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Abstract 

Genetic variants in genes GRIN1, GRIN2A, GRIN2B, and GRIN2D, which encode subunits of the 

N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous 

neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR 

function, requiring opposite therapeutic treatments. Computational methods that predict 

pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and 

therapeutic applications. We assembled missense variants: 201 from patients, 631 from general 

population, and 159 characterized by electrophysiological readouts showing whether they can 

enhance or reduce the receptor function. This includes new functional data from 47 variants 

reported here, for the first time. We found that pathogenic/benign variants and variants that 

increase/decrease the channel function were distributed unevenly on the protein structure, with 

spatial proximity to ligands bound to the agonist and antagonist binding sites being key 

predictive features. Leveraging distances from ligands, we developed two independent machine 

learning-based predictors for NMDAR missense variants: a pathogenicity predictor which 

outperforms currently available predictors (AUC=0.945, MCC=0.726), and the first binary 

predictor of molecular function (increase or decrease) (AUC=0.809, MCC=0.523). Using these, 

we reclassified variants of uncertain significance in the ClinVar database and refined a previous 

genome-informed epidemiological model to estimate the birth incidence of molecular 

mechanism-defined GRIN disorders. Our findings demonstrate that distance from ligands is an 

important feature in NMDARs that can enhance variant pathogenicity prediction and enable 

functional prediction. Further studies with larger numbers of phenotypically and functionally 

characterized variants will enhance the potential clinical utility of this method. 
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Introduction 

Pathogenic variants in the GRIN family of genes encoding the N-methyl-D-aspartate receptor 

(NMDAR) subunits have been found in patients with various neuropsychiatric disorders, 

including autism spectrum disorders, epilepsy, intellectual disability, attention-

deficit/hyperactivity disorder, and schizophrenia 1–8.  NMDARs are tetrameric ligand-gated ion 

channels permeable to Na+, K+, and Ca2+, composed of two glycine-binding GluN1 subunits and 

two glutamate-binding GluN2 subunits, which can be a combination of any two of GluN2A, 

GluN2B, GluN2C, or GluN2D9,10. GluN1 subunits are encoded by the gene GRIN1 and GluN2 

subunits are encoded by the genes GRIN2A, GRIN2B, GRIN2C, and GRIN2D. Among the 

pathogenic variants identified in the GRIN gene family, those in GRIN2A (46%) and GRIN2B 

(38%) account for the vast majority, followed by GRIN1 variants (14%)11. Variants in these 

genes have been associated with a spectrum of neurodevelopmental disorders12. For example, 

GRIN1 and GRIN2B patients can present with mild or severe intellectual disabilities1,3,13. While 

some GRIN2A patients have severe intellectual disabilities, roughly half have no intellectual 

impairment8,14. Most patients with variants in GRIN2A have seizures whereas the majority of 

patients with variants in GRIN2B do not have seizures4. In addition, low muscle tone is rare 

among GRIN2A patients while common among patients involving other GRIN genes15,16. All 

GRIN patients present with speech impairment, even those without intellectual disabilities 17. 

GRIN2D patients appear to have the most severe phenotype, although there is not yet enough 

data to understand the full clinical spectrum15,16. More recently, patients with protein-truncating 

variants in GRIN2A have been associated with schizophrenia18 and are susceptible to seizures 

and delayed maturation of parvalbumin interneurons, both of which resolve after adolescence19. 
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NMDARs serve many cellular functions, including both pre-synaptically to influence 

neurotransmitter release and long-term plasticity20–22 and post-synaptically to mediate the slow 

component of postsynaptic currents and synaptic plasticity23,24. NMDARs function as signal 

coincidence detectors, as their activation requires changes in membrane potential to relieve the 

pore blocking by Mg2+ ions as well as the synaptic release of glutamate 10,25,26. Thus, NMDARs 

are precisely regulated by the binding of glutamate and its co-agonist glycine, of extracellular 

Mg2+ that blocks the channel, and of other endogenous extracellular modulators such as zinc ions 

(Zn2+)27.  Genetic variants in GRIN genes can cause a heterogeneous spectrum of alterations of 

the NMDAR function, which can be grouped into two main types: gain of the NMDAR function 

(or gain-of-function effect or GoF) and partial or complete loss of the NMDAR function (or loss-

of-function effect or LoF) 28. Because of the many functions and modulators of NMDARs, a 

large number of NMDAR-based molecules have been developed as therapeutic options designed 

to mitigate dysfunction of the glutamatergic system 29,30.  

