32]. Shape models
have advanced understanding and treatment of conditions
related to the heart, brain, skull, and bones, to name a few [33],
[9], [34], [10], [11]. Improved shape modeling can benefit all
of these areas, providing tangible benefits in understanding
disease and improving patient health.

C. Statistical Shape Models

Conventional SSMs use PCA to learn shape features. The
main challenge with PCA-based SSMs for anatomical objects
is the need for matching points at the same anatomical location
on each object. Correspondence is typically obtained via non-
rigid image registration of signed distance fields [28], or non-
rigid point cloud registration [14], [12], [35]. To improve
anatomic correspondence, registration features beyond XYZ
coordinates, such as spectral coordinates or curvatures have
been included [14], [36]. Registration is prone to failure in
abnormal or diseased areas, which are typically the most
important.

D. Neural Shape Models

We refer to generative shape models in the medical domain
as NSMs. There are only a handful of NSM applications.
Amiranashvili et al. fit an occupancy NSM to anisotropic bone
data showing occupancy-based methods can be trained and
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Fig. 2. Cartilage thickness (top row) and subregions (bottom row) are
displayed on the bone surfaces. Blue is anterior (front), orange is central
(middle in front/back axis), green is posterior (back). Dark colors denote
medial i.e. the inside of the knee, while light colors denote lateral i.e. the
outside.

applied to undersampled anisotropic data. However, the occu-
pancy NSMs still exhibit relatively large reconstruction errors
(average symmetric surface distance (ASSD): 0.25-0.48mm)
[37]. Jensen et al. fit a NSM by deforming points on a sphere
using point-specific latent vectors. During training, a single
latent vector was used for all points, while during inference,
latents vary over the surface to increase expressivity. They
showed better reconstruction than DeepSDF and improved
segmentation results [38]. Ludke et al. used a neural flow de-
former to fit a NSM by deforming coordinates from a template
shape to the target, outperforming a conventional SSM in terms
of surface reconstruction and simple OA classification [39].

Biomedical research demonstrates that implicit neural rep-
resentations applied as NSMs improve anatomical reconstruc-
tions and image segmentation results and can encode basic
clinical information. However, existing work represents only
a single tissue at a time, uses relatively small samples of
data (41-354 examples), and primarily focuses on surface
reconstruction results rather than the quality of learned rep-
resentations. Finally, biomedical approaches are challenging
to compare as they use different datasets and downstream
prediction tasks.

III. DATASET & EVALUATION

Data from this study is derived from the Osteoarthritis
Initiative (OAI), a multi-center, longitudinal observational
study of 4,796 men and women (45-79 years of age) with
the goal of developing biomarkers of OA. The OAI collected
patient clinical data, X-rays, and MRIs annually for 9 years.
Important for the prediction tasks in this study, teams of expert
radiologists were contracted to label acquired images for OA
diagnosis, as well as standardized features of OA disease. We
derive our dataset from the MR imaging data collected at the
baseline time point and the radiologist evaluations from the
baseline and all follow-up time points.

Task Train Val Test Total

Subjects 3,233 74 1,481 4,788
Recon 6,325 141 2,910 9,376
KL / OA 5,919 128 2,371 8418
MOAKS (O) 403 0 194 597
MOAKS (C) 1,414 0 688 2,102
Future OA 3,385 76 1,534 4,995
Future KR 6,325 141 2,910 9,376

TABLE I
DATA EXTENT AT THE KNEE LEVEL FOR EVALUATIONS. Subjects IS THE

NUMBER OF INDIVIDUALS IN EACH DATASPLIT. Recon IS THE NUMBER

OF 3D MODELS. Current Osteoarthritis (OA) GRADE QUANTIFIES

DISEASE SEVERITY. MRI OSTEOARTHRITIS KNEE SCORE (MOAKS)
QUANTIFIES OSTEOPHYTE (O) AND CARTILAGE (C) OUTCOMES. Future

OA QUANTIFIES HEALTHY TO OA PROGRESSION IN 4 YEARS AND

Future knee replacement (KR) QUANTIFIES SURGERY IN 9 YEARS.

We used stratified random sampling to split the OAI baseline
data into train/validation/test sets at the subject level, as right
and left joints can be highly correlated and provide a form
of data leakage. Splits were stratified over sex and clinical
prediction tasks (III) to ensure disease states and outcomes
were equally represented. Due to the iterative and time-
consuming nature of fitting the NSM during inference, a small
validation set was used in this study (train: 67.5%, 3,233
people and 6,325 knees; validation: 2.5%, 74 people and 141
knees; test: 30.0%, 1,481 people and 2,910 knees). Tab. I
contains an overview of the included data.

A. ShapeMed-Knee Dataset Creation
1) Segmentations & Surfaces: We extracted 9,376 Double

Echo in Steady State (DESS) knee MRIs from the baseline
visit of participants in the OAI [40]. We segmented DESS
MRIs automatically using a multi-stage CNN framework;
this approach was validated on the OAI dataset, achieving
Dice similarity coefficients of 0.99 and 0.91 for femoral
bone and cartilage and low ASSD (0.08-0.15mm) [41]. This
performance is equivalent to the best-reported cartilage seg-
mentations [6], [29], and is the same as expert-human level in
terms of cartilage sensitivity to change [42]. All left knee MRI
segmentations were flipped to create right knees and remove
variance due to anatomical side. Three-dimensional surfaces
were then generated from each femur bone and cartilage
segmentation mask using previously established methods [35];
code to create surface meshes is shared for reproducibility.

a) Cartilage Thickness Biomarker: Mean cartilage thickness
in pre-defined anatomic regions is a common biomarker for
clinical trials and experimental studies [43], [44]. It is critical
that NSM-reconstructed surfaces preserve these biomarkers
relative to reference surfaces [45]. We calculated cartilage
biomarkers with the following processing steps: i) divide
cartilage segmentations into subregions, ii) compute cartilage
thickness for each vertex over the bone surface, iii) assign
each bone-vertex to one of the subregions. Cartilage biomarker
calculations used open-source code [46] used in previous
investigations [35], [47]. From these data, we computed five
cartilage thickness biomarkers as the mean thickness for
all bone mesh vertices in each of five established cartilage
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Fig. 3. Reconstructed bone and cartilage surfaces colored by re-
construction error. Blue indicates the reconstruction was inside of the
reference, and red indicates the reconstruction was outside. Zoomed
regions highlight an area of disease (osteophyte on the posterior lateral
femur) that was not captured by the SSM (blue), had smaller error for
the implicit NSM, and had the least error for the hybrid NSM.

subregions (trochlea, medial central, lateral central, medial
posterior, lateral posterior) [48]. Visualization of cartilage
thickness, subregions, and a general orientation to the data
are presented in Fig. 2.

b) Bone Surface Registration: All femur bones were co-
registered to have matching points to create a traditional
SSM (Sec. IV) as a baseline model; original full resolution
meshes (∼220,000 points) were used for the NSMs. First, to
reduce the computational complexity of the registration, each
bone mesh was downsampled to 20,000 vertices [49], [50].
Next, an average femur shape, determined from 281 knees
in a prior study [51], was used as the template and non-
rigidly registered to every other bone in the dataset using
spectral correspondence-based registration [52], [36] that has
been used in multiple knee OA studies [35], [14]. Cartilage
thickness and subregions were re-calculated for the registered
meshes as described in the previous section Sec. III-C.2.
The resulting registered meshes included matching points and
cartilage thicknesses for 9,376 femur bones.

c) Mesh Quality Control.: To ensure high-quality meshes
in the dataset, we generated static images of every bone mesh
from 4 orthogonal planes (top, bottom, front, back) using
pyVista [53] and an imaging researcher with 10 years of
experience with bone analysis manually reviewed every image.
From this analysis, we identified 57 meshes (0.6%) with
large errors primarily due to physiologically-plausible holes
at the sites of anterior cruciate ligament reconstruction. These
57 meshes were removed from the dataset. An additional
9 meshes had moderate errors, and 30 meshes had small
potential errors; these meshes were retained in the dataset.
IDs for moderate and small error meshes, and quality control
images for all knees are provided for dataset users to use their
custom exclusion criteria.

