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Abstract

Genetic variants in genes GRINI, GRIN2A, GRIN2B, and GRIN2D, which encode subunits of the
N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous
neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR
function, requiring opposite therapeutic treatments. Computational methods that predict
pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and
therapeutic applications. We assembled missense variants: 201 from patients, 631 from general
population, and 159 characterized by electrophysiological readouts showing whether they can
enhance or reduce the receptor function. This includes new functional data from 47 variants
reported here, for the first time. We found that pathogenic/benign variants and variants that
increase/decrease the channel function were distributed unevenly on the protein structure, with
spatial proximity to ligands bound to the agonist and antagonist binding sites being key
predictive features. Leveraging distances from ligands, we developed two independent machine
learning-based predictors for NMDAR missense variants: a pathogenicity predictor which
outperforms currently available predictors (AUC=0.945, MCC=0.726), and the first binary
predictor of molecular function (increase or decrease) (AUC=0.809, MCC=0.523). Using these,
we reclassified variants of uncertain significance in the ClinVar database and refined a previous
genome-informed epidemiological model to estimate the birth incidence of molecular
mechanism-defined GRIN disorders. Our findings demonstrate that distance from ligands is an
important feature in NMDARs that can enhance variant pathogenicity prediction and enable
functional prediction. Further studies with larger numbers of phenotypically and functionally

characterized variants will enhance the potential clinical utility of this method.
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Introduction

Pathogenic variants in the GRIN family of genes encoding the N-methyl-D-aspartate receptor
(NMDAR) subunits have been found in patients with various neuropsychiatric disorders,
including autism spectrum disorders, epilepsy, intellectual disability, attention-
deficit/hyperactivity disorder, and schizophrenia '8, NMDAR:s are tetrameric ligand-gated ion
channels permeable to Na*, K*, and Ca?*, composed of two glycine-binding GluN1 subunits and
two glutamate-binding GluN2 subunits, which can be a combination of any two of GIuN2A,
GluN2B, GIuN2C, or GluN2D?!*, GluN1 subunits are encoded by the gene GRINI and GluN2
subunits are encoded by the genes GRIN2A, GRIN2B, GRIN2C, and GRIN2D. Among the
pathogenic variants identified in the GRIN gene family, those in GRIN24 (46%) and GRIN2B
(38%) account for the vast majority, followed by GRINI variants (14%)'!. Variants in these
genes have been associated with a spectrum of neurodevelopmental disorders'?. For example,
GRINI and GRIN2B patients can present with mild or severe intellectual disabilities'*!3, While
some GRIN2A patients have severe intellectual disabilities, roughly half have no intellectual
impairment®!4, Most patients with variants in GRIN2A have seizures whereas the majority of
patients with variants in GRIN2B do not have seizures*. In addition, low muscle tone is rare
among GRIN2A patients while common among patients involving other GRIN genes!>!®. All
GRIN patients present with speech impairment, even those without intellectual disabilities !”.
GRIN2D patients appear to have the most severe phenotype, although there is not yet enough
data to understand the full clinical spectrum!>!, More recently, patients with protein-truncating
variants in GRIN2A have been associated with schizophrenia!® and are susceptible to seizures

and delayed maturation of parvalbumin interneurons, both of which resolve after adolescence'®.
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NMDARs serve many cellular functions, including both pre-synaptically to influence

neurotransmitter release and long-term plasticity?%-22

and post-synaptically to mediate the slow
component of postsynaptic currents and synaptic plasticity?*-*, NMDARs function as signal
coincidence detectors, as their activation requires changes in membrane potential to relieve the
pore blocking by Mg?* ions as well as the synaptic release of glutamate '%2°26, Thus, NMDARs
are precisely regulated by the binding of glutamate and its co-agonist glycine, of extracellular
Mg?* that blocks the channel, and of other endogenous extracellular modulators such as zinc ions
(Zn>")?7. Genetic variants in GRIN genes can cause a heterogeneous spectrum of alterations of
the NMDAR function, which can be grouped into two main types: gain of the NMDAR function
(or gain-of-function effect or GoF) and partial or complete loss of the NMDAR function (or loss-
of-function effect or LoF) 28, Because of the many functions and modulators of NMDARs, a
large number of NMDAR-based molecules have been developed as therapeutic options designed