Variant interpretation in the GRIN genes, both for pathogenicity and molecular functions, is still 

challenging. Currently, more than 65% of missense variants in GRIN genes are classified as 

variant of unknown significance according to the ClinVar database (accessed July 2022)31. To 

improve variant interpretation, several exome-wide bioinformatic approaches have been 

developed that can identify clusters of patient variants or population variant depletion across 

genomic, protein sequences or 3D structures32–37. These methods and targeted clinical-genetic 

studies for GRIN2A and GRIN2B showed enrichment of pathogenic over population variants in 

several UniProt defined domains13,37,38. Although these approaches can identify important 

regions, they typically don’t explore the underlying structure-to-function relationship. However, 

in the absence of functional characterization of every possible genetic variant in NMDAR 
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encoding genes, prediction models are needed to enable precision care since different disease 

mechanisms have contraindicated treatment needs39–42. For example, among patients with 

developmental and epileptic encephalopathy, those with a variants that cause gain of NMDAR 

function represent candidates for potential treatment with NMDAR blockers, such as 

memantine43–45 or GluN2B-selective inhibitors42,46, while those with complete or partial loss of 

the NMDAR function may potentially respond to positive allosteric modulators of the NMDAR 

47–49.   

However, the functional consequences are not known for most of the variants. 

Electrophysiological studies that experimentally determine the molecular functional 

consequences introduced by missense variants are expensive and time-consuming, and it is 

difficult to envision how all the possible GRIN missense variants can be functionally assessed.  

Machine learning (ML)-based methods may be able to take advantage of the limited available 

experimental data to predict the molecular functional consequences of the NMDAR variants that 

have not been experimentally tested, as has been proven successful for example in voltage-gated 

potassium channels50 and sodium channels51. These methods are based on sequence and 

structural protein features, as discriminative gene-level and protein-level features have been 

found to be associated with the GoF/LoF effects of variants 52–54. To date, few predictors are 

available for variant functional effects (VPatho55, LoGoFunc 

https://www.biorxiv.org/content/10.1101/2022.06.08.495288v1.full.pdf) and none are 

specifically designed for GRIN variants. Here we seek to identify structural features of missense 

variants that are predictive of variant pathogenicity and of increased or decreased functional 

effects that are specific for the GRIN genes to develop a ML-based method to predict 

pathogenicity and Increased/Decreased consequences in GRIN genes. Therefore, we aggregated 
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a unique set of 201 expert-curated patient variants and 631 population variants from the 

gnomAD database together with 159 functionally characterized missense variants from 

electrophysiological readouts across GRIN1, GRIN2A and GRIN2B.  Some of these variants were 

functionally characterized in this study for the first time. Since previous work12,56–60 described 

how individual missense variants in NMDARs alter their ligand-induced regulation, we first 

sought whether spatial distance from agonists that are bound to their binding sites in the 

NMDAR protein structure correlates with pathogenicity and increased/decreased functional 

effects. With the identified distances from ligands and additional biophysical and evolutionary 

scores, we have built a ML-based predictor specifically trained to classify variants in GRIN 

genes as pathogenic or benign, and a ML-based predictor specifically trained to classify the 

molecular consequences of missense variants into increased or decreased effect, thus providing a 

valuable resource for clinical genetics. 

Material and Methods 

Clinical data set of GRIN missense variants 

Clinical dataset. The variant data set comprises manually curated patient missense variants 

collected through patient registries. Clinical cases were collected using a REDCap survey with 

391 fields on genetic and clinical data (REDCap version 10.9.3 https://www.project-redcap.org/) 

and offer the integration of retrospective and longitudinal data. All clinical cases were manually 

reviewed and classified in accordance with American College of Medical Genetics (ACMG) 

guidelines. These variants were found in the genes GRIN1, GRIN2A, and GRIN2B. Missense 

variants from the general population in the same genes were derived from the gnomAD 

database61. In order to map the variants on the NMDAR structure, we restricted our analysis to 
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missense variants that were localized in the domains of the NMDAR structure that are atomically 

resolved in the PDB: the amino-terminal (ATD), agonist-binding (ABD), and transmembrane 

(TMD) domains. Missense variants that are localized in C-terminal domain (CTD) could not be 

considered as the CTD is not present in any resolved NMDAR structure. This comprises a set of 

832 missense variants, of which 201 from patients and 631 from controls. The full list of the 

considered variants along with their clinical annotation is available and interactively accessible at 

https://GRIN-portal.broadinstitute.org and and also reported in Supplemental Table S1. 