B. Prediction Tasks

OA is a whole joint disease that affects multiple tissues,
with an emphasis on the cartilage and bone. We developed
five prediction tasks which test a model’s ability to understand

shape complexity relevant to current bone and cartilage health
as well as future disease progression.

OA is commonly diagnosed using X-rays graded using the
Kellgren-Lawrence (KL) system [8]. The KL system assigns
knees a grade between 0-4 (0 = no OA, 1 = doubtful OA, 2 =
mild OA, 3 = moderate OA, 4 = severe OA). Diagnosis with
OA is defined as KL ≥ 2. Beyond diagnosis, KL grading
is used in research and clinical trials to “stage” the severity
of OA in the whole joint (all tissues/bones) beyond binary
classification. Therefore, our first two tasks are:

1) General OA staging by predicting KL grade (0-4)
2) Binary OA diagnosis (KL ≥ 2)
While KL grading provides a whole-joint OA measure,

it is a coarse measurement based on 2D X-rays and does
not provide fine-grained, location-specific information in 3D.
Therefore, it cannot be used to identify where and what tissues
are involved in a person’s disease. The MRI Osteoarthritis
Knee Score (MOAKS) measures multiple features of OA that
are localized to different regions of the joint [54]. Our third
task involves predicting three MOAKS scores (one bone and
two cartilage features) in six distinct regions of the femur.
MOAKS scoring provides clinically important information and
can simultaneously serve as a test of how well a model can
spatially localize fine-grained OA features. Task three is:

3) Advanced localized OA staging by predicting three
MOAKS scores (Score 1: Osteophytes, Score 2: Car-
tilage Thinning, Score 3: Cartilage Hole) in 6 femoral
regions divided across the anterior, central, and posterior
regions in the medial and lateral condyles.

The three MOAKS scores were defined as follows:
• Score 1 Osteophytes: Osteophytes are abnormal bone

growths (bone spurs) that occur at the edges of the
cartilage and are a hallmark sign of OA. The MOAKS
osteophyte score includes 4 levels (0: None, 1: small, 2:
medium, 3: large). Due to a low prevalence of grade 3
scores (< 5%), we binned MOAKS osteophyte score into
3 levels (0-2) where level 2 includes original scores of
2/3.

• Score 2 Cartilage Thinning: A key sign of OA is
cartilage thinning. The MOAKS cartilage thinning score
categorizes the % of a region with any cartilage thinning
into 4 categories. Given a class imbalance amongst the
four categories, we binarize this score as individuals with
< 10% thinning (grades 0/1) and > 10% thinning (grades
2/3). This approach is used in prior OA studies [55].

• Score 3 Cartilage Hole: The final score quantifies the
% of a region that has a full thickness defect (a hole)
in the cartilage into the same 4 levels (0-4) as cartilage
thinning. Cartilage holes rarely occur (6-16%), thus we
binarized this score into no hole (grade 0) and any hole
(≥ 1).

The final two tasks were created to test whether a model
can predict future OA diagnosis (within 4 years) in currently
healthy subjects, and whether a medical event (knee replace-
ment) has occurred (within 9 years). Future OA diagnosis and
knee replacement prediction are common tasks performed in
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the OA literature, are challenging, and would provide valuable
information to identify which patients should be treated earlier.
MRI-based SSMs of bone shape, and CNN’s applied to X-ray
data have previously been used to predict these outcomes [15],
[30], [56], [57].

4) Predict future disease (OA) within 4 years.
5) Predict future knee replacement within 9 years.

C. Evaluations
1) Surface Reconstruction: We evaluate surface reconstruc-

tion errors separately for the bone and cartilage surfaces using
ASSD. We test ASSD on the whole test set and separately for
the 5 KL grades to assess whether reconstruction errors depend
on disease state.

2) Cartilage Thickness Biomarker: To evaluate whether re-
constructed bone and cartilage surfaces preserve important
cartilage biomarkers, we analyze the five cartilage subregions
on the whole test set and on each of the 5 KL grades in
the test set. Between the mean thickness of the original and
reconstructed surfaces we compute 1) the root mean squared
error (RMSE ↓) to determine absolute errors and 2) the
standard deviation of the difference (SDD ↓) as a measure
of consistency that removes the effect of systematic bias.

3) Prediction Tasks:
• OA Staging. OA staging is quantified using the KL

grade, a semi-quantitative multi-class measure of OA with
variation between raters. As such, relative agreement is
commonly used to assess KL predictions and inter-rater
agreement. We use accuracy and quadratically-weighted
Cohens Kappa, as done previously [58], [59], [60].

• OA Diagnosis. As OA diagnosis is a binary prediction
task with relatively well-balanced groups, we compute
the common metrics of area under the receiver operating
characteristic curve (AUROC) and accuracy.

• Advanced OA Staging (MOAKS). We assess three
MOAKS scores (measuring osteophytes, cartilage thin-
ning, cartilage holes) separately for six regions of interest.
Score 1 (osteophytes) includes three classes, and thus
we compute quadratically weighted Kappa and accuracy.
Since both Score 2 (cartilage thinning) and Score 3 (carti-
lage hole) are binary tasks with large class imbalance, we
compute F1 score and the area under the precision-recall
curve (AUPRC).

• Future disease (OA). The incidence of OA in the four
years following baseline was relatively rare, occurring in
only 9% of subjects. Therefore, we compute the F1 score
and AUPRC.

• Future knee replacement surgery. The incidence of
knee replacement in the 9 year follow-up was rare (5%).
Therefore, we compute the F1 score and AUPRC.

IV. BENCHMARK MODELS

We compared multiple types of shape models and CNNs on
our tasks. We compare an SSM, implicit NSM, and our hybrid
explicit-implicit NSM for reconstruction tasks. In addition
to these models, for the prediction tasks, we also compare
3D CNNs applied to raw image data and to bone/cartilage
segmentations. The models are described in the following.