to mitigate dysfunction of the glutamatergic system -9,

Variant interpretation in the GRIN genes, both for pathogenicity and molecular functions, is still
challenging. Currently, more than 65% of missense variants in GRIN genes are classified as
variant of unknown significance according to the ClinVar database (accessed July 2022)3!. To
improve variant interpretation, several exome-wide bioinformatic approaches have been
developed that can identify clusters of patient variants or population variant depletion across
genomic, protein sequences or 3D structures®>~’. These methods and targeted clinical-genetic
studies for GRIN2A and GRIN2B showed enrichment of pathogenic over population variants in
several UniProt defined domains'3-"-%¥. Although these approaches can identify important
regions, they typically don’t explore the underlying structure-to-function relationship. However,

in the absence of functional characterization of every possible genetic variant in NMDAR
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encoding genes, prediction models are needed to enable precision care since different disease

mechanisms have contraindicated treatment needs’°+2

. For example, among patients with
developmental and epileptic encephalopathy, those with a variants that cause gain of NMDAR
function represent candidates for potential treatment with NMDAR blockers, such as

42,46

memantine®** or GluN2B-selective inhibitors*>#¢, while those with complete or partial loss of

the NMDAR function may potentially respond to positive allosteric modulators of the NMDAR

47-49

However, the functional consequences are not known for most of the variants.
Electrophysiological studies that experimentally determine the molecular functional
consequences introduced by missense variants are expensive and time-consuming, and it is
difficult to envision how all the possible GRIN missense variants can be functionally assessed.
Machine learning (ML)-based methods may be able to take advantage of the limited available
experimental data to predict the molecular functional consequences of the NMDAR variants that
have not been experimentally tested, as has been proven successful for example in voltage-gated
potassium channels®® and sodium channels®!. These methods are based on sequence and
structural protein features, as discriminative gene-level and protein-level features have been
found to be associated with the GoF/LoF effects of variants 2%, To date, few predictors are
available for variant functional effects (VPatho>, LoGoFunc
https://www.biorxiv.org/content/10.1101/2022.06.08.495288v1.full.pdf) and none are
specifically designed for GRIN variants. Here we seek to identify structural features of missense
variants that are predictive of variant pathogenicity and of increased or decreased functional
effects that are specific for the GRIN genes to develop a ML-based method to predict

pathogenicity and Increased/Decreased consequences in GRIN genes. Therefore, we aggregated
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a unique set of 201 expert-curated patient variants and 631 population variants from the
gnomAD database together with 159 functionally characterized missense variants from
electrophysiological readouts across GRINI, GRIN2A4 and GRIN2B. Some of these variants were
functionally characterized in this study for the first time. Since previous work!2°%-¢ described
how individual missense variants in NMDARs alter their ligand-induced regulation, we first
sought whether spatial distance from agonists that are bound to their binding sites in the
NMDAR protein structure correlates with pathogenicity and increased/decreased functional
effects. With the identified distances from ligands and additional biophysical and evolutionary
scores, we have built a ML-based predictor specifically trained to classify variants in GRIN
genes as pathogenic or benign, and a ML-based predictor specifically trained to classify the
molecular consequences of missense variants into increased or decreased effect, thus providing a

valuable resource for clinical genetics.

Material and Methods

Clinical data set of GRIN missense variants

Clinical dataset. The variant data set comprises manually curated patient missense variants
collected through patient registries. Clinical cases were collected using a REDCap survey with

391 fields on genetic and clinical data (REDCap version 10.9.3 https://www.project-redcap.org/)

and offer the integration of retrospective and longitudinal data. All clinical cases were manually
reviewed and classified in accordance with American College of Medical Genetics (ACMG)
guidelines. These variants were found in the genes GRINI, GRIN2A, and GRIN2B. Missense
variants from the general population in the same genes were derived from the gnomAD

database®!. In order to map the variants on the NMDAR structure, we restricted our analysis to
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missense variants that were localized in the domains of the NMDAR structure that are atomically
resolved in the PDB: the amino-terminal (ATD), agonist-binding (ABD), and transmembrane
(TMD) domains. Missense variants that are localized in C-terminal domain (CTD) could not be
considered as the CTD is not present in any resolved NMDAR structure. This comprises a set of
832 missense variants, of which 201 from patients and 631 from controls. The full list of the
considered variants along with their clinical annotation is available and interactively accessible at

https://GRIN-portal.broadinstitute.org and and also reported in Supplemental Table S1.