Functional data set of GRIN missense variants 

We identified 127 missense variants in GRIN1, GRIN2A and GRIN2B for which 

functional testing through electrophysiological and biochemical assays were published and 

completed to an extent to allow GoF and LoF determination by the criteria of Myers et al. 202328 

(Supplemental Table S2).  We also identified additional variants in the literature for which some 

functional data exists, but which lack completion of all assays needed to classify by criteria 

described in Myers et al. (2023; Supplemental Table S3). Among these two sets of variants, we 

present new data allowing completion of functional and biochemical assessment of 34 known 

missense variants according to the criteria of Myers et al. (2023; Supplemental Table S4, S5). 

From these determinations, we categorized a total of 159 variants as either having an increased 

or decreased ion channel function of the response for our implementation here by evaluating the 

criteria described in Myers et al. (2023)28, omitting consideration of surface expression, since our 

algorithms explore receptor function as it relates to protein structure, not factors that influence 

trafficking. Thus, functional data from 159 variants is the starting point for our functional 

analyses.  
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Functional analysis of missense variants. cDNAs encoding human NMDAR subunits GluN1-1a 

(hereafter GluN1; GenBank accession codes: NP_015566), GluN2A (GenBank accession codes: 

NP_000824), and GluN2B (GenBank accession codes: NM_000825) were used and site-directed 

mutagenesis used to introduce human variants (QuikChange; Stratagene, La Jolla, CA, USA); all 

mutant cDNAs were verified by dideoxy DNA sequencing (Eurofins MWG Operon, Huntsville, 

AL, USA). The cDNA for WT and mutant NMDAR subunits was linearized using the 

appropriate restriction enzyme and cRNA was synthesized in vitro using the mMessage 

mMachine T7 kit (Ambion, Austin, TX, USA).  

Xenopus laevis ovaries with unfertilized oocytes (Stage V‐VI) were obtained from 

Xenopus One Inc (Dexter, MI, USA) and digested with Collagenase Type 4 (Worthington-

Biochem, Lakewood, NJ, USA; 850 μg/ml, 15 ml for a half ovary) in Ca2+-free Barth's solution 

that contained (in mM) 88 NaCl, 2.4 NaHCO3, 1 KCl, 0.82 . maintained at 16°C and injected 

with cRNA encoding either WT or variant NMDAR subunits (GluN1:GluN2A or GluN2B ratio 

1:2, 5‐10 ng total in 50 nl of RNAase-free water per oocyte). Injected oocytes were maintained in 

normal Barth’s solution at 16-19°C. 

Two-electrode voltage clamp (TEVC) current recordings from Xenopus oocytes expressing 

NMDARs were performed as previously described 62,63. Oocytes were transferred to a recording 

chamber and were perfused with extracellular recording solution composed of (in mM) 90 NaCl, 

1 KCl, 0.5 BaCl2, 10 HEPES, and 0.01 EDTA (23oC, pH 7.4 with NaOH, EDTA omitted in 

experiment measuring Mg2+IC50). Current responses to glutamate and glycine were recorded 

under voltage clamp at a holding potential of -40 mV; current and voltage electrodes were filled 

with 3 and 0.3 M KCl, respectively.  Maximally effective concentrations of agonists (100 μM 
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glutamate and 100 μM glycine) were used unless stated otherwise. The reagent 2-aminoethyl 

methanethiol sulfonate hydrobromide (MTSEA; Toronto Research Chemicals, Ontario, Canada) 

was made fresh and used within 30 min.  

HEK293 cells (ATCC CRL-1573) were plated on glass coverslips coated with 0.1 mg/ml 

poly-D-lysine and maintained in Dulbecco’s modified Eagle medium (DMEM) with 10% fetal 

bovine serum and 10 U/ml streptomycin at 37℃ (5% CO2). The cells were transfected with 

cDNA encoding GluN1, GluN2A, and eGFP at a ratio of 1:1:5, or GluN1, GluN2B, and eGFP at 

a ratio of 1:1:3 using the calcium phosphate method62. 12-24 hrs post transfection the cells were 

transferred to the recording chamber and perfused with recording solution composed of (in mM) 

150 NaCl, 3 KCl, 1.0 CaCl2, 10 HEPES, 0.01 EDTA, and 2.10 D-mannitol (the pH was adjusted 

to 7.4 with NaOH). 3-5 MΩ fire-polished patch electrodes were made from thin-walled 

micropipettes (TW150F-4, World Precision Instruments, Sarasota, FL, USA) and filled with 

internal solution composed of (in mM) 110 D-gluconate, 110 CsOH, 30 CsCl, 5 HEPES, 4 NaCl, 