A. Neural Shape Models

DeepSDF-based NSMs train a decoder to take as input a la-
tent vector z and coordinate x and predict the signed distance s
of x. NSMs typically use an autodecoder framework where z is
learned by jointly optimizing a dictionary of latents along with
the network weights to predict s while using regularization so z
matches a multivariate Gaussian distribution. Both NSMs used
in this study were trained using the same framework, including
point sampling, training hyperparameters, and reconstruction
strategy.

a) Point Sampling: Before training, an arbitrary mesh was
chosen as the reference. Every other bone mesh was registered
to the reference using a similarity transform (rigid + scale);
the transform was applied to the coinciding cartilage surface.
Next, bone and cartilage meshes were centred using the mean
of the bone points and were normalized using maximum radial
distance so both tissues lie within a unit sphere. Then, sepa-
rately for the bone and cartilage surfaces, 500,000 points were
sampled. Ninety percent of points were randomly sampled
by first sampling positions on the surface using blue noise
to produce uniform random samples. Then, sampled surface
points were perturbed by adding zero mean Gaussian noise:
45% σ = 0.016; 45% σ = 0.05. The remaining 10% of points
were uniformly sampled over the unit cube. Finally, s from
both meshes was calculated for every sampled point.

b) Training: Prior to training, each bone/cartilage pair was
assigned a random z ∼ N (0, 0.012). During training, for
each subject (k) and surface type (j: bone/cartilage), 17,000
points (Xjk) were randomly sampled with equal numbers of
points inside (-) and outside (+) the surface. Eqn. (1) was
optimized to minimize the error in predicted s and to regularize
the latent z. The loss comprises a reconstruction and latent
regularization term. The reconstruction term penalizes hard
samples (predicted wrong sign) as shown in Eqn (2) and
includes a weighted L1 where λ (0-1) controls the weighting
on hard samples with λ = 0 being equivalent to regular L1 and
higher values provide greater penalty [20]. λ was exponentially
increased from 0 to 0.2 over the first 1800 epochs. A latent
regularization loss independently penalized each z component
with σ = 100 to promote diagonal covariance. Latents and
network weights fθ were jointly optimized using the AdamW
optimizer with weight decay of 1e-4 [61].

K∑
k=1

[ J∑
j=1

Xkj∑
i=1

L1,λ(fθ(xji, zk), sji)

+
1

σ2
MSE(zk)

]
(1)

reconstruction loss

latent regularization

L1,λ =

(
1 + λ sgn(sji) sgn(sji − fθ(xji, zk))

× L1(fθ(xji, zk), sji)

)
(2)

sample difficulty

L1 reconstruction loss
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Fig. 4. Overview of network architecture. A global latent z controls
the overall generated shape. The global z is passed through a dense
layer, reshaped and then fed through a 5-layer CNN to produce 64×64
2D output with 384 feature maps. The 384 feature maps are split into
3 to produce one set of 64 × 64 × 128 feature maps per orthogonal
plane. To determine the signed distance of a particular point (

⊗
) that

point is projected onto each feature map plane, and the corresponding
feature vector is extracted using bilinear interpolation. These plane-
specific feature maps are summed, yielding the local z. The local z
is a coordinate-specific latent vector that controls the signed distance
prediction. The local z along with the XYZ coordinates of point

⊗
are

passed to a three-layer multilayer perceptron which outputs the signed
distance of the two surfaces (bone and cartilage).

c) Reconstruction: To reconstruct surfaces and create
shape-specific latents, the NSM weights were frozen and the
NSM was fit to the new surfaces. Specifically, the bone to
be reconstructed was similarity registered to the mean bone
shape of the NSM (zero-vector) and the bone/cartilage surfaces
were scaled to be within a unit sphere. Then, a randomly
initialized latent z ∼ N (0, 0.012) was optimized for 2,000
epochs to reconstruct the surfaces using an L1 loss between the
network predicted signed distance s and the actual s of 20,000
randomly sampled surface points (s = 0) using the Adam
optimizer. The lr was decayed by a factor of 0.9 every 20
epochs, and early stopping was implemented with a patience
of 50 epochs.

d) Hybrid Explicit Implicit NSM: The hybrid NSM is based
on triplanar architectures [25], [26] as outlined in Fig. 4. A
global latent z of a length of 512 is processed via a fully
connected layer, resulting in a 2048-length vector. This vector
is then reshaped to be 2×2×512 before being input into a CNN
decoder. The CNN decoder had 5 2D transpose convolution
layers, with stride 2 and 512 channels as outputs at each layer.
The final output layer of the CNN was sized 64×64×384; the
384 features maps were split into 128 features per orthogonal
plane. Sampled points x ∈ R3 are projected onto the three
orthogonal planes, and a length 128 z was obtained per feature
plane via bilinear interpolation. Plane features were combined
via summation, yielding a length 128 local z. The local z and
the sampled x position were concatenated and input into the
implicit 3-layer MLP with width 512, ReLU activations, and a
length two output (one for each tissue) with a tanh activation.

e) Implicit NSM Network: The implicit decoder was an 8-
layer MLP of width 512, with a skip connection of the inputs
(x and z) to layer 4 and ReLU activations throughout. The
output was sized two and used the tanh activation.

Metric Group SSM Implicit Hybrid

ASSD ↓
Bone/
Cart
(mm)

KL 0 .16 .14 / .10 .14 / .08
KL 1 .17 .15 / .10 .14 / .09
KL 2 .19 .17 / .12 .16 / .10
KL 3 .21 .18 / .13 .17 / .11
KL 4 .32 .25 / .20 .22 / .15
All .18 .16 / .11 .15 / .10

Average
RMSE ↓
SDD ↓

KL 0 .04 / .03 .05 / .04 .03 / .02
KL 1 .04 / .04 .04 / .03 .03 / .03
KL 2 .05 / .04 .04 / .04 .04 / .03
KL 3 .06 / .05 .05 / .04 .04 / .03
KL 4 .10 / .08 .14 / .14 .05 / .04
All .05 / .04 .06 / .05 .04 / .03

TABLE II
SUMMARY OF RECONSTRUCTION PERFORMANCE FOR EACH MODEL

(SSM, IMPLICIT NSM, HYBRID NSM) ACROSS THE WHOLE TEST

DATASET (ALL) AND EACH KL GRADE (0-4). METRICS INCLUDE

SURFACE RECONSTRUCTION ERRORS (ASSD) AND CARTILAGE

BIOMARKER OUTCOMES (RMSE, SDD) AVERAGED OVER FIVE

REGIONS.

B. Statistical Shape Model
The SSM was fit using [46], the same as described in

previous investigations [35], [14]. SSM-based reconstruction
does not provide explicit cartilage surfaces but instead com-
putes thicknesses at each bone vertex, therefore ASSD was
not evaluated for SSM cartilage.

C. Convolutional Neural Network
We trained two DenseNet121 models as implemented in

the MONAI package [62]. One network was trained with an
input of the raw DESS MRI data and the other an input of
the bone/cartilage segmentations. For both variants, the 3D
volumes used for input were downsampled from the original
volumes (384× 384× 160) to be sized 384× 384× 80, using
bilinear interpolation. This approach preserved full-resolution
data in-plane, while reducing slice thickness to 1.4mm, which
is sufficient for clinical trials including quantitative cartilage
analyses [44]. CNNs were trained with the AdamW opti-
mizer, an initial learning rate of 10−5 exponential decay with
gamme=0.8 and weight decay=0. Training was performed with
a single Nvidia A6000 GPU.

