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Abstract 
Background: Sepsis is a life-threatening condition that demands prompt treatment for improved 

patient outcomes. Its heterogenous presentation makes early detection challenging, highlighting 

the need for effective risk assessment tools. Artificial Intelligence (AI) models have the potential 

to accurately identify septic patients, but none have previously been FDA-authorized for 

commercial use. This study outlines the development and validation of the Sepsis 

ImmunoScore, the first FDA-authorized AI-based software designed to identify patients at risk of 

sepsis.  

Method: In this prospective study, adult patients (18+) suspected of infection, as indicated by a 

blood culture order, were enrolled from five U.S. institutions between April 2017 and July 2022. 

The participants were divided into an algorithm development cohort (n=2,366), an internal 

validation cohort (n=393), and an external validation cohort (n=698). The primary endpoint was 

the presence of sepsis (Sepsis-3) within 24 hours of test initiation. Secondary endpoints 

included hospital length of stay, ICU admission within 24 hours, mechanical ventilation use 

within 24 hours, vasopressor use within 24 hours, and in-hospital mortality.  

Results: The Sepsis ImmunoScore demonstrated high diagnostic accuracy, with an AUC of 

0.85 (0.83–0.87) in the derivation cohort, 0.80 (0.74–0.86) in internal validation, and 0.81 (0.77–

0.86) in external validation. The score was categorized into four risk levels for sepsis with 

corresponding likelihood ratios: low (0.1), medium (0.5), high (2.1), and very high (8.3). These 

risk categories also predicted in-hospital mortality: low (0.0%), medium (1.9%), high (8.7%), and 

very high (18.2%) in the external validation cohort. Similar trends were observed for other 

metrics, such as hospital length of stay, ICU utilization, mechanical ventilation, and vasopressor 

use.  

Conclusions: The Sepsis ImmunoScore demonstrated high accuracy for identification and 

prediction of sepsis and critical illness that could enable prompt identification of patients at high 
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risk of sepsis and adverse outcomes, potentially improving clinical decision-making and patient 

outcomes.  
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Description 
Sepsis is a life-threatening acute condition that requires accurate and rapid identification to 

guide proper treatment. This study outlines the development and validation of the first FDA-

authorized AI-based software to identify patients at risk of having sepsis. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2024. ; https://doi.org/10.1101/2024.05.06.24306954doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306954
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 
Sepsis is a serious medical condition caused by a dysregulated immune response to infection, 

which can lead to organ dysfunction and significant morbidity and mortality.1 Early treatment, 

particularly with antibiotics, can improve patient outcomes.2–7 However, heterogeneity in the 

presentation of sepsis makes early recognition difficult, leading to increased mortality.8 As a 

result, there is an opportunity for risk assessment tools to assist clinicians in the quick and 

accurate identification of patients at high risk of sepsis. Many previously proposed risk 

assessment tools exist, including clinical approaches, laboratory tests, and sepsis-specific 

biomarkers; however, none are universally accepted as routine in clinical practice.  

To address the need for an informative diagnostic and risk assessment tool in the hospital 

setting, we developed the Sepsis Immunoscore. The Sepsis ImmunoScore is a tool that uses 

machine learning to aid in identifying patients likely to have or progress to sepsis within 24 

hours of patient assessment. It was granted marketing authorization (De Novo pathway) by the 

United States Food and Drug Administration (FDA) in April 2024 as the first-ever AI diagnostic 

authorized for sepsis. The Sepsis ImmunoScore inputs up to 22 parameters derived from 

patient demographics, vital signs, routinely accepted general clinical laboratory tests, and sepsis 

specific biomarkers to generate a composite risk score. The risk score categorizes patients into 

one of four discrete risk groups based on the risk of sepsis within 24-hours. The Sepsis 

ImmunoScore embeds into a hospital EMR and functions as a diagnostic test, allowing 

healthcare providers to order and view the test results for a particular patient in the Electronic 

Health Record (EHR) system, similar to a laboratory test.  

In this investigation, we describe the derivation and assess the performance of the Sepsis 

ImmunoScore functioning as a sepsis risk assessment tool. Accordingly, the objective of this 

investigation was to evaluate the performance of the Sepsis ImmunoScore and its ability to risk 

stratify patients for the presence or development of sepsis (defined by Sepsis-3) within 24 
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hours, and for secondary endpoints of in-hospital mortality, hospital length of stay, ICU 

admission, mechanical ventilator use, and vasopressor medication use.9  

Methods 
Study Design 

We conducted a prospective, observational, multi-center study to create a sepsis artificial 

intelligence/machine learning (AI/ML) algorithm and assess its ability to identify the presence of 

sepsis within 24 hours, and other secondary outcomes of critical illness morbidity and mortality 

(Figure S1). Participants were enrolled at one of 5 participating hospitals. We obtained study 

approvals from the ethics boards of participating institutions under a waiver from informed 

consent, except OSF Saint Francis Medical Center, which required informed consent. 