0.5 CaCl2, 2 MgCl2, 5 BAPTA, 2 NaATP and 0.3 NaGTP (the pH was adjusted to 7.4 with 

CsOH; osmolality was 300-305 mOsmol/kg).  Whole cell currents in response to application of 

1.0 mM glutamate and 100 µM glycine (VHOLD -60 mV, 23℃) were recorded by an Axopatch 

200B patch-clamp amplifier (Molecular Devices, Union City, CA, USA).  The current responses 

were filtered at 8 kHz (-3 dB) with an 8-pole Bessel filter (Frequency Devices) and digitized at 

20 kHz on a Digidata 1440A system controlled by Clampex 10.3 (Molecular Devices).  The 

position of double-barreled theta-glass tubing was controlled by a piezoelectric translator to 

obtain rapid solution exchange (Burleigh Instruments, Newton, NJ, USA). Large current 

responses were corrected off-line for series resistance errors64. 
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To measure receptor surface expression, HEK 293 cells grown in 96-well plates (50,000 

cells/well) were transfected with cDNA encoding beta-lactamase	(β-lac)	fused	in	frame	to	the	N-

terminus	of	GluN1 with WT or mutant GluN2, or similarly constructed β-lac-GluN2 with WT or 

mutant GluN1 using Fugene6 (Promega, Madison, WI)56. Wells treated with Fugene6 alone 

without cDNA were used to determine background absorbance.  NMDAR antagonists (200 μM 

DL-APV and 200 μM 7-CKA) were added to cultures when transfected. Six wells were 

transfected for each variant to determine surface and total protein levels (3 wells each). After 24 

hours, cells were rinsed with Hank’s Balanced Salt Solution (HBSS) that was composed of (in 

mM) 140 NaCl, 5 KCl, 0.3 Na2HPO4, 0.4 KH2PO4, 6 glucose, 4 NaHCO3 with 10 mM HEPES 

added. Subsequently, 100 μl of a 100 μM nitrocefin (Millipore, Burlington, MA, USA) solution 

in HBSS plus HEPES was added to each of the wells and extracellular enzymatic activity was 

determined. The cells in the three wells were lysed by 50 μl H2O (30 min) prior to the addition of 

50 μl of 200 μM nitrocefin to determine total enzymatic activity. The absorbance at 468 nm was 

read every min for 30 min at 30℃, and the rate of increase in absorbance was determined from 

the slope of a linear fit to the data.  

 

Structural localization of variants  

In order to investigate correlations between functional effects (pathogenicity and molecular 

function) and structural features of NMDAR missense variants, we localized each variant onto 

the 3-dimensional (3D) protein structure using SIFTS tools65 to cross reference amino acid 

positions between protein sequences and protein structures. We used two crystal structures of the 

human NMDAR available in the PDB: 7EU766 (3.50 Å of resolution) which comprises two 

GRIN1-encoded and two GRIN2A-encoded chains, and 7EU866 (4.07 Å of resolution) which 
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comprises two GRIN1-encoded chains and two GRIN2B-encoded chains. We used chain A and B 

of 7EU766 to localize GRIN1 and GRIN2A variants respectively, and chain B of 7EU8 to localize 

GRIN2B variants. Of the variants in our collected clinical dataset, 832 could be mapped onto the 

heterotetrametric protein structure. Of these, 201 are from patients and 631 from population. 

Computation of distance features for missense variants 

For each variant that could be mapped onto the 3D structure, we computed features that 

synthesize information about their position in the 3D structure with respect to the functionally 

important regions of the protein complex. In particular, we computed their distances from: the 

membrane center, the pore axis, and the four ligands known to primarily regulate NMDAR 

function (glutamate, glycine, magnesium ion Mg2+, and zinc ion Zn2+). We used the protein 

complex 7EU766 to compute distances for GRIN1 and GRIN2 variants and 7EU866 for GRIN2B 

variants. We annotated the membrane through the PPM server 

(https://opm.phar.umich.edu/ppm_server, version PPM 2.0)67 and calculated the minimum 

distance of the wild-type residue of each variant from the membrane center as defined by the 

PPM server. We annotated the pore using the Mole2.5 webserver68 (https://mole.upol.cz/, access 