V. EXPERIMENTS

A. Reconstructions
Reconstruction evaluations are provided for the SSM, im-

plicit NSM, and hybrid NSM. No reconstruction results are
provided for the CNN because it is not generative.

a) Dataset Size: To determine data efficiency, we trained
each shape model using 4 training set sizes: 50, 200, 1,000,
6,325. NSMs were trained for 2,000 epochs (Tab. IV). SSMs
were tested using progressively more principal components
(Tab. IV). These analyses identified that: a) The hybrid NSM
performed best for ASSD and both cartilage biomarker mea-
sures across dataset sizes, b) Increasing dataset size up to 6,325
increased reconstruction performance for all models, and c)
Increasing the number of PCs used in SSM reconstruction did
not overfit up to 1,298 PCs (99% explained variance)
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Method
Task Metric CNN Seg CNN Image SSM Implicit Hybrid Hybrid+LR

KL κ / Acc .75 / .59 .78 / .59 .78 / .59 .69 / .54 .79 / .59 .72 / .60
OA AUROC / Acc .90 / .84 .90 / .81 .91 / .83 .88 / .80 .92 / .83 .92 / .81
MOAKS Osteo κ / Acc .00 / .49 .04 / .50 .16 / .50 .35 / .54 .53 / .63 .46 / .60
MOAKS Cart Thin AUPRC / F1 .51 / .23 .50 / .31 .63 / .51 .53 / .50 .74 / .66 .75 / .63
MOAKS Cart Hole AUPRC / F1 .32 / .00 .31 / .03 .41 / .16 .44 / .40 .57 / .55 .56 / .33
Future OA AUPRC / F1 .10 / .18 .20 / .26 .10 / .19 .15 / .23 .12 / .19 .14 / .18
Future KR AUPRC / F1 .07 / .13 .29 / .34 .27 / .33 .24 / .32 .33 / .28 .18 / .27

TABLE III
PERFORMANCE ON THE PREDICTION TASKS USING METRICS DESCRIBED IN SEC. III-C.3. HYBRID NSMS CONSISTENTLY EXHIBIT THE BEST

PERFORMANCE. κ: QUADRATICALLY-WEIGHTED KAPPA; ACC: ACCURACY; AUROC: AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC

CURVE; AUPRC: AREA UNDER THE PRECISION RECALL CURVE; OA: OSTEOARTHRITIS; KR: KNEE REPLACEMENT; LR: LOGISTIC REGRESSION.
ALL SHAPE MODELS USED AN MLP, EXCEPT FOR HYBRID+LR WHICH USED LR.

Model Latent size Dataset size ASSD Bone ASSD Cartilage

Hybrid
NSM

512 50 0.27 0.19
512 200 0.20 0.14
512 1,000 0.17 0.11
512 6,325 0.15 0.09
1,024 6,325 0.11 0.07

Implicit
NSM

512 50 0.37 0.40
512 200 0.23 0.18
512 1,000 0.17 0.13
512 6,325 0.16 0.11
1,024 6,325 0.13 0.09

SSM

32 (95%) 50 0.58 -
94 (95%) 200 0.42 -
180 (95%) 1,000 0.30 -
269 (95%) 6,325 0.24 -
1298 (99%) 6,325 0.13 -

TABLE IV
VALIDATION SET (N=141) RECONSTRUCTION PERFORMANCE FOR

MULTIPLE DATASET AND LATENT SIZES. THERE ARE NO AVERAGE

SYMMETRIC SURFACE DISTANCE(ASSD) RESULTS FOR CARTILAGE

RECONSTRUCTION USING THE STATISTICAL SHAPE MODEL (SSM)
BECAUSE THE SSM DOES NOT CREATE A CARTILAGE SURFACE. SSM
RESULTS ARE FOR THE NUMBER OF PRINCIPAL COMPONENTS NEEDED

TO EXPLAIN 95 AND 99% OF THE VARIANCE. NSM: NEURAL SHAPE

MODEL.

The hybrid NSM better reconstructed areas of OA disease
(Fig. 3). Fig. 5 distributions of ASSDs in the test set demon-
strate that the hybrid NSM had better ASSD for bone (6-17%)
and cartilage (9%). Tab. II shows that when assessed for all
data, as well as by KL grade, the hybrid NSM had the lowest
errors for reconstruction and cartilage biomarkers. Better SDD
compared to RMSE indicates that all models had a small bias
compared to the reference standard (Tab. II).

b) Latent Size: We tested the effect of doubling latent size
on ASSD errors for the hybrid and implicit NSM models.
Reconstruction accuracy improved as latent size increased,
with the hybrid NSM ASSD dropping 26% and 22% for bone
and cartilage, respectively (Tab. IV).

B. Classification / Staging
An MLP was trained to predict each clinical evaluation task

using each model’s encoded z as input. Hyperparameters were
determined via a grid search over depth (2,3), width (64-256),
dropout (0.2, 0.4), learning rate (10−3 to 10−5), and batchsize

Fig. 5. Probability density functions of the bone and cartilage average
symmetric surface distances (ASSD). Distribution tails were truncated
for visualization purposes.

(64-512). We also trained two 3D CNNs for clinical prediction
tasks Sec. IV-C. Loss functions for CNNs and MLPs included
binary cross entropy (OA, MOAKS cartilage thinning and
hole, future OA and knee replacement) and consistent rank
logits ordinal regression (KL, MOAKS osteophytes) [63].

a) OA Staging & Diagnosis: For predicting KL, the result-
ing κ of the trained models was 0.69-0.79, with the hybrid
NSM having the best performance and the implicit NSM
having the worst Tab. III. All models performed comparably
to inter-radiologist agreement (0.66-0.89)[59], [64], [65], [60].
Prior X-ray based DL methods performed slightly better (0.83-
0.88) [58], [60].

When directly diagnosing OA, the hybrid NSM performed
best (AUROC: 0.92) and the implicit NSM performed worst
(Tab. III), similar to the KL task. Interestingly, the CNN
applied to the segmentation and the image performed the same,
indicating the raw MRI provides no additional information.
Accuracy was slightly lower (0.81-0.83) than DL-based X-
ray OA grading (0.87-0.90) [66], [60], likely because X-rays
are the original data used to grade KL. However, the 2D X-
ray projection of the joint is prone to positioning errors [7]
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Fig. 6. Interpolation in hybrid NSM shape space along the mean healthy to the mean severe OA axis. Smooth progression of cartilage thinning
occurs on the medial central femur (circled) with a hole (grey) occurring at the end. Each bone is annotated with disease stage classifications
determined by logistic regressions, KL grade, and the number of regions with cartilage thinning (nthin).

and thus it is possible that 3D analyses are closer to the
ground truth physiologic (not image-based) grading. Our CNN
predictions were comparable to a previous CNN applied to
MRI data for predicting OA [67].

b) Advanced OA staging: The hybrid NSM performed best
for all three MOAKS tasks when averaged over the regions
(Tab. III). These results indicate that the latent z fit by the
NSM more meaningfully represented both the location and the
size of OA features. Not only is this important for OA, but it
demonstrates novel capacities of NSMs that are not commonly
tested; the ShapeMed-Knee dataset provides a unique method
of testing these capacities using real-world data.