Functional data set of GRIN missense variants

We identified 127 missense variants in GRINI, GRIN2A and GRIN2B for which
functional testing through electrophysiological and biochemical assays were published and
completed to an extent to allow GoF and LoF determination by the criteria of Myers et al. 202328
(Supplemental Table S2). We also identified additional variants in the literature for which some
functional data exists, but which lack completion of all assays needed to classify by criteria
described in Myers et al. (2023; Supplemental Table S3). Among these two sets of variants, we
present new data allowing completion of functional and biochemical assessment of 34 known
missense variants according to the criteria of Myers et al. (2023; Supplemental Table S4, S5).
From these determinations, we categorized a total of 159 variants as either having an increased
or decreased ion channel function of the response for our implementation here by evaluating the
criteria described in Myers et al. (2023)8, omitting consideration of surface expression, since our
algorithms explore receptor function as it relates to protein structure, not factors that influence
trafficking. Thus, functional data from 159 variants is the starting point for our functional

analyses.
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Functional analysis of missense variants. cDNAs encoding human NMDAR subunits GluN1-1a
(hereafter GluN1; GenBank accession codes: NP_015566), GluN2A (GenBank accession codes:
NP _000824), and GluN2B (GenBank accession codes: NM_000825) were used and site-directed
mutagenesis used to introduce human variants (QuikChange; Stratagene, La Jolla, CA, USA); all
mutant cDNAs were verified by dideoxy DNA sequencing (Eurofins MWG Operon, Huntsville,
AL, USA). The cDNA for WT and mutant NMDAR subunits was linearized using the
appropriate restriction enzyme and cRNA was synthesized in vitro using the mMessage

mMachine T7 kit (Ambion, Austin, TX, USA).

Xenopus laevis ovaries with unfertilized oocytes (Stage V-VI) were obtained from
Xenopus One Inc (Dexter, MI, USA) and digested with Collagenase Type 4 (Worthington-
Biochem, Lakewood, NJ, USA; 850 pg/ml, 15 ml for a half ovary) in Ca?*-free Barth's solution
that contained (in mM) 88 NaCl, 2.4 NaHCOs3, 1 KCl, 0.82 . maintained at 16°C and injected
with cRNA encoding either WT or variant NMDAR subunits (GluN1:GluN2A or GluN2B ratio
1:2, 5-10 ng total in 50 nl of RNAase-free water per oocyte). Injected oocytes were maintained in
normal Barth’s solution at 16-19°C.

Two-electrode voltage clamp (TEVC) current recordings from Xenopus oocytes expressing

NMDARs were performed as previously described 663

. Oocytes were transferred to a recording
chamber and were perfused with extracellular recording solution composed of (in mM) 90 NaCl,
1 KCl, 0.5 BaCly, 10 HEPES, and 0.01 EDTA (23°C, pH 7.4 with NaOH, EDTA omitted in
experiment measuring Mg?*1Cso). Current responses to glutamate and glycine were recorded

under voltage clamp at a holding potential of -40 mV; current and voltage electrodes were filled

with 3 and 0.3 M KCl, respectively. Maximally effective concentrations of agonists (100 uM
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glutamate and 100 uM glycine) were used unless stated otherwise. The reagent 2-aminoethyl
methanethiol sulfonate hydrobromide (MTSEA; Toronto Research Chemicals, Ontario, Canada)
was made fresh and used within 30 min.