Study Population 

Study inclusion criteria consisted of hospitalized adult patients (aged 18 or older) who had a 

suspected infection defined by the clinical decision to obtain a blood culture and who had a 

lithium-heparin (Li-Hep) plasma sample drawn within a 6-hour-window from the first blood 

culture order that was available for collection. There were no exclusion criteria. Subjects were 

enrolled between April 2017 and July 2022 from 5 hospital institution sites throughout the United 

States. The study participants were enrolled in three different cohorts: a derivation cohort 

(n=2,366) where the algorithm was derived, an internal validation cohort (n=393) that assessed 

algorithm performance on a second set of participants from the same hospitals used in the 

derivation, and a final external validation cohort (n=698) that used a new set of participants from 

hospitals not involved in the algorithm derivation (additional details in supplemental appendix).  
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Study Outcomes 

Endpoints 

The primary endpoint was the presence of sepsis at presentation or within 24 hours of study 

inclusion using the Sepsis-3 criteria: suspected infection and Sequential Organ Failure 

Assessment (SOFA) score of 2 or greater from baseline.9 The derivation cohort used a sepsis-3 

outcome derived from the medical record in an automated fashion,9,10 while the internal and 

external validation cohorts used expert clinical adjudication to apply the definitions and 

determine the sepsis-3 outcome. The clinical adjudication occurred in a retrospective fashion by 

a clinician who likely did not treat the patient, but had access to the entire hospital chart and 

utilized information including laboratory testing, radiology testing, clinical assessment and 

decision-making documentation. The secondary endpoints consisted of sepsis-related metrics 

of critical illness including: in-hospital mortality, hospital length of stay, ICU admission, use of 

mechanical ventilator, and use of vasopressors. 

Data Collection 

Data were gathered directly through an offline EMR extraction and a transfer of de-identified 

data that were linked to corresponding patient blood specimens. Data elements were abstracted 

from the EMR and included demographic information, coded ICD-10 diagnoses, medications, 

vital sign measurements, clinical laboratory test results (e.g., chemistry laboratory testing 

results, lactic acid), and sepsis-related laboratory measurements (C-reactive protein and 

procalcitonin – tested at external lab – see supplemental appendix for details), secondary 

outcomes metrics, and relevant data to conduct adjudication (e.g., microbiology results), and 

relevant orders (e.g., antibiotic administration). Comorbidities were based on the components of 

the Charlson Comorbidity Index (CCI) and were encoded based on ICD-10-CM encodings 
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defined by the National Cancer Institute (NCI) Comorbidity Index/SEER11. Immunocompromised 

patients were identified based on ICD-10-CM encodings defined by Agency for Healthcare 

Research and Quality (AHRQ).12 

Sepsis ImmunoScore 

Algorithm Development 

The Sepsis ImmunoScore machine learning algorithm was created using a supervised, 

calibrated random forest that predicts the probability of a patient meeting Sepsis-3 criteria within 

24 hours of study entry. A random forest was trained on the 2,366 patient encounters in the 

derivation cohort using 22 patient-specific features comprising demographics, vital signs, and 

laboratory tests measured close to study entry. Model parameters were optimized using 3 

repeats of 5-fold-cross-validation, and missing data were imputed using bagged trees. 

Predictions were calibrated to the probability of sepsis-3 to compute a sepsis risk score by 

regressing the outcome on the out-of-bag predictions of the random forest in the derivation 

cohort.13 Sepsis risk scores were divided into four risk stratification categories by thresholds 

identified during the development process using out-of-bag predictions in the derivation cohort. 

(See supplemental appendix) Interventional Shapley Additive exPlanation (SHAP) values were 

calculated for each patient using the out-of-bag measurements to assess for the feature 

importance of the random-forest model.13–16 

Risk Score and Risk Category Generation 

To assess performance, the Sepsis ImmunoScore was calculated for patients in the internal and 

external validation cohorts. Calibrated out-of-bag scores were used for the derivation cohort to 

reduce bias from overfitting in performance estimation. No result was generated for patients 

lacking a measurement for procalcitonin (PCT), C-reactive protein (CRP), white blood cell count, 

platelet count, creatinine, or blood urea nitrogen between 24 hours prior to study entry (blood 
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culture order) and 3.5 hours after. Similarly, no result was generated for patients without a 

measurement for systolic blood pressure, diastolic blood pressure, inspired oxygen percentage, 

heart rate, or respiratory rate between six hours prior to study entry and 3.5 hours after. Missing 

values for the remaining 10 input parameters were imputed by the Sepsis ImmunoScore to 

produce a sepsis risk score.  