24.03.2022) and calculated the minimum distance of the wildtype residue of each variant from 

the pore axis using R-script and the “bio3D” package69. To calculate the minimum distance of 

the wildtype residue of each variant from the ligands (glutamate, glycine, Mg2+, Zn2+) we first 

mapped these ligands to the corresponding reference protein structures 7EU7 and 7EU8. Two 

ligands, glutamate and glycine, were already crystallized in the protein complex 7EU7. To map 

these two ligands to the 7EU8 protein complex, we performed a structural alignment of the two 

protein complexes (7EU7 and 7EU8) using mTM-align70 (root mean square error (RMSD): 
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3.22Å). To place Zn2+, we carried out two structural alignments of the amino terminal domain of 

the NMDAR crystallized with two Zn2+ ions bound to GluN2A (PDB-ID: 5TQ2, resolution of 

3.29 Å) with 7EU766 and 7EU866, respectively. The structural alignments were performed with 

the mTM-align70 program (RMSD7EU7 = 3.01Å, RMSD7EU8 = 2.22Å). Since no NMDAR 

structure has been crystallized with Mg2+ inside yet, we calculated the estimated the location of 

the Mg2+ ions by calculating the center of the described magnesium binding residues (N615 

GRIN2A, N616 GRIN2B and N616 GRIN1)2,71. For each missense variant, we then calculated the 

minimum distance of its wild-type residue from each ligand. The distance calculation was 

restricted to residues located in the same domain. Domain annotations are detailed in 

Supplementary Table S1 and are: amino terminal domain (ATD), agonist binding domain 

(ABD), ABD-TMB linkers (S1 and S2), and transmembrane domain (TMD) comprising M1, 

M2, M3, and M4 helices. All distances were computed considering all atoms. The considered 

distance features are tabulated in Table 1. 

Computation of biophysical and evolutionary features for missense variants 

In addition to distance features, we also computed biophysical and evolutionary scores. For each 

variant, we computed three biophysical features: the relative solvent accessibility of the wild-

type residue computed through the DSSP program, the difference in hydrophobicity between the 

wild-type and the substituted residues according to the Kyte-Dolittle scale and the difference in 

the interaction energy (computed as the Bastolla-Vendruscolo statistical potential72) between the 

wild-type and mutate residue with their structural environment (5 Å sphere centered in the 

mutated residue). These two latter scores have been weighted through the sequence profile as in 

Montanucci et al., 202269. The biophysical features are listed in Table 1. In addition to 
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biophysical scores, we computed, for each variant in our clinical and functional dataset the 

BLOSUM6275 and EVE76 evolutionary conservation scores.  These scores for each variant are 

tabulated in Supplementary Table 1. 

Table 1 List of the considered distance, biophysical, and evolutionary features for missense 
variants. 

Feature Short name Description 
Distance features 

Distance from glutamate dist_glu Distance (Å) of the wild-type residue from glutamate ligand using all-atoms. 
Distance from glycine dist_gly Distance (Å) of the wild-type residue from glycine ligand using all-atoms. 
Distance from Mg2+ dist_mg Distance (Å) of the wild-type residue from magnesium ligand using all-atoms. 
Distance from Zn2+ dist_zn Distance (Å) of the wild-type residue from zinc ligand using all-atoms. 
Distance from pore dist_pore Distance (Å) of the wild-type residue from the pore axis using all-atoms.  
Distance from membrane dist_mem Distance (Å) of the wild-type residue from membrane using all-atoms. 

Biophysical features 

Relative solvent 
accessibility RSA Relative solvent accessibility of the wilt-type residue computed through the 

DSSP program (Kabsch and Sander 1983) 77. 

Hydrophobicity difference KD Hydrophobicity score accounting for the difference in hydrophobicity between 
wildtype and mutate residue as in Montanucci et al., 201973. 

Energy difference E3D Difference in the interaction energy between the wild-type and mutate residue 
with their structural environment (5 Å sphere) as in Montanucci et al., 201973 

Evolutionary features 

Conservation difference S_BLOSUM62 Difference between the wild-type and variant residue in the BLOSUM62 
substitution matrix as in Montanucci et al., 201973. 

EVE evolutionary model EVE Score from the deep learning based and unsupervised EVE model78. 

 

 

Enrichment analysis 

We performed an enrichment analysis to reveal the distribution of pathogenic and population 

variants and of variants with increased and decreased functional consequence on the NMDAR 
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structure. To perform the enrichment analysis, we applied the Wilcoxon rank sum test to 

investigate differences in patient and population variants and their 3D distances from 

functionally relevant protein region sites (pore axis and membrane) and the four selected ligands. 