HEK293 cells (ATCC CRL-1573) were plated on glass coverslips coated with 0.1 mg/ml
poly-D-lysine and maintained in Dulbecco’s modified Eagle medium (DMEM) with 10% fetal
bovine serum and 10 U/ml streptomycin at 37°C (5% CO.). The cells were transfected with
cDNA encoding GluN1, GluN2A, and eGFP at a ratio of 1:1:5, or GluN1, GluN2B, and eGFP at
a ratio of 1:1:3 using the calcium phosphate method®. 12-24 hrs post transfection the cells were
transferred to the recording chamber and perfused with recording solution composed of (in mM)
150 NacCl, 3 KCI, 1.0 CaCl,, 10 HEPES, 0.01 EDTA, and 2.10 D-mannitol (the pH was adjusted
to 7.4 with NaOH). 3-5 MQ fire-polished patch electrodes were made from thin-walled
micropipettes (TW150F-4, World Precision Instruments, Sarasota, FL, USA) and filled with
internal solution composed of (in mM) 110 D-gluconate, 110 CsOH, 30 CsCl, 5 HEPES, 4 NaCl,
0.5 CaCly, 2 MgCl,, 5 BAPTA, 2 NaATP and 0.3 NaGTP (the pH was adjusted to 7.4 with
CsOH; osmolality was 300-305 mOsmol/kg). Whole cell currents in response to application of
1.0 mM glutamate and 100 uM glycine (VuoLp -60 mV, 23°C) were recorded by an Axopatch
200B patch-clamp amplifier (Molecular Devices, Union City, CA, USA). The current responses
were filtered at 8 kHz (-3 dB) with an 8-pole Bessel filter (Frequency Devices) and digitized at
20 kHz on a Digidata 1440A system controlled by Clampex 10.3 (Molecular Devices). The
position of double-barreled theta-glass tubing was controlled by a piezoelectric translator to
obtain rapid solution exchange (Burleigh Instruments, Newton, NJ, USA). Large current

responses were corrected off-line for series resistance errors.
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To measure receptor surface expression, HEK 293 cells grown in 96-well plates (50,000
cells/well) were transfected with cDNA encoding beta-lactamase (B-lac) fused in frame to the N-
terminus of GluN1 with WT or mutant GluN2, or similarly constructed -lac-GluN2 with WT or
mutant GluN1 using Fugene6 (Promega, Madison, WI)*°, Wells treated with Fugene6 alone
without cDNA were used to determine background absorbance. NMDAR antagonists (200 uM
DL-APYV and 200 uM 7-CKA) were added to cultures when transfected. Six wells were
transfected for each variant to determine surface and total protein levels (3 wells each). After 24
hours, cells were rinsed with Hank’s Balanced Salt Solution (HBSS) that was composed of (in
mM) 140 NacCl, 5 KCl, 0.3 Na;HPO4, 0.4 KH2PO4, 6 glucose, 4 NaHCO3 with 10 mM HEPES
added. Subsequently, 100 ul of a 100 uM nitrocefin (Millipore, Burlington, MA, USA) solution
in HBSS plus HEPES was added to each of the wells and extracellular enzymatic activity was
determined. The cells in the three wells were lysed by 50 pl H2O (30 min) prior to the addition of
50 pl of 200 uM nitrocefin to determine total enzymatic activity. The absorbance at 468 nm was

read every min for 30 min at 30°C, and the rate of increase in absorbance was determined from

the slope of a linear fit to the data.

Structural localization of variants

In order to investigate correlations between functional effects (pathogenicity and molecular
function) and structural features of NMDAR missense variants, we localized each variant onto
the 3-dimensional (3D) protein structure using SIFTS tools®® to cross reference amino acid
positions between protein sequences and protein structures. We used two crystal structures of the
human NMDAR available in the PDB: 7EU7% (3.50 A of resolution) which comprises two

GRINI-encoded and two GRIN2A4-encoded chains, and 7EU8% (4.07 A of resolution) which
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comprises two GRINI-encoded chains and two GRIN2B-encoded chains. We used chain A and B
of 7EU7% to localize GRINI and GRIN2A variants respectively, and chain B of 7EUS to localize
GRIN2B variants. Of the variants in our collected clinical dataset, 832 could be mapped onto the

heterotetrametric protein structure. Of these, 201 are from patients and 631 from population.