Statistical Analysis 

Diagnostic accuracy was assessed by determining the ability of the sepsis ImmunoScore and its 

corresponding risk stratification category (low, medium, high, or very high), to identify patients 

with the primary outcome of sepsis (sepsis-3 within 24 hours of study entry) and secondary 

outcomes. We estimated stratum specific likelihood ratios (SSLR) and predictive values (PV) 

each of the risk categories and assessed for a monotonic increasing relationship between risk 

category severity and outcomes using a one-sided Cochran-Armitage hypothesis test.17–19 We 

also estimated the area under the receiver operating characteristic curve (AUROC) of the sepsis 

risk score. We report all uncertainty intervals using 95% confidence intervals. Confidence 

intervals for the AUROC were estimated using a binormal approximation estimator for the 

standard error.20 Analyses were conducted using R statistical software version 4.2.1.  

Sepsis-3 Diagnostic and Prognostic Sensitivity Analysis 

Our a priori primary outcome was the presence of sepsis within 24 hours of study inclusion 

using the Sepsis-3 criteria as described above. This included both patients who met sepsis 

criteria at initial evaluation as well as those who developed sepsis over the subsequent 24 

hours. This decision (made in consultation with the FDA) was driven by the rationale that the 

treatment is similar for both of these clinically relevant groups (e.g., antibiotics and supportive 

care). We also performed a sensitivity analysis to assess the ability of the Sepsis Immunoscore 

to discriminate each of these groups from those patients who never had nor developed sepsis 

within 24-hours. Specifically, we assessed Sepsis Immunoscore performance separately for: a) 
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diagnosis of sepsis-3 - defined as the presence of sepsis-3 present at initial evaluation, and the 

b) prognosis of sepsis - defined as the development of sepsis-3 criteria within 24 hours in 

those who did not have sepsis at presentation. The AUC and  stratum specific likelihood ratios 

were reported for these analyses.  

Sample Size Calculation 

This study was powered based on the confidence interval of the AUROC for the sepsis 

endpoint.20 The calculation assumed a sepsis prevalence of 32%, an estimated AUROC of 0.75, 

a maximum allowable difference between the true AUC and its estimate of 0.023, and a 

significance level of 0.05 resulting in an estimated sample size of 735 subjects. Additional 

participants were enrolled beyond these calculations to include participants of varying age, 

racial backgrounds, ethnicities, and geographic location. The initial study design used a single 

validation cohort partially enrolled from hospitals included in the derivation set; however, based 

on direction from the FDA, we split the cohort into the current internal and external validation 

format.  

 

Results 
There were a total of 3,457 patient encounters included with valid Sepsis ImmunoScore results, 

with 2,366 encounters in the derivation set, 393 in the internal validation set, and 698 in the 

external validation set (Figure S1). The study enrolled participants with age, sex, race, and 

ethnicity, and comorbidities typical of sepsis patients in the U.S. (Table 1). The rate of sepsis 

was 32% in the derivation, 28% in internal validation, and 22% in the external validation cohorts 

(Table 1). Patients with sepsis had higher rates of severe illness and mortality compared to 

those without sepsis (Table 1). 
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Sepsis ImmunoScore Algorithm Development 

The Sepsis ImmunoScore algorithm uses up to 22 input parameters to generate the risk score 

and place patients in one of four discrete risk stratification categories (Table 2). The 22 input 

parameters consist of demographic data (age), vital sign measurements, complete-metabolic-

panel measurements, complete blood count panel measurements, lactate, and sepsis 

biomarkers PCT and CRP. The Interventional SHAP values indicated that the three most 

influential parameters to the model were PCT, respiratory rate, and systolic blood-pressure 

(Figure 1). The AUC in the derivation set was 0.85 (95% confidence interval: 0.83–0.87) for the 

medical record derived sepsis outcome (Table S1). Additionally, the Sepsis ImmunoScore risk 

categories were associated with increasing risk of sepsis in the derivation set (Figure 1, Table 

S3). 