The CNN models performed poorly in identifying carti-
lage holes (F1: 0.00-0.03) and were no better than chance
for the MOAKS osteophyte tasks (κ 0-0.04) Tab. III. Prior
DL work uses MOAKS to determine severity of cartilage
damage [55]. Other work predicts other features of MOAKS,
bone bruises [68] or inflammation [69]. This is the first
quantification of MOAKS osteophyte and cartilage health,
demonstrating that NSMs encode this important information
that is currently prohibitive to obtain clinically, and costly for
research and clinical trials.

Patient Reconstruction
decreasing probability cart hole 

Cartilage
Surface

Cartilage 
Thickness

Fig. 7. Interpretation of the logistic regression-based MRI Osteoarthritis
Knee Score (MOAKS) medial cartilage hole classifier. The top and
bottom rows are of the same bone, showing the solid cartilage surface
(top) vs. the thickness map (bottom). The left column is the NSM recon-
struction of a patient with a medial cartilage hole. The other two columns
are synthetic bone and cartilage surfaces generated by interpolating the
patient-fitted latent z along a vector defined by the logistic regression
coefficients. The synthetic bones progressively close the cartilage hole,
while generally leaving the other bone and cartilage regions the same.
Specific control of anatomical features indicates that these features can
be monitored longitudinally and that synthetic alternatives to patient
anatomy can be generated for in silico simulations.

c) Future OA & knee replacement prediction: All models
performed poorly on future event prediction tasks (Tab. III),
despite prior SSM bone shape work showing links between
current shape and future disease [15], [31]. However, these
prior studies used odds ratios to determine if certain shapes
are more likely to get worse, and did not always use a test
set [15]. The best-performing future OA diagnosis was by
the raw image-based CNN (AUPRC: 0.20, F1: 0.26); it is
possible non-shape-related features such as bone bruises or
joint inflammation boosted CNN image performance [70].

C. Interpretability

One of the powers of shape models is that they are fit in a
self-supervised fashion, and are generative. To show the utility
of this, we trained a logistic regression classifier on hybrid
NSM z for each prediction task. Results in Tab. III show that
the simple classifier is one of the best for disease staging. We
tested latent interpolation smoothness by assessing the effect
of interpolation on reconstructions and disease prediction.
Using the hybrid NSM we interpolated z from the mean
healthy (KL 0) to the mean severe OA (KL 4) shapes in
the test set, generated synthetic surfaces, and applied the
logistic classifiers on each z to determine KL and MOAKS
cartilage thinning grades Fig. 6. Shape space interpolation
generated smooth physical interpolations and predicted smooth
transitions of disease states Fig. 6. This general-purpose
representation is powerful because application to other image
modalities only requires a segmentation mask, whereas CNN-
based approaches would require re-training on entirely new
datasets. Furthermore, interpolation could be used to track
individual patient disease trajectories over time, opening the
door to novel ways of understanding disease.

The generative nature of the NSM enables further validation
that classifiers applied to the latent z are capturing features
of interest. Fig. 7 takes the latent z fitted to a patient, and
interpolates it along the vector defined by a logistic regression
classifier that predicts medial cartilage holes. Simple linear
interpolation along the fitted vector precisely controls the size
of the cartilage hole on the medial side. This visualization
improves confidence in the fitted model, but may also enable
entirely new applications. For example, it is possible to pre-
cisely add and remove specific, localized, features of disease
and therefore to generate synthetic versions of a patient’s
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anatomy. These synthetic digital twins can be used for in silico
simulations to determine the effects of specific disease features
on tissue biomechanics [12], or to inform surgical planning
such as cartilage repair [71], [72]. Importantly, this example
uses simple linear interpolation; future work can leverage
latent diffusion models [73] to advance this capacity.

VI. CONCLUSION

We contribute a hybrid explicit-implicit NSM which demon-
strates state-of-the-art performance for anatomic reconstruc-
tion, and clinical outcome prediction. Model training and
evaluation were enabled by our new ShapeMed-Knee dataset.
All shape models were capable of simple OA staging. Hybrid
NSMs uniquely quantified the location and size of OA fea-
tures. While hybrid NSMs provide current state-of-the-art bone
and cartilage reconstruction, further advances applied to our
ShapeMed-Knee dataset have the potential to improve results
and, in turn, our understanding of OA. We encourage the
community to leverage ShapeMed-Knee data and benchmarks
to tackle the unique challenges presented by modeling multiple
anatomic surfaces and encoding meaningful disease-specific
information.
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APPENDIX

A. Mesh Processing

Surface meshes were created for each subject using es-
tablished methodologies and open source tools [46], [74],
[75], [76] outlined in the following. First, binary segmentation
masks for each tissue were Gaussian filtered (σ: bone=0.5mm,
cartilage=0.1mm), and surfaces were extracted using a contin-
uous marching contours algorithm at a threshold of 0.5 [77];
marching cubes was applied using the VTK implementation
[74] via the pyMSKT library [46]. To ensure meshes were
watertight, the Robust Watertight Manifold Surface Generation
method [78] implemented in Point Cloud Utils [76] was used
with a mesh resolution of 200,000. The watertight meshes
were slightly dilated compared to the original mesh, thus
each point of the manifold mesh was projected back onto
the original surface to preserve the original topology. Once
watertight meshes were created, they were decimated to have
50% of the vertices, resulting in ∼ 250, 000 vertices per bone
mesh, and ∼ 150, 000 vertices per cartilage mesh, again using
the Point Cloud Utils library [76]. These methods have been
commonly used for analyses of bone and cartilage surfaces
in osteoarthritis (OA) [35], [51]. Segmentations, generated
surface meshes, and all code for generating the surfaces from
the segmentations will be publicly shared.

B. Cartilage Biomarker Calculation

Cartilage biomarker generation was done using standard
definitions of anatomic regions of interest established in the
literature [79], [48]. Thickness calculations were performed
using a normal vector method that is well established in the
literature and is comparable to other approaches (e.g., field
lines, nearest neighbour) [80]. Processing was done in three
steps:

1) Divide cartilage into subregions. Cartilage is divided
into 5 subregions (Anterior, medial and lateral central,
and medial and lateral posterior) [79], [48]. See Fig. 2
for visualization of the 5 cartilage regions. To divide
the cartilage, we identified three anatomic points along
image axes: anterior-posterior (forward-backward) x,
inferior-superior (up-down) y, medial-lateral (side-to-
side) z. The three points are:

a) The trochlear notch point along the x axis xt was
determined by flattening the segmentation along
the y-axis, flood filling, and then performing an
iterative search for the most anterior (negative
x) point of the posterior border of the cartilage
between the medial and lateral femoral condyles.

b) The most posterior (backward; positive x axis)
bone point in the x axis xpb is the femoral bone
voxel with the most positive position.

c) The center of the medial and lateral tibial cartilage
c along the z axis zc.