Similarly, we tested differences for variants associated with an increased or decreased functional 

effect. We applied Bonferroni correction to account for multiple testing.  

Developing of ML-based binary classifiers for pathogenicity and functional prediction 

Pathogenicity predictor In order to develop a binary ML-based predictor which classifies 

missense variants in the GRIN genes as benign or pathogenic, we trained each of four binary 

predictors, each one on a different set of features, listed in Table 2. PP-dist, PP-evo, PP-biophys 

trained on only distances from ligands and pore axis, evolutionary scores, biophysical features, 

respectively. Finally, PP-dist&evo is trained on the combination of features of the two best 

performing predictors, which are distances and evolutionary features. All the predictors have 

been trained on the subset of the clinical dataset comprising variants that could be mapped on the 

3D structure. A 5-fold cross-validation procedure was applied.  

Functional predictor In order to develop a binary ML-based predictor which classifies missense 

variants in the GRIN genes as increasing or decreasing functional effect, we trained four binary 

predictors, each one trained on a different feature set, listed in Table 2. FP-dist is trained on 

distances from the four ligands: glutamate, glycine, Mg2+, and Zn2+; FP-evo is trained on 

evolutionary scores; FP-biophys is trained on the three biophysical features of the variant. 

Finally, FP-dist&evo is trained on distance and evolutionary features. The predictors have been 

trained on the functional dataset comprised of 159 variants, of which 89 with increased and 71 

with decreased functional effect (see Supplementary Table 2). Details about machine learning 
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implementation, cross-validation and indexes to evaluate performances are described in the 

Supplementary Notes. In order to compare the performance with existing variant functional 

effects predictors, we retrieved the prediction of our 159 functionally characterized variants of 

LoGoFunc. At the moment of submission VPatho was not available. 

Table 2 Description of the input features for each pathogenicity and functional effect predictor. 

Predictor Input Features* 
Pathogenicity Predictor (PP) 

PP-dist dist_glu, dist_gly, dist_mg, dist_zn, dist_pore 
PP-evo S_BLOSUM62, EVE  
PP-biophys RSA, KD, E3D 
PP-dist&evo dist_glu, dist_gly, dist_mg, dist_zn, dist_pore, S_BLOSUM62 

Functional (Increase/Decrease) Predictor (FP) 
FP-dist dist_glu, dist_gly, dist_mg, dist_zn 
FP-evo S_BLOSUM62, EVE 
FP-biophys RSA, KD, E3D 
FP-dist&evo dist_glu, dist_gly, dist_mg, dist_zn, S_BLOSUM62, EVE 

*Short names of the biophysical features are derived from Table 1.  

 

Results 

Spatial proximity to ligands and pore is different in pathogenic versus benign variants 

Here we asked whether the spatial distance from important ligands, such as glutamate, glycine, 

magnesium and Zn2+ and functional important sites such as the pore-axis correlate with variant 

pathogenicity in the GRIN1, GRIN2A and GRIN2B determined using ACMG criteria. We 

calculated the 3D distances of the 832 variants that could be mapped on the deposited NMDAR 

structures from the pore, the membrane and the four ligands that regulate the NMDAR activity 

and we compared the residue distances from these sites between the two groups of variants, an 

expert-curated set of patient variants (see Supplemental Tables S2-6). 
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Figure 1 Variant distance from the pore axis and from ligands significantly differs between patient and 

population variants in the GRIN-genes. Left image: GluN1-GluN2A heterotetramer protein complex (PDB-ID: 

7eu7). GluN1 subunits are colored in cyan, GluN2A subunits are colored in orange. The four ligand binding sites are 

highlighted. A) NMDAR structure with the 631 population variants of this study highlighted in blue. B) NMDAR 

structure with the 201 patient variants of this study highlighted in red. C) Boxplot of the distance from the pore axis 

for 201 patients and 631 population missense variants in GRIN1, GRIN2A, and GRIN2B. D) Boxplot of the 

minimum distance from the closest ligand (glutamate, glycine, Zn2+and Mg2+) for 203 patients and 631 population 

missense variants in GRIN1, GRIN2A, and GRIN2B. To quantify the differences in the distances to the ligands and 

the pore axis we performed the Wilcoxon-rank sum test and corrected for eight tests using Bonferroni correction. 