Primary Endpoint 

The Sepsis ImmunoScore demonstrated high overall diagnostic accuracy for predicting sepsis, 

with an AUC in the derivation set of 0.85 (95% confidence interval: 0.83–0.87) for the medical 

record derived sepsis outcome, and ]0.80 (0.74–0.86) in the internal validation and 0.81 (0.77–

0.86) in the external validation for the adjudicated sepsis outcome (Table S1). The Sepsis 

ImmunoScore risk categories were associated with increasing risk of sepsis in both validation 

sets (Figure 2, Table 3, Table S2). Of note, in the external validation set, the likelihood ratios 

were: low 0.1 (0.1–0.2), medium 0.5 (0.3–0.8), high 2.1 (1.8–2.5), very high 8.3 (4.1–17.1) for 

the primary Sepsis-3 . These ratios are monotonically increasing with no overlapping confidence 

intervals, suggesting stepwise risk discrimination for sepsis.  

Secondary Endpoints  

We assessed the ability for the Sepsis ImmunoScore to predict the secondary outcomes of ICU 

admission within 24 hours, in-hospital mortality, use of mechanical ventilation within 24 hours, 

and use of vasopressors within 24 hours. The Sepsis ImmunoScore was highly predictive of 
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these outcomes. The Sepsis ImmunoScore categories ranging from low, medium, high, and 

very high demonstrated good predictive ability based on both rate of outcome as well as the 

corresponding stratum specific likelihood ratios (Figure 3, Table 4, Table S3). In the external 

validation cohort, the observed in-hospital mortality rates in the low, medium, high, and very 

high-risk groups were 0.0% (0.0%, 1.6%), 1.9% (0.40%–5.5%), 8.7% (5.7%–12.7%), and 18.2% 

(7.0%–35.5%) respectively. Additionally, the observed median number of days for the 

composite length of stay endpoint in the low, medium, high, and very high-risk groups were: 4.0 

(3.5–4.9), 5.7 (4.9–7.0), 7.7 (6.5–8.5), and 13.5 (7.1–19.1) respectively. The proportion of 

patients transferred to the ICU within 24 hours was 4.7% (2.4%–8.3%), 12.7% (8.0%–19.0%), 

25.7% (20.7%–31.3%), and 54.6% (36.4%–71.9%) respectively. Similar trends were observed 

for mechanical ventilation and vasopressor usage. Cochran-Armitage hypothesis tests indicated 

statistically significant monotonic increasing relationships between outcome predictive value and 

risk stratification category severity for each secondary endpoint (p-value < 0.01, Table 4, Table 

S3). Risk stratification category severity was also associated with time to event for each 

secondary endpoint (Figure S2).  

Sepsis-3 Diagnostic and Prognostic Sensitivity Analysis 

As a secondary sensitivity analysis, we also analyzed the performance of the Sepsis 

ImmunoScore using alternative definitions of the sepsis outcome based on the timing of sepsis. 

Namely, to assess diagnostic performance, we analyzed the Sepsis ImmunoScore’s ability to 

discriminate patients who had sepsis at initial evaluation (n=99; 15.3%) from those who never 

had sepsis within 24 hours (n=547, 84.7%). We also assessed prognostic performance by 

analyzing the Sepsis ImmunoScore’s ability to discriminate patients without sepsis at initial 

evaluation who later develop sepsis within 24 hours (n=52; 7.4%) from those who never had 

sepsis (n=547, 92.6%). The AUC for sepsis diagnostic performance in the external validation 

set was 0.84 (0.78-0.89), and for the prognostic performance, it was 0.76 (0.68 – 0.84). The 
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Sepsis ImmunoScore risk categories demonstrated similar results to the original combined 

analysis for both the diagnosis (Table S4) and prognosis of sepsis (Table S5). These data  

support good diagnostic and prognostic performance of the Sepsis ImmunoScore in this 

secondary analysis. 

Discussion 
The Sepsis ImmunoScore is a comprehensive, multidimensional AI/ML tool that combines 

demographics, vital signs, clinical laboratory tests, and sepsis focused laboratory tests to 

assess risk of sepsis and risk of adverse outcomes. In this study, we developed the Sepsis 

ImmunoScore and evaluated its ability to serve as a risk-stratification tool for patients with 

suspected infection, and its ability to predict the diagnosis of sepsis and adverse clinical 

outcomes. We found the Sepsis ImmunoScore highly predictive of sepsis and secondary 

outcomes of in-hospital mortality, hospital length of stay, ICU admission, mechanical ventilation, 

and vasopressor administration within 24 hours. We also found that the Sepsis Immunoscore 

was predictive in diagnostic (predicting if a patient has sepsis at initial evaluation) and 

prognostic (predicting if a patient without sepsis at initial evaluation will develop sepsis) 

approaches. 