Computation of distance features for missense variants

For each variant that could be mapped onto the 3D structure, we computed features that
synthesize information about their position in the 3D structure with respect to the functionally
important regions of the protein complex. In particular, we computed their distances from: the
membrane center, the pore axis, and the four ligands known to primarily regulate NMDAR
function (glutamate, glycine, magnesium ion Mg?*, and zinc ion Zn>"). We used the protein
complex 7EU7% to compute distances for GRINI and GRIN? variants and 7EU8% for GRIN2B
variants. We annotated the membrane through the PPM server
(https://opm.phar.umich.edu/ppm_server, version PPM 2.0)®” and calculated the minimum
distance of the wild-type residue of each variant from the membrane center as defined by the
PPM server. We annotated the pore using the Mole2.5 webserver®® (https://mole.upol.cz/, access
24.03.2022) and calculated the minimum distance of the wildtype residue of each variant from
the pore axis using R-script and the “bio3D” package®. To calculate the minimum distance of
the wildtype residue of each variant from the ligands (glutamate, glycine, Mg?*, Zn**) we first
mapped these ligands to the corresponding reference protein structures 7EU7 and 7EUS8. Two
ligands, glutamate and glycine, were already crystallized in the protein complex 7EU7. To map
these two ligands to the 7EUS protein complex, we performed a structural alignment of the two

protein complexes (7EU7 and 7EUS) using mTM-align”® (root mean square error (RMSD):


https://doi.org/10.1101/2024.05.06.24306939

medRxiv preprint doi: https://doi.org/10.1101/2024.05.06.24306939; this version posted May 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

3.22A). To place Zn?*, we carried out two structural alignments of the amino terminal domain of
the NMDAR crystallized with two Zn?** ions bound to GIuN2A (PDB-ID: 5TQ2, resolution of
3.29 A) with 7EU7 and 7EU8, respectively. The structural alignments were performed with
the mTM-align”® program (RMSD7gu7 = 3.01A, RMSD7gus = 2.22A). Since no NMDAR
structure has been crystallized with Mg?" inside yet, we calculated the estimated the location of
the Mg?" ions by calculating the center of the described magnesium binding residues (N615
GRIN2A4,N616 GRIN2B and N616 GRINI)>"'. For each missense variant, we then calculated the
minimum distance of its wild-type residue from each ligand. The distance calculation was
restricted to residues located in the same domain. Domain annotations are detailed in
Supplementary Table S1 and are: amino terminal domain (ATD), agonist binding domain
(ABD), ABD-TMB linkers (S1 and S2), and transmembrane domain (TMD) comprising M1,
M2, M3, and M4 helices. All distances were computed considering all atoms. The considered

distance features are tabulated in Table 1.

Computation of biophysical and evolutionary features for missense variants

In addition to distance features, we also computed biophysical and evolutionary scores. For each
variant, we computed three biophysical features: the relative solvent accessibility of the wild-
type residue computed through the DSSP program, the difference in hydrophobicity between the
wild-type and the substituted residues according to the Kyte-Dolittle scale and the difference in
the interaction energy (computed as the Bastolla-Vendruscolo statistical potential’?) between the
wild-type and mutate residue with their structural environment (5 A sphere centered in the
mutated residue). These two latter scores have been weighted through the sequence profile as in

Montanucci ef al., 2022%. The biophysical features are listed in Table 1. In addition to
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biophysical scores, we computed, for each variant in our clinical and functional dataset the

BLOSUMG627° and EVE’® evolutionary conservation scores. These scores for each variant are

tabulated in Supplementary Table 1.

Table 1 List of the considered distance, biophysical, and evolutionary features for missense

variants.
Feature Short name Description
Distance features
Distance from glutamate dist_glu Distance (A) of the wild-type residue from glutamate ligand using all-atoms.
Distance from glycine dist gly Distance (A) of the wild-type residue from glycine ligand using all-atoms.
Distance from Mg?* dist mg Distance (A) of the wild-type residue from magnesium ligand using all-atoms.
Distance from Zn2* dist zn Distance (A) of the wild-type residue from zinc ligand using all-atoms.
Distance from pore dist_pore Distance (A) of the wild-type residue from the pore axis using all-atoms.
Distance from membrane dist mem Distance (A) of the wild-type residue from membrane using all-atoms.
Biophysical features
Relative solvent RSA Relative solvent accessibility of the wilt-type residue computed through the
accessibility DSSP program (Kabsch and Sander 1983) 77.
oy s K> [0SO o et e e B i s
o o Dlemenle mein i o s
Evolutionary features
Conservation difference S BLOSUME2 Diffe.renf:e betwe‘en th.e wild-type an.d variant residue in the BLOSUM62
substitution matrix as in Montanucci et al., 201973,
EVE evolutionary model EVE Score from the deep learning based and unsupervised EVE model.