These three points were then used to divide femoral
cartilage into 5 subregions, creating a femoral cartilage
subregion mask. i) Anterior cartilage is any point where
x < xt, ii) medial weight-bearing cartilage is any point

where xt < x < xpb∧z > zc, iii) lateral weight-bearing
cartilage is any point where xt < x < xpb ∧ z < zc,
iv) medial posterior cartilage is any point where x >
xpb ∧ z > zc, and v) lateral posterior cartilage is any
point where x > xpb ∧ z < zc. [80], [79], [48]

2) Compute vertex-wise cartilage thickness. Cartilage
thickness was assigned to each bone vertex by project-
ing a vector normal to the surface and if the vector
intersected the cartilage mesh twice, then the Euclidean
norm of the intersections was calculated as the cartilage
thickness and assigned to the respective bone vertex.
Otherwise, a thickness of 0 was assigned.

3) Assign vertex subregions. Bone vertices with non-
zero cartilage thickness values were assigned a cartilage
region label. Vectors were again projected normal to the
surface and the 3D cartilage subregion mask was probed
100 times along this vector between the two cartilage
intersections. The bone vertex was assigned the label
with the most frequent cartilage subregion determined
from the probe.

C. Mesh Quality Control
We generated static images from 4 orthogonal views

(top/superior, bottom/inferior, front/anterior, back/posterior) of
the registered versions of every bone mesh ( Sec. III-A.1 Bone
Surface Registration) in the dataset and manually reviewed
them. This process identified 57 bones with obvious and large
errors, Fig. A1 includes examples of the static images used
for quality control as well as of an excluded example.

1) Registration artifacts.: These quality control static images
highlight errors or artifacts that can occur as a result of non-
rigid registration. While the original downsampled meshes
(20,000 vertices) used for shape modeling are normally clean
with regularly spaced triangles, non-rigid registration can
introduce artifacts when there is discordant anatomy between
two surfaces. For example, Fig. A2 shows an example of
a mesh with low-resolution on the mesh surface at diseased
regions of the bone surface, this is likely at least in part to
explain why the SSM-based approaches do not perform as
well for reconstruction compared to the NSM-based approach.
Another example Fig. A3 shows abnormal surface triangles in
a generally smooth surface region, this was a rare artifact but
highlights how registration-based approaches can fail leading
to sub optimal results.

D. Prediction Tasks Generation
During creation of the dataset, MRI Osteoarthritis Knee

Score (MOAKS) grades were converted from 4 labels to 3
(osteophyte) or 2 (cartilage thinning, cartilage hole) labels due
to data imbalances. Fig. A4 shows histograms of the MOAKS
scores (osteophyte, cartilage thinning, cartilage hole) before
and after reclassification.

The benchmark models used in this study included three
shape models (implicit neural shape model (NSM), hybrid
NSM, and a statistical shape model (SSM)) as well as
two convolutional neural network (CNN) based approaches.
Additional implementation and training details for each are
provided below.
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Fig. A1. Visualization of the four images created and reviewed for all bones. The top row shows an example of a bone that was deemed fine and
included. The bottom row was a bone that was excluded because of a hole in the middle of the bone - the location and size of the hole indicates
the errors could be from screws in the knee used during anterior cruciate ligament reconstruction.

Superior 
(xy)

Inferior 
(yx)

Posterior 
(zx)

Anterior 
(xz)

Fig. A2. Example of artifacts introduced during nonrigid registration. The bottom row is the downsampled mesh (20,000 vertices) and the top row
is the same surface after the template was non-rigidly registered to it. The blue arrows point to areas of coarsened triangles introduced because
these diseased regions (osteophytes) do not exist in the template. This coarsening indicates that the registration is uniquely identifying that this
small region is not present in the template and is likely beneficial in highlighting areas of high variance and thus might enhance disease prediction
tasks. However, this likely reduces the capacity to reconstruct these regions accurately. These artifacts can occur to varying degrees depending on
the severity of the osteophyte deformity.
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Inferior (yx) Anterior (xz)

Fig. A3. The bottom row is the downsampled mesh (20,000 vertices) and the top row is the same surface after the template was non-rigidly
registered to it. The blue arrows point to areas of error or artifact. The errors on the left with the solid arrow highlight a region that almost always is
accurately depicted in registration. However, in this one instance there is a small depression in the bone in that region that is abnormal; it is likely
this depressed region that caused errors in finding appropriate correspondence and thus produced a poor match. The dashed arrows on the right
show regions of coarsened triangles that are more likely an artefact than an explicit error, similar to Fig. A2

E. Neural Shape Model

The NSM model was built using PyTorch. Training and
inference were performed on a single graphics processing unit,
either a Nvidia A6000 or 2080ti.

a) Training.: During training, we used separate learning
rates and schedules for the network weights and the latents
z. For both sets of parameters, learning rate (lr) was decayed
as lr = lr0 × f (e/i) where lr0 is the lr at time zero, f is the
update factor e is the current epoch, and i is the interval which
lr is updated. Network weights had parameters of lr = 5 ×
10−3, f = (1/1.05), i = 16.67 and latents z had parameters
of lr = 10−4, f = 0.1, i = 1000.

The latent regularization weight from Eq. (1) was (1/σ2 =
10−4;σ = 100. The weight had a linear warmup over the first
100 epochs and was then cyclically annealed with 5 cycles
over the training period (2,000 epochs). The cyclic anneal
weight β for each cycle was defined using Eq. (A1) where
t is the epoch for the current cycle and T is the number of
epochs in each cycle (2000/5). We clamped signed distances
s at |s| = 0.1 for the implicit NSM and |s| = 1 for the hybrid
NSM.

β(t) =

{
2 t
T if 0 ≤ t < T

2

1 if T
2 ≤ t < T

(A1)

b) Reconstruction.: First, the bone/cartilage pair to be re-
constructed were similarity registered to the mean bone shape
of the NSM and then the bone/cartilage surfaces were scaled to
be within a unit sphere, the same as during training Sec. IV-
A. Then, the network weights were frozen and a randomly
initialized latent z was optimized to reconstruct the shape.
Specifically, for each iteration, 20,000 points were randomly
sampled from the surface, and an L1 loss between the network
predicted signed distance s and the actual distance (0) was
optimized using the Adam optimizer. The lr was decayed by
a factor of 0.9 every 20 epochs. Optimization was performed
for a maximum of 2,000 epochs with a patience of 50 epochs.
Predicted s were clamped at |s| = 0.1. No latent regularization
was used.

c) Hybrid NSM: The hybrid NSM is similar to previous
work [25], [26]. The overall architecture is described in Fig. 4.
A global latent z was passed through a multilayer perceptron
(MLP) yielding a vector of length 2048 that was reshaped to
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Fig. A4. Histograms for the MRI Osteoarthritis Knee Score (MOAKS) before (blue) and after (orange) reclassification to handle imbalanced data.
Each score started with 4 classes, the osteophytes score was classified to 3 levels (0-2) combining levels (2/3). The two cartilage scores were
binarized; cartilage thinning was classified into < 10% thinning (level 0/1) and ≥ 10% thinning (level 2/3), and cartilage hole was binarized into
no hole (level 0) and any hole (> 0). Lat: lateral, Med: medial, Ant: anterior, Cent: central, Post: posterior.