 

 

Compared to the spatial distribution of population variants, patient variants where closer to the 

pore (Population variants Median distance = 35 Å, Patient variants Median distance = 18 Å, P =6.8e-45, 

Wilcoxon rank sum test, Figure 1B) and to the closest ligand (Population variants Median distance = 

23 Å, Patient variants Median distance = 17 Å, P = 3.7e-15, Wilcoxon rank sum test, Figure 1C). 

When performing the same enrichment analysis for each domain separately, we found that in the 

agonist binding domain, GRIN2A and GRIN2B patient variants in the agonist binding domain are 

located closer to glutamate, which is bound in the cleft of the bilobed agonist binding domain, 
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compared to population variants (PGRIN2A= 4.3e-14, and PGRIN2B= 4.1e-03, Figure 2A), while no 

significant difference in proximity to glycine was found for variants in GRIN1. In the amino 

terminal domain, no significant difference is found in proximity to ligands between patient 

variants. However, this result could be due to the small number of population variants in this 

domain. In the transmembrane binding site, we observed that patient variants are closer to the 

Mg2+ binding site compared to population variants in GRIN2A (P = 2.6e-02, Figure2D). 

 

 

 
Figure 2 Variant distance from NMDAR ligands significantly differs between patient and population variants 

in the GRIN-genes. Boxplot of the distances of patient and population variants from four different NMDAR 

ligands: A) glutamate, B) Zn2+, C) glycine, and D) Mg2+. Only variants that are located in the same domain where 

the ligand is bound are shown and the distance is only computed for the protein subunits that are involved into the 

ligand binding. A) Distances from glutamate of patient and population variants that are located in the agonist 

binding domain (ABD). B) Distances from the Zn2+ of patient and population variants that are located in the amino 

terminal domain. C) Distances from glycine of patient and population variants that are located in the agonist binding 

domain (ABD). D) Distances from Mg2+ of patient and population variants that are located in the transmembrane 
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domain (TMD). To quantify the differences in the distances to the ligands, we performed the Wilcoxon-rank sum 

test and corrected for eight test using Bonferroni correction. 

 

Machine learning method based on ligand and pore proximity to predict variant 

pathogenicity 

Given the strong variant position to pathogenicity associations that we observed, we explored 

whether our generated distance features could be used to develop a method for the prediction of 

variant pathogenicity in the GRIN genes using our collected clinical dataset of 201 patient and 

631 population variants. We developed a ML-based method, PP-dist, based on only distance 

features (distance from pore axis, glutamate, glycine, Mg2+ion and Zn2+) to classify a GRIN 

variant as pathogenic or benign. As a comparison, we trained two additional pathogenicity 

predictors on the same clinical dataset, PP-evo trained with only evolutionary features, and PP-

biophys trained on biophysical properties of the amino-acid substitution (see Table 2 for input 

features of each predictor). The binary classifier based on only distances from ligands, PP-dist, 

reaches high prediction performances, with an overall accuracy of 0.892, an area under the ROC 

curve (AUC) of 0.9237 and a Matthews correlation coefficient (MCC) of 0.698 (see Table 3 and 

Figure 3). The predictive power of these distances is therefore very high, considering that these 

input features are based on only the position of the substituted residue and do not contain any 

information on the properties of the alternative residue. This indicates that the distance from pore 

and ligands, are major features in determining pathogenicity of variants in the GRIN genes. 

While PP-biophys shows a low MCC of 0.156 indicative of a poor predictor, PP-evo shows a 

high MCC (0.534) and an overall accuracy of 0.832 (Table 3 and Figure 3). This suggests that 

biophysical features provide much less information about variant pathogenicity than evolutionary 

scores. When a last predictor PP-dist&evo was trained with features from the two classes of 

distances from pore and ligands and evolutionary, the prediction performances improved by 1% 
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in respect to the individual predictors PP-dist and PP-evo, reaching an overall accuracy of 0.903, 

a MCC of 0.726 and an AUC of 0.945.  

To compare our developed predictors with existing methods, we also report the performances of 

other three among the main pathogenicity scores and predictors on the clinical dataset of this 

study (see Table 3 and Figure 3). This comparison shows that the simple distance measurements 

from ligands and pore allow a prediction accuracy that is ~10% higher than the best non-gen-

specific pathogenicity predictor.  

 

Table 3 Performances of pathogenicity predictors on 838 variants in the NMDAR. 