Enrichment analysis

We performed an enrichment analysis to reveal the distribution of pathogenic and population

variants and of variants with increased and decreased functional consequence on the NMDAR
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structure. To perform the enrichment analysis, we applied the Wilcoxon rank sum test to
investigate differences in patient and population variants and their 3D distances from
functionally relevant protein region sites (pore axis and membrane) and the four selected ligands.
Similarly, we tested differences for variants associated with an increased or decreased functional

effect. We applied Bonferroni correction to account for multiple testing.

Developing of ML-based binary classifiers for pathogenicity and functional prediction

Pathogenicity predictor In order to develop a binary ML-based predictor which classifies
missense variants in the GRIN genes as benign or pathogenic, we trained each of four binary
predictors, each one on a different set of features, listed in Table 2. PP-dist, PP-evo, PP-biophys
trained on only distances from ligands and pore axis, evolutionary scores, biophysical features,
respectively. Finally, PP-dist&evo is trained on the combination of features of the two best
performing predictors, which are distances and evolutionary features. All the predictors have
been trained on the subset of the clinical dataset comprising variants that could be mapped on the

3D structure. A 5-fold cross-validation procedure was applied.

Functional predictor In order to develop a binary ML-based predictor which classifies missense
variants in the GRIN genes as increasing or decreasing functional effect, we trained four binary
predictors, each one trained on a different feature set, listed in Table 2. FP-dist is trained on
distances from the four ligands: glutamate, glycine, Mg?*, and Zn**; FP-evo is trained on
evolutionary scores; FP-biophys is trained on the three biophysical features of the variant.
Finally, FP-dist&evo is trained on distance and evolutionary features. The predictors have been
trained on the functional dataset comprised of 159 variants, of which 89 with increased and 71

with decreased functional effect (see Supplementary Table 2). Details about machine learning
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implementation, cross-validation and indexes to evaluate performances are described in the
Supplementary Notes. In order to compare the performance with existing variant functional
effects predictors, we retrieved the prediction of our 159 functionally characterized variants of

LoGoFunc. At the moment of submission VPatho was not available.

Table 2 Description of the input features for each pathogenicity and functional effect predictor.

Predictor Input Features”
Pathogenicity Predictor (PP)
PP-dist dist_glu, dist_gly, dist mg, dist_zn, dist_pore
PP-evo S _BLOSUMG62, EVE
PP-biophys RSA, KD, E3D
PP-dist&evo dist_glu, dist_gly, dist mg, dist_zn, dist pore, S BLOSUM62

Functional (Increase/Decrease) Predictor (FP)

FP-dist dist_glu, dist_gly, dist mg, dist_zn

FP-evo S _BLOSUMG62, EVE

FP-biophys RSA, KD, E3D

FP-dist&evo dist_glu, dist_gly, dist mg, dist zn, S BLOSUM®62, EVE

“Short names of the biophysical features are derived from Table 1.

Results

Spatial proximity to ligands and pore is different in pathogenic versus benign variants
Here we asked whether the spatial distance from important ligands, such as glutamate, glycine,
magnesium and Zn*" and functional important sites-such as the pore-axis correlate with variant
pathogenicity in the GRINI, GRIN2A and GRIN2B determined using ACMG criteria. We
calculated the 3D distances of the 832 variants that could be mapped on the deposited NMDAR
structures from the pore, the membrane and the four ligands that regulate the NMDAR activity
and we compared the residue distances from these sites between the two groups of variants, an

expert-curated set of patient variants (see Supplemental Tables S2-6).
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Figure 1 Variant distance from the pore axis and from ligands significantly differs between patient and
population variants in the GRIN-genes. Left image: GIuN1-GluN2A heterotetramer protein complex (PDB-ID:
7eu7). GIuN1 subunits are colored in cyan, GluN2A subunits are colored in orange. The four ligand binding sites are
highlighted. A) NMDAR structure with the 631 population variants of this study highlighted in blue. B) NMDAR
structure with the 201 patient variants of this study highlighted in red. C) Boxplot of the distance from the pore axis
for 201 patients and 631 population missense variants in GRINI, GRIN2A, and GRIN2B. D) Boxplot of the
minimum distance from the closest ligand (glutamate, glycine, Zn*"and Mg>") for 203 patients and 631 population
missense variants in GRINI, GRIN2A, and GRIN2B. To quantify the differences in the distances to the ligands and

the pore axis we performed the Wilcoxon-rank sum test and corrected for eight tests using Bonferroni correction.