2×2×512 using a fully connected layer and input into a CNN.
Our CNN had 5 2D transpose convolution layers, with stride

2 and 512 channels as outputs. The final output layer of the
CNN was sized 64× 64× 384; features maps were split into
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128 per plane. For a given sampled point, a length 128 z was
obtained per plane via bilinear interpolation and the zs were
combined via summation. The local z and the sampled points
xyz position were concatenated and input into a 3-layer MLP
with width 512, ReLU activations, and a length two output
with a tanh activation.

F. Statistical Shape Model
Registered meshes described in paragraph III-A.1.b were

used to fit the model using the available training data by
creating a M ×N matrix where M is the number of training
examples and N is the number of columns/features. In our
case, N = (3 + 1) × 20, 000 = 80, 000 where 20,000 is the
number of vertices, 3 represents XYZ dimensions, and 1 is for
the cartilage thickness features stored at each vertex. Principal
component analysis (PCA) was applied to this matrix to obtain
eigenvectors v and eigenvalues λ. Normalized principal com-
ponent (PC) scores for training and testing data were obtained
by projecting registered points onto v and normalizing by

√
λ.

Bone surfaces, and coinciding cartilage thickness per vertex,
were reconstructed by recon =

∑k
i=1(PCi ×

√
λi) · v where k

is the number of PCs used in the reconstruction.

G. Convolutional Neural Network
We trained a 3D DenseNet121 CNN on two distinct types of

medical imaging data: raw DICOM images and segmentation
masks. This approach allowed us to evaluate the significance
of pixel magnitude information.

We used an input size of 384×384×80 and output channels
being equal to the product of the number of tasks and classes
per task. To accommodate our requisite prediction tasks, six
model variants were devised one for each of the following
tasks: OA Staging, OA Diagnosis, Future OA Incidence,
Future knee replacement, MOAKS Ostephytes, and finally
MOAKS Cartilage Thinning and MOAKS Cartilage Hole as
a single model.

Image pre-processing included normalization of each indi-
vidual image to have a mean of 0 and a standard deviation of 1
as well as standardization of image orientation. so that the first
dimension extends from left to right, the second from posterior
to anterior, and the third from inferior to superior. Inputs
were then resampled to a uniform spacing of 0.3645 mm in-
plane and 1.4 mm out-of-plane using bilinear interpolation.
Subsequently, the images were center-cropped and padded to
dimensions of 384x384 in-plane and 80 out-of-plane.

To optimize the CNNs, we used the AdamW optimizer, with
initial lr = 10−5, exponential decay with gamma=0.8, and
weight decay of 0. Training used the same loss functions as
the shape-model MLPs Tab. A1 and a batch size of 8. Trainnig
was performed on a single Nvidia A6000 GPU.

H. Reconstruction
a) Cartilage Biomarkers: Cartilage biomarkers computed

from reconstructions were compared to the original mesh
calculations. Absolute error was determined using root mean
squared error (RMSE) for all regions, and separately for each

KL grade Fig. A5. Similarly, the standard deviation of the
difference (SDD) was calculated by disease category and
regions Fig. A6; the SDD provides a measure of consistency
that accounts for bias between the methods. Consistently
better SDD compared to RMSE indicates that each method
had a small bias compared to the reference segmentation
method, this is confirmed by visualizing the distributions
of errors between the ground truth and the reconstructed
surfaces Fig. A7. It is also apparent that different regions
and models had different biases. For example, in the anterior
femur, the NSMs underestimated thickness, whereas the SSM
overestimated thickness.

During training, larger datasets, larger latent sizes, and
hybrid (vs. implicit) architectures improved reconstructions.
Specifically, bone and cartilage surface reconstruction accu-
racies were measured using ASSD, and cartilage biomarker
reconstructions were compared to the reference using RMSE
and SDD Fig. A8. These figures showed that increasing dataset
size increased performance. Increasing the latent size (black
lines) considerably improved reconstruction performance.

Reconstruction with the SSM using progressively more PCs
improved reconstruction of surface ASSD ( Fig. A9), and
cartilage biomarkers ( Fig. A10) up to the the number of
components needed to explain 99% of the variance in the
original dataset. When plotted with the x-axis as the percent
explained variance, it appears as though ASSD is exponentially
improving even at 99% explained variance. However, the
number of PCs required for a given increase in explained
variance is increasing exponentially. When ASSD is plotted
as function of the number of PCs it is apparent that ASSD
improvement is actually exponentially decaying Fig. A9.

b) Reconstructing Erroneus Surfaces.: To determine how a
trained NSM reconstructs a mesh with artifacts, we used the
fitted hybrid NSM to reconstruct the surface of one of the
57 meshes excluded due to obvious errors. Fig. A11 shows
surfaces of the original erroneous surface, the reconstructed
surface, and an overlay of both surfaces on the original MRI.
These data demonstrate that the NSM faithfully reconstructs
plausible anatomical surfaces while filling in the corrupted
regions with reconstructions based on the learned priors. This
finding supports previous research which indicates that NSMs
can be used as a means of refining automated segmentations
to ensure anatomic plausibility [38].

I. Prediction Tasks

MLP hyperparameters were determined via a grid search
over depth (2,3), width (64-256), dropout (0.2, 0.4), lr (10−3 to
10−5), and batchsize (64-512). The two future prediction tasks
(knee replacement, osteoarthritis) were trained with a class
imbalance weight. MLP hyperparameters were determined
separately for each task, but the same parameters were used
across shape models (SSM, hybrid NSM and implicit NSM).
Specific parameters are described in Tab. A1. Different tasks
leveraged different loss functions. OA diagnosis, MOAKS
cartilage thinning, and MOAKS cartilage hole all used binary
cross entropy. Future knee replacement (KR) and future OA
diagnosis both used binary cross entropy with the positive
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Fig. A5. Visualization of the root mean squared error (RMSE) for cartilage thickness of each region computed between the reconstructed mesh
and the reference mesh. Rows of results are presented all of the testing data (All) and for all subjects in each Kellgren Lawrence (KL) grade. Ant:
anterior, MC: medial central, LC: lateral central, MP: medial posterior, LP: lateral posterior, Avg: average.

Fig. A6. Visualization of the standard deviation of the difference (SDD) for cartilage thickness of each region computed between the reconstructed
mesh and the reference mesh. SDD is a measure of consistency between the two measurements (reference, reconstructed) and is not influenced
by bias. There are rows of results for all of the testing data (All) and for all subjects in each Kellgren Lawrence (KL) grade. Ant: anterior, MC: medial
central, LC: lateral central, MP: medial posterior, LP: lateral posterior, Avg: average.

class (smallest) weighted inversely proportional to its relative
occurrence. KL grading and MOAKS osteophyte scores both
used an ordinal regression loss [63].

a) Disease Staging.: To visualize differences in KL grading
between the methods, we plot confusion matrices for each of
the shape and the CNN models Fig. A12. All models had good
performance with quadratic weighted kappa κ ≥ 0.69.

b) Disease Diagnosis.: All models performed well predict-
ing OA with area under the receiver operating characteristic
curve (AUROC) ≥ 0.88 Fig. A13.

c) Advanced Disease Diagnosis.: MOAKS scores per region
are provided in Figs. A14 to A16. The hybrid NSM performed
best for all three MOAKS prediction tasks. Cartilage predic-
tions performed best for the anterior lateral and the central
medial regions, which are also common locations of cartilage
deterioration in OA Figs. A15 and A16.

d) Future Prediction.: All models performed poorly for
future OA disease prediction and performed better for future
knee replacement prediction Fig. A17. The hybrid NSM
performed best for future knee replacement risk, and the
CNN-image performed best for future OA prediction. Overall

knee deformity is a decision factor of whether a patient
receives knee replacement; the hybrid NSM, which better
captured and localized shape features of OA disease Figs. A14
and A16 may have also better represented features common
in individuals who undergo knee replacement. Better future
disease prediction by the CNN on raw image data may be
explained by it leveraging features other than shape, such as
bone bruises or general joint inflammation Fig. A17.