There are a number of FDA-approved diagnostic tools available for patients with an 

infection; however, they are typically in the form of a single blood biomarker or sometimes 

multiple blood biomarkers. Procalcitonin is a biomarker that evaluates the risk of progression to 

severe sepsis and septic shock in critically ill patients upon their first day in the ICU.21–25 The 

IntelliSep Test is a blood test that measures leukocyte biophysical properties to create a score 

that identifies sepsis with organ dysfunction manifesting within the first three days after testing 

for adult patients with signs and symptoms of infection who present to the emergency 

department.26–28 Another test by Beckman, the Coulter Cellular Analysis System's Early Sepsis 

Indicator measures Monocyte Distribution Width to identify sepsis risk.29–31 Other tests 
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distinguish bacterial from non-bacterial infection in the E.D. or urgent care settings such as the 

FebriDx test which measures myxovirus resistance protein A and CRP from finger-stick 

blood.32–35 The MeMed BVTM measures blood concentrations of TRAIL, IP-10, and CRP to also 

distinguish patients with bacterial infections from those without.36–39 The Sepsis ImmunoScore 

uses multidimensional inputs across different domains (demographics, vital signs, laboratory 

tests etc.) plus sepsis biomarkers to create a comprehensive risk score for a given individual. 

The intent of the ImmunoScore is to embed in an EMR so that it can pull the different requisite 

inputs and display the score when it is ordered as a diagnostic test. 

The Sepsis ImmunoScore was created with the intention of serving as an adjunct to 

clinical decision-making utilizing a Bayesian approach so that the clinician may combine the 

results of the Sepsis ImmunoScore with clinical assessment and traditional testing to make 

clinical decisions. Rather than relying on a single cutoff to classify results as “normal” or 

“abnormal,” we report four risk bands to capture a more similar test performance over a 

narrower range of values. For instance, approximately 1/3 of patients test in the low-risk band, 

which has a likelihood ratio of 0.1, a sepsis prevalence of 3%, and a sensitivity of 95%. This 

low-risk band can help “rule-out” sepsis in a patient with low to moderate clinical risk, assisting 

decisions for outpatient management.   Conversely, for patients with moderate to high clinical 

risk, a high or very high Sepsis ImmunoScore is helpful from a Bayesian approach as a “rule-in” 

test. We also note that the Sepsis ImmunoScore bands are associated with the use of critical 

interventions such as mechanical ventilation, vasopressor use, and mortality; thus, this may also 

inform clinicians when making clinical decisions such as patient disposition.  When the clinical 

assessment is disparate from the Sepsis ImmunoScore, additional observations, assessments, 

and possibly testing may be warranted.  

While no other AI/ML tools are FDA authorized for sepsis, many have been developed 

and clinically deployed, especially early detection tools that passively monitor patient data and 

alert clinicians when sepsis is suspected. The reported performance of these tools varies 
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widely, and recent validation studies have raised concerns about their use.40–43 A large, external 

validation study of the widely deployed Epic Sepsis Model in 2021 reported an AUC of only 

0.63,40 and recent reviews of validation studies of the Targeted Real-time Early Warning System 

(TREWS) score have raised concerns regarding the control group and false positives.41 

Concerns of alert fatigue have also been raised for these systems, which may undermine their 

clinical utility.44–46 The Sepsis ImmunoScore differs from early-warning systems in that it is 

intended to be coupled with a clinical suspicion of infection (e.g. ordering of a blood culture) as 

opposed to implementation as a screening tool without specific context. However, it is still prone 

to misclassification in the clinical setting. 

The application of AI/ML to medicine has great potential, much of which is 

underdeveloped in medicine. The Sepsis ImmunoScore used clinically available data reflective 

of patient biologic state and machine learning to incorporate and identify objective patient 

assessments that are causally related to sepsis and associated adverse outcomes. Input 

features were carefully curated to select for measures of patient biology and pathophysiology 

that underlie critical illness and are routinely collected or available in the setting of infection.47 

We did not include as eligible covariates subjective determinations or interventions that could be 

heavily influenced by site-specific protocols, clinician-specific perspectives, or other peculiarities 

of care. In addition to accurately diagnosing sepsis in an external validation set, we attribute the 

simultaneous association of the Sepsis ImmunoScore with other adverse outcomes in part to an 

explicit focus on patient host response biology. The result of this careful synthesis is a 

diagnostic tool that capitalizes on the synergy of thoughtfully applied AI/ML to expertly curated 

biologic data to better equip—not replace—clinicians in their challenging fight against sepsis. 