Compared to the spatial distribution of population variants, patient variants where closer to the
pore (Population variants azedian distance = 35 A, Patient variants yegian distance = 18 A, P =6.8e-45,
Wilcoxon rank sum test, Figure 1B) and to the closest ligand-(Population variants azedian distance =
23 A, Patient variants yegian distance = 17 A, P =3.7e-15, Wilcoxon rank sum test, Figure 1C).
When performing the same enrichment analysis for each domain separately, we found that in the
agonist binding domain, GRIN2A4 and GRIN2B patient variants in the agonist binding domain are

located closer to glutamate, which is bound in the cleft of the bilobed agonist binding domain,
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compared to population variants (Pcriv24= 4.3e-14, and Periv2s= 4.1e-03, Figure 2A), while no
significant difference in proximity to glycine was found for variants in GRIN!. In the amino
terminal domain, no significant difference is found in proximity to ligands between patient
variants. However, this result could be due to the small number of population variants in this
domain. In the transmembrane binding site, we observed that patient variants are closer to the

Mg?* binding site compared to population variants in GRIN2A4 (P = 2.6e-02, Figure2D).
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Figure 2 Variant distance from NMDAR ligands significantly differs between patient and population variants
in the GRIN-genes. Boxplot of the distances of patient and population variants from four different NMDAR
ligands: A) glutamate, B) Zn**, C) glycine, and D) Mg?*. Only variants that are located in the same domain where
the ligand is bound are shown and the distance is only computed for the protein subunits that are involved into the
ligand binding. A) Distances from glutamate of patient and population variants that are located in the agonist
binding domain (ABD). B) Distances from the Zn>* of patient and population variants that are located in the amino
terminal domain. C) Distances from glycine of patient and population variants that are located in the agonist binding

domain (ABD). D) Distances from Mg>" of patient and population variants that are located in the transmembrane
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domain (TMD). To quantify the differences in the distances to the ligands, we performed the Wilcoxon-rank sum
test and corrected for eight test using Bonferroni correction.

Machine learning method based on ligand and pore proximity to predict variant
pathogenicity

Given the strong variant position to pathogenicity associations that we observed, we explored
whether our generated distance features could be used to develop a method for the prediction of
variant pathogenicity in the GRIN genes using our collected clinical dataset of 201 patient and
631 population variants. We developed a ML-based method, PP-dist, based on only distance
features (distance from pore axis, glutamate, glycine, Mg*ion and Zn?*) to classify a GRIN
variant as pathogenic or benign. As a comparison, we trained two additional pathogenicity
predictors on the same clinical dataset, PP-evo trained with only evolutionary features, and PP-
biophys trained on biophysical properties of the amino-acid substitution (see Table 2 for input
features of each predictor). The binary classifier based on only distances from ligands, PP-dist,
reaches high prediction performances, with an overall accuracy of 0.892, an area under the ROC
curve (AUC) of 0.9237 and a Matthews correlation coefficient (MCC) of 0.698 (see Table 3 and
Figure 3). The predictive power of these distances is therefore very high, considering that these
input features are based on only the position of the substituted residue and do not contain any
information on the properties of the alternative residue. This indicates that the distance from pore
and ligands, are major features in determining pathogenicity of variants in the GRIN genes.
While PP-biophys shows a low MCC of 0.156 indicative of a poor predictor, PP-evo shows a
high MCC (0.534) and an overall accuracy of 0.832 (Table 3 and Figure 3). This suggests that
biophysical features provide much less information about variant pathogenicity than evolutionary
scores. When a last predictor PP-dist&evo was trained with features from the two classes of

distances from pore and ligands and evolutionary, the prediction performances improved by 1%
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in respect to the individual predictors PP-dist and PP-evo, reaching an overall accuracy of 0.903,
a MCC of 0.726 and an AUC of 0.945.