J. Interpretability

Interpolation in latent space from the mean healthy (KL
0) to the mean severe OA (KL 4) knees showed progressive
increases in disease-specific features of cartilage Fig. 6, as well
as osteophytes Figs. A18 and A19. Not only did the bones
show a progressive increase in osteophyte sizes, but when the
logistic classifiers were used they also predicted progressively
higher osteophyte scores Figs. A18 and A19. As shown in all
of the interpolation figures Figs. 6, A18 and A19, the first
bone is correctly classified as KL = 0, however, the last bone
is misclassified as KL = 3. Osteoarthritis is a heterogeneous
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Fig. A7. Histograms of the reconstruction errors for each model and region. Each plot is annotated with the root mean squared error in brackets
after the model name, as well as the mean µ and standard deviation σ of that models’ errors. Generally, the NSMs had biases in the same direction,
and the SSM biases were in the opposite direction.

disease with many different presentations leading to the same
severity score (e.g., KL 4). It is likely that in this example the
average of all subjects with KL 4 reduced extremes of any one

presentation of OA thus resulting in moderate severity in most
features and leading to an overall shape that was classified as
KL 3 instead of KL 4.
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8 SHAPEMED-KNEE- NEURAL SHAPE MODELS

Fig. A8. Reconstruction performance determined on the validation set (n=141). Legends indicate the model type (hybrid/implicit NSM, dataset size,
and latent size). Solid lines represent the hybrid NSM, and dashed lines the implicit NSM. Error bars are 95% confidence intervals (CI) on the mean;
non-overlapping error bars indicate statistical significance at p=0.05. Separate plots are created for bone and cartilage surface average symmetric
surface distance (ASSD), and for the average cartilage biomarker root mean squared error (RMSE) and standard deviation of the difference (SDD).

Layers Width Dropout LR Batchsize Loss

OA 2 256 0.4 10−5 128 BCE
KL 2 256 0.4 10−4 128 CORN
MOAKS Osteophyes 3 256 0.2 10−3 512 CORN
MOAKS Cart Thinning 3 128 0.4 10−3 512 BCE
MOAKS Hole 2 256 0.4 10−4 256 BCE
Future OA 2 256 0.4 10−5 128 wBCE
Future KR 2 256 0.2 10−5 64 wBCE

TABLE A1
HYPERPARAMETERS USED TO TRAIN THE MULTILAYER PERCEPTRONS (MLP) THAT PREDICTED EACH CLINICAL OUTCOME. BCE: BINARY CROSS

ENTROPY, WBCE: WEIGHTED BCE, LR: LEARNING RATE, OA: OSTEOARTHRITIS, KL: KELLGREN LAWRENCE, MOAKS: MRI OSTEOARTHRITIS

KNEE SCORE, KR: KNEE REPLACEMENT, CORN: CONSISTENT RANK LOGITS ORDINAL REGRESSION LOSS
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Fig. A9. Visualization of the effect of increasing PC latent space size (number of principal components) on bone reconstruction accuracies
measured using average symmetric surface distance (ASSD). The top plots use different x-axis with the right one showing the number of principal
components (PC) and the left one showing the number of PCs as percent of explained variance. The bottom plot shows the relationship between
percent explained variance and the number of PCs.
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10 SHAPEMED-KNEE- NEURAL SHAPE MODELS

Fig. A10. Visualization of the cartilage biomarker errors averaged over regions measured using root mean squared error (RMSE) and standard
deviation of the difference (SDD). The top row is the RMSE results, the bottom row is the SDD results. The left column uses percent explained
variance as the x-axis and the right column uses the number of principal components (PC) as the x-axis. When the percent explained variance is
used as the x-axis, the biomarker errors linearly improve, and when number of PCs is used the performance exponentially decays.
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Fig. A11. The left image shows the original surface reconstructed from the segmentation. The right image shows the reconstruction of the
erroneous surface using the hybrid NSM; this reconstruction shows that it fills in the corrupted region. The middle image shows both surfaces
overlaid on the original MRI data demonstrating that the NSM learned prior creates a plausible reconstruction for the missing portion of the femur
bone.
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12 SHAPEMED-KNEE- NEURAL SHAPE MODELS

Fig. A12. Confusion matrices of each model’s performance predicting Kellgren Lawrence (KL) osteoarthritis grade. Titles are annotated with the
quadratic kappa κ. The implicit NSM performed worst.
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Fig. A13. Visualization of the receiver operating characteristic curve for each model type. The hybrid neural shape model (NSM) performed best.
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Fig. A14. Confusion matrices displaying the performance of each model predicting osteophyte features (0=None, 1=small, 2=medium & large) in
each of the 6 regions of interest. Columns are the different models, rows are the different regions. The right side of each plot is annotated with that
model/region’s quadratic kappa κ
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Fig. A15. Visualization of performance predicting cartilage thinning for each of the six cartilage regions using precision-recall curves (AUPRC).
The hybrid NSM performed best for every region. Models performed particularly well for the anterior lateral and central medial regions.
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Fig. A16. Visualization of performance predicting cartilage holes for each of the six cartilage regions using precision-recall curves. The hybrid
NSM performed best for every region.

Fig. A17. Precision recall curves show prediction performance for both future prediction tasks (OA diagnosis, knee replacement). None of the
models did well for future OA prediction in terms of area under the precision-recall curve (AUPRC); all models did modestly for knee replacement
prediction.
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Fig. A18. Interpolation in hybrid NSM shape space along the mean healthy to mean severe OA axis. Visualization is of the posterior (back) of the
femur. The orange arrows point to an area of progressive osteophyte (O) growth and show the MOAKS O score specific to that region (posterior
medial), which increases from grade 1 to grade 2 through the interpolation. The interpolation shows a smooth shape transformation across disease
states and a concurrent increase in the severity of localized disease features. Each bone is labelled with the Kellgren Lawrence (KL) grade predicted
by the logistic classifier.
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Fig. A19. Interpolation in hybrid NSM shape space along the mean healthy to mean severe OA axis. Visualization is of the anterior (front) of the
femur. The orange arrows point to areas of progressive osteophyte (O) growth and show the MOAKS O score specific to that region (left = anterior
lateral, right = anterior medial), which increases from grade 0 to grade 1 for both regions by the end of the interpolation. The interpolation shows a
smooth shape transformation across disease states and a concurrent increase in the severity of localized disease features. Each bone is labelled
with the Kellgren Lawrence (KL) grade predicted by the logistic classifier.
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