Furthermore, while the current FDA authorization does not allow local calibration or model 

adjustment, it is to consider future efforts that, with changes in FDA regulation, could leverage 

the ability of AI/ML algorithms to locally calibrate to improve performance. 
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Sepsis represents an ongoing diagnostic challenge to clinicians due to its often subtle 

and heterogeneous presentation. Assessing the presence or risk of progression to sepsis, and 

the severity with associated clinical needs represents a continuing challenge to clinicians. The 

Sepsis ImmunoScore is unique in its approach due to its machine-learning based incorporation 

of 22 parameters to comprehensively assess a patient’s risk of being diagnosed with sepsis, 

plus its association with adverse outcomes. The ImmunoScore could serve as an adjunctive test 

to assist clinical decision making in the acute setting. Given its strong predictive ability, the 

Sepsis ImmunoScore has the potential to improve patient outcomes by informing physician 

decisions for patients potentially requiring sepsis-related care, such as the rapid administration 

of broad-spectrum antimicrobials, escalation of care, and administration of fluid or vasopressor 

medications. It also has the potential to help to reduce over-triage by more accurately identifying 

patients at low risk for deterioration due to infection, for example potentially allowing emergency 

department physicians to treat these low-risk patients in the outpatient setting and promote 

antimicrobial stewardship. 

 

Limitations 

There are a number of limitations to our study. First, because we used 5 hospitals in the study, it 

is possible that our findings may not generalize to specific populations that may differ from our 

hospitals. Second, we relied upon an EMR extraction, so it is possible that missingness or the 

use of ICD10 codes may have led to misclassification of certain elements such as comorbidities. 

Third, this was an observational study so we cannot assess the impact of the ImmunoScore on 

clinical decision-making and changes in therapeutic approaches. Fourth, the primary outcome of 

Sepsis-3 within 24 hours relied upon an automated calculation in the derivation set and 

adjudication for presence of infection in the internal and external validation; thus, 

misclassification of outcome may have occurred. Fifth, our inclusion criteria used the ordering of 
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a blood culture as a surrogate indicator for a clinical suspicion of infection and patients where 

there was a clinical suspicion may not have had a blood culture ordered or other patients may 

have had a blood culture performed who had a very low (or no) suspicion of infection. Sixth, we 

note that approximately 7.2% of the potentially eligible patients were excluded due to not having 

labs or vital signs available to calculate the Sepsis ImmunoScore. Since patients without the 

requisite inputs had a higher prevalence of being from the in-hospital or ICU setting (Table S6), 

it is possible this could mildly (given the low prevalence) effect the generalizability of the score. 

Finally, covariate missingness may have affected algorithm performance. 

 
 

Conclusions 
The Sepsis ImmunoScore has demonstrated robust risk assessment performance in derivation, 

internal, and external validation. Future work is warranted to further establish its generalizability 

to other settings. Finally, additional studies are warranted to assess the impact of the Sepsis 

ImmunoScore on clinical decision-making, sepsis care, and associated resource utilization and 

costs. These investigations are ongoing. 
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Figure Legends 
Figure 1. Sepsis ImmunoScore Feature Importance. Scatter plots of the Interventional SHAP 
values (a measure of feature contribution to the algorithm’s output) for each input feature across 
all patients in the derivation cohort. The features are listed on y-axis in descending order of 
importance with the features contributing the most at the top of the list, determined by the mean 
absolute Interventional SHAP value across patients. Each data point is colored according to its 
observed standardized measurement value: purple indicates elevated measurements, while 
yellow indicates lower measurement. The individual values colored in purple offer the most 
impactful contributions (e.g. high procalcitonin and respirate rate values, and low systolic blood 
pressure and platelet values all offered substantial contributions) Grey data points represent 
parameters that were imputed during the generation of the Sepsis ImmunoScore result. 
 
Figure 2. Sepsis ImmunoScore Stratification for Sepsis-3 in all Cohorts. Barplots are 
shown for the derivation, internal validation, and external validation datasets for the Sepsis-3 
within 24 hours P.V.s for each Sepsis ImmunoScore risk stratification category. Dashed lines 
indicate the 95% C.I.s.  
 
Figure 3. Sepsis ImmunoScore Risk Stratification for Morbidity and Mortality (External 
Validation). Barplots are shown for the derivation, internal validation, and external validation 
datasets for the secondary endpoints P.V.s (ICU transfer within 24 hours, in-hospital mortality, 
mechanical ventilation within 24 Hours, vasopressor administration within 24 Hours, and length 
of stay from inclusion time) for each Sepsis ImmunoScore risk stratification category. Dashed 
lines indicate the 95% C.I.s. 
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Tables 
Table 1. Baseline Data and Adverse Outcomes for Derivation, Internal Validation and External Validation 

Characteristic 

Patients Encounters, No. (%)   

 