To compare our developed predictors with existing methods, we also report the performances of
other three among the main pathogenicity scores and predictors on the clinical dataset of this
study (see Table 3 and Figure 3). This comparison shows that the simple distance measurements
from ligands and pore allow a prediction accuracy that is ~10% higher than the best non-gen-

specific pathogenicity predictor.

Table 3 Performances of pathogenicity predictors on 838 variants in the NMDAR.

PrediCtOI‘* Q2 MCC AUC TNR NPV TPR PPV NPaﬁent NPopu]ation

Predictors trained on NMDAR-specific dataset

PP-dist 0.892 0.698 0.937 0.942 0918 0.736 0.801 159 498
PP-evo 0.832 0.534 0.873 0.925 0.895 0.565 0.724 200 572
PP-biophys 0.748 0.156 0.658 0.929 0.780 0.179 0.444 201 631
PP-dist&evo 0.903 0.726 0.945 0.954 0.920 0.741 0.837 201 631

Protein-unspecific Scores and Predictors

AlphaMissense” 0.685 0.482 0.910 0.596 0.982 0.965 0.432 201 631
EVE"® 0.825 0.550 0.884 0.876 0.887 0.680 0.657 200 572
REVEL¥ 0.686  0.287 0.760 0.709 0.850 0.613 0.405 199 614

* The performances of all the predictors are computed with a threshold of 0.5. The Q2 is the overall accuracy of the
predictor; MCC is the Matthews correlation coefficient; AUC is the area under the ROC curve; TNR is the true
negative rate; NPV is the negative predicted value; TPR is the true positive rate; PPV is the positive predicted value
(See Supplementary material for the corresponding equations). Npatient and Npopulation are the number of variants found

in patients and in the general population in the training dataset. The best predictor is highlighted in bold.
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Figure 3 ROC curve for the ML-based pathogenicity predictors (PP-dist, PP-evo, PP-biophys and PP-dist&evo) and
the three additional pathogenicity predictors and scores (AlphaMissense, EVE, and REVEL) on the dataset
composed of the 832 GRIN variants of the clinical dataset.
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Validation of the pathogenicity predictor and pathogenicity prediction for variants of
uncertain significance

So far, we only used expert curated patient variants. As a further validation, we applied our best
pathogenicity predictor, PP-dist&evo, to classify variants that were in ClinVar (July 2022) and,
at the same time, were not part of our expert curated dataset (for prediction scores see
Supplementary Table 1). The total number of ClinVar variants that were not in our clinical
dataset and were classified as (likely-) benign and (likely-) pathogenic and located in our 75%
most confident class assignments is 44. Of these variants, 39 were correctly classified by our
method, reaching a prediction accuracy of 0.89 (Figure 4A). We then used our best model, PP-
dist&evo, to classify 100 ClinVar variants that were of uncertain or conflicting significance
(VUS). Predictions for VUS were distributed across the whole spectrum of the pathogenicity
score (Figure 4B). We reclassified 95 VUS that were assigned with a prediction score within the
75% most confident class assignments. Out of these 95 VUS, we predicted 19% (n = 18 VUS) as

pathogenic and 81% (n =77 VUS) as benign.
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Figure 4 Pathogenicity prediction for ClinVar variants that were not part of our clinical dataset. A)
Pathogenicity prediction for ClinVar variants that were not comprised in our clinical dataset. Prediction scores >0.5
indicate pathogenic variants, while predictor scores <0.5 indicate benign variants. The small grey line above and
below 0.5 corresponds to the 75% most confident class assignments (over all possible amino acid variants). The
prediction has been done with the best pathogenicity prediction method, PP-dist&evo. Prediction scores are
displayed along the multiple sequence alignment of GRINI, GRIN2A & GRIN2B (see alignment in the
Supplementary Table 4). Blue, red, and grey dots correspond to ClinVar benign, pathogenic and VUS variants,
respectively. B) Distribution of our prediction scores for ClinVar variants classified as benign, pathogenic and

variants of unknown significance (VUS).

Spatial proximity to ligands and pore is different in variants which cause an increased
versus decreased functional consequence.

After exploring the relationship between residue localization on the 3D-structure and
pathogenicity of variants in the GRIN genes, we explored the relationship between the variant
localization on the 3D-structure and the differential functional outcomes of the GRIN variants.

We used data from 159 variants combining data from the peer reviewed literature and 47 variants
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