Predictor* Q2 MCC AUC TNR NPV TPR PPV NPatient NPopulation 

Predictors trained on NMDAR-specific dataset 

PP-dist 0.892 0.698 0.937 0.942 0.918 0.736 0.801 159 498 

PP-evo 0.832 0.534 0.873 0.925 0.895 0.565 0.724 200 572 

PP-biophys 0.748 0.156 0.658 0.929 0.780 0.179 0.444 201 631 

PP-dist&evo 0.903 0.726 0.945 0.954 0.920 0.741 0.837 201 631 

Protein-unspecific Scores and Predictors  

AlphaMissense79 0.685 0.482 0.910 0.596 0.982 0.965 0.432 201 631 

EVE78  0.825 0.550 0.884 0.876 0.887 0.680 0.657 200 572 

REVEL80 0.686 0.287 0.760 0.709 0.850 0.613 0.405 199 614 

* The performances of all the predictors are computed with a threshold of 0.5. The Q2 is the overall accuracy of the 

predictor; MCC is the Matthews correlation coefficient; AUC is the area under the ROC curve; TNR is the true 

negative rate; NPV is the negative predicted value; TPR is the true positive rate; PPV is the positive predicted value 

(See Supplementary material for the corresponding equations). NPatient and NPopulation are the number of variants found 

in patients and in the general population in the training dataset. The best predictor is highlighted in bold. 
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Figure 3 ROC curve for the ML-based pathogenicity predictors (PP-dist, PP-evo, PP-biophys and PP-dist&evo) and 

the three additional pathogenicity predictors and scores (AlphaMissense, EVE, and REVEL) on the dataset 

composed of the 832 GRIN variants of the clinical dataset. 
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Validation of the pathogenicity predictor and pathogenicity prediction for variants of 

uncertain significance 

So far, we only used expert curated patient variants. As a further validation, we applied our best 

pathogenicity predictor, PP-dist&evo, to classify variants that were in ClinVar (July 2022) and, 

at the same time, were not part of our expert curated dataset (for prediction scores see 

Supplementary Table 1). The total number of ClinVar variants that were not in our clinical 

dataset and were classified as (likely-) benign and (likely-) pathogenic and located in our 75% 

most confident class assignments is 44. Of these variants, 39 were correctly classified by our 

method, reaching a prediction accuracy of 0.89 (Figure 4A). We then used our best model, PP-

dist&evo, to classify 100 ClinVar variants that were of uncertain or conflicting significance 

(VUS). Predictions for VUS were distributed across the whole spectrum of the pathogenicity 

score (Figure 4B). We reclassified 95 VUS that were assigned with a prediction score within the 

75% most confident class assignments. Out of these 95 VUS, we predicted 19% (n = 18 VUS) as 

pathogenic and 81% (n = 77 VUS) as benign.  
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Figure 4 Pathogenicity prediction for ClinVar variants that were not part of our clinical dataset. A) 

Pathogenicity prediction for ClinVar variants that were not comprised in our clinical dataset. Prediction scores >0.5 

indicate pathogenic variants, while predictor scores <0.5 indicate benign variants. The small grey line above and 

below 0.5 corresponds to the 75% most confident class assignments (over all possible amino acid variants). The 

prediction has been done with the best pathogenicity prediction method, PP-dist&evo. Prediction scores are 

displayed along the multiple sequence alignment of GRIN1, GRIN2A & GRIN2B (see alignment in the 

Supplementary Table 4). Blue, red, and grey dots correspond to ClinVar benign, pathogenic and VUS variants, 

respectively. B) Distribution of our prediction scores for ClinVar variants classified as benign, pathogenic and 

variants of unknown significance (VUS). 

 

Spatial proximity to ligands and pore is different in variants which cause an increased 

versus decreased functional consequence. 

After exploring the relationship between residue localization on the 3D-structure and 

pathogenicity of variants in the GRIN genes, we explored the relationship between the variant 

localization on the 3D-structure and the differential functional outcomes of the GRIN variants. 

We used data from 159 variants combining data from the peer reviewed literature and 47 variants 
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generated in this study (Supplementary Table 2). In Figure 5 the boxplot of the distance of 

variants with different molecular effect is shown. Variants in GRIN2A and GRIN2B with 

decreasing effect are significantly closest (P=7.2e-3) to the glutamate in respect to variants with 

an increasing effect. Conversely, variants with increasing effect are significantly closest (P=4.3e-

2) to Mg2+  in respect to variants with a decreasing effect. We evaluated function based on 

potency measurements for glutamate, glycine, Mg2+, and Zn2+.  Because there is no reason a 

priori to assume that distance to the