Derivation  Internal Validation External Validation  

(N = 2366) (N = 393) (N = 698)  
Clinical Site         

Beth Israel Deaconess Medical Center – Boston, MA 0 (0.0)  0 (0.0)  356 (51.0)   
OSF – Peoria, IL 712 (30.1)  87 (22.1)  0 (0.0)   
Jesse Brown VA - Chicago, IL 0 (0.0)  0 (0.0)  65 (9.3)   
Mercy Health - St. Louis, MO 1061 (44.8)  306 (77.9)  0 (0.0)   
Beaumont - Royal Oak, MI 0 (0.0)  0 (0.0)  277 (39.7)   
Carle Foundation Hospital – Urbana, IL 593 (25.1)  0 (0.0)  0 (0.0)   

Age (mean (S.D.)) 64.20 (16.59) 64.06 (17.66) 62.80 (17.01)  
Male (%) 1195 (50.5)  210 (53.4)  391 (56.0)   
Race         

American Indian or Alaska Native 1 (0.0)  0 (0.0)  2 (0.3)   
Asian 12 (0.5)  2 (0.5)  14 (2.0)   
Black or African American 315 (13.3)  57 (14.5)  154 (22.1)  
Native Hawaiian or Other Pacific Islander 0 (0.0)  0 (0.0)  1 (0.1)   
Unknown 85 (3.6)  12 (3.1)  119 (17.0)   
White 1953 (82.5)  322 (81.9)  408 (58.5)   

Ethnicity        
Hispanic or Latino 26 (1.1)  2 (0.5)  96 (13.8)   
Not Hispanic or Latino 1725 (72.9)  385 (98.0)  564 (80.8)   
Unknown 615 (26.0)  6 (1.5)  38 (5.4)   

High-Risk Comorbidities      
Acute Myocardial Infarction (%) 97 (4.1)  11 (2.8)  43 (6.2)   
History of Myocardial Infarction (%) 101 (4.3)  21 (5.3)  54 (7.7)   
Congestive Heart Failure (%) 583 (24.6)  103 (26.2)  170 (24.4)   
Peripheral Vascular Disease (%) 225 (9.5)  49 (12.5)  72 (10.3)   
Cerebrovascular Disease (%) 130 (5.5)  38 (9.7)  65 (9.3)   
Chronic Obstructive Pulmonary Disease (%) 606 (25.6)  107 (27.2)  171 (24.5)   
Dementia (%) 167 (7.1)  45 (11.5)  72 (10.3)   
Paralysis (%) 68 (2.9)  10 (2.5)  20 (2.9)   
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Diabetes (%) 630 (26.6)  101 (25.7)  156 (22.3)   
Diabetes with Complications (%) 423 (17.9)  93 (23.7)  155 (22.2)   
Renal Disease (%) 659 (27.9)  123 (31.3)  216 (30.9)   
Mild Liver Disease (%) 118 (5.0)  19 (4.8)  94 (13.5)   
Moderate and Severe Liver Disease (%) 45 (1.9)  6 (1.5)  55 (7.9)   
Peptic Ulcer Disease (%) 45 (1.9)  8 (2.0)  13 (1.9)   
Rheumatologic Disease (%) 105 (4.4)  17 (4.3)  33 (4.7)   
AIDS (%) 17 (0.7)  2 (0.5)  6 (0.9)   
Immunocompromised (%) 470 (19.9)  117 (29.8)  190 (27.2)   
COVID-19 (%) 189 (8.0)  28 (7.1)  73 (10.5)   

Adverse Outcomes      
Sepsis-3 within 24 hours (%) 763 (32.2)  108 (27.5) 151 (21.6)  
In-hospital Mortality (%) 147 (6.2)  33 (8.4)  33 (4.7)   
ICU Transfer (%) 491 (27.7)  144 (36.6)  151 (21.6)   
Placement of Mechanical Ventilation (%) 191 (8.1)  44 (11.2)  51 (7.3)   
Administration of Vasopressors (%) 223 (9.4)  53 (13.5)  77 (11.0)   
Length of Stay (median [IQR]) 4.7 [2.6, 8.5] 4.98 [2.8, 10.8] 5.94 [3.3, 10.4]  

 

Table 2. Sepsis ImmunoScore Input Parameters 

Parameter Data Source Measurement 
Validity1 

Multiple 
Measurement 

Selection2 
Mandatory 
Parameter 

Age - 1 year Most Recent   

Systolic Blood 
Pressure Vitals 6 Hours Min Yes 

Diastolic Blood 
Pressure Vitals 6 Hours Min Yes 

Temperature Vitals 6 Hours Max Yes 

Respiratory Rate Vitals 6 Hours Max Yes 

Heart Rate Vitals 6 Hours Max Yes 

Blood Oxygen 
Saturation Vitals 6 Hours Min Yes 

White Blood Cell 
Count CBC Panel 24 Hours Most Recent Yes 

Lymphocyte 
Count CBC Panel 24 Hours Most Recent   

Neutrophil Count CBC Panel 24 Hours Most Recent   

Platelet Count CBC Panel 24 Hours Most Recent Yes 

Blood Urea 
Nitrogen BMP or CMP Panel 24 Hours Most Recent Yes 

Creatinine BMP or CMP Panel 24 Hours Most Recent Yes 

Potassium BMP or CMP Panel 24 Hours Most Recent   
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Chloride BMP or CMP Panel 24 Hours Most Recent   

Total Carbon 
Dioxide BMP or CMP Panel 24 Hours Most Recent   

Sodium BMP or CMP Panel 24 Hours Most Recent   

Albumin CMP Panel 24 Hours Most Recent   

Bilirubin CMP Panel 24 Hours Most Recent   

Procalcitonin Stand-alone Test 24 Hours Most Recent Yes 

C-Reactive 
Protein Stand-alone Test 24 Hours Most Recent Yes 

Lactate Stand-alone Test 24 Hours Most Recent   
1 Corresponds to the look-back period prior the Sepsis ImmunoScore result time when a 

measurement is valid. 

2 Details on how single measurement was selected if multiple valid measurements were 
identified. 

Table 3. Sepsis ImmunoScore Risk Stratification for Sepsis-3 Within 24 Hours 

Cohort ImmunoScore 
Risk Category  Patients Septic 

Patients 
Sepsis P.V.  

[95% CI] 
Sepsis Likelihood  

Ratio [95% CI] 

Cochran-
Armitage Test (p-

value) 

External Low 232 7 3.0% [1.2%, 6.1%] 0.1 [0.1, 0.2] < 0.001 

Validation Medium 157 20 12.7% [7.96%, 
19.0%] 0.5 [0.3, 0.8]  

(N = 698) High 276 101 36.6% [30.1%, 
42.6%] 2.1 [1.8, 2.5]  

 Very High 33 23 69.7% [51.3%, 
84.4%] 8.3 [4.1, 17.1]  

 

 

Table 4. External Validation ImmunoScore Risk Stratification for Morbidity and Mortality 

Secondary 
Outcome 

Sepsis Risk 
Category 

Total 
Patients 

Patients 
with Event 

Predictive Value Likelihood Ratio Days Cochran-
Armitage 

[95% CI] [95% CI] [95% CI] Test 

      (p-value) 

ICU Transfer 
within 24 Hours 

Low 232 11 4.7% [2.4%, 8.3%] 0.2 [0.1, 0.4] - < 0.001 
Medium 157 20 12.7% [8.0%, 19.0%] 0.7 [0.4, 1.1] -   

High 276 71 25.7% [20.7%, 31.3%] 1.7 [1.3, 2.1] -   
Very High 33 18 54.6% [36.4%, 71.9%] 5.8 [3.0, 11.3] -   

In-Hospital 
Mortality 

Low 232 0 0.0% [0.0%, 1.6%] 0.0 [0.0, -] - < 0.001 
Medium 157 3 1.9% [0.4%, 5.5%] 0.4 [0.1, 1.2] -   

High 276 24 8.7% [5.7%, 12.7%] 1.9 [1.3, 2.9] -   
Very High 33 6 18.2% [7.0%, 35.5%] 4.5 [1.9, 10.7] -   

Mechanical 
Ventilation 

within 24 Hours 

Low 232 6 2.6% [1.0%, 5.5%] 0.5 [0.2, 1.2] - 0.008 
Medium 157 6 3.8% [1.4%, 8.1%] 0.8 [0.4, 1.8] -   

High 276 18 6.5% [3.9%, 10.1%] 1.4 [0.9, 2.2] -   
Very High 33 3 9.1% [1.9%, 24.3%] 2.0 [0.6, 6.6] -   
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Vasopressor 
within 24 Hours 

Low 232 2 0.9% [0.1%, 3.1%] 0.1 [0.0, 0.5] - < 0.001 
Medium 157 3 1.9% [0.4%, 5.5%] 0.3 [0.1, 0.8] -   

High 276 32 11.6% [8.1%, 16.0%] 1.7 [1.2, 2.4] -   
Very High 33 13 39.4% [22.9%, 57.9%] 8.4 [4.2, 16.7] -   

Length of Stay 

Low 232 232 - - 4.0 [3.5, 4.9]   
Medium 157 157 - - 5.7 [4.9, 7.0]   

High 276 276 - - 7.7 [6.5, 8.5]   
Very High 33 33 - - 13.5 [7.1, 19.1]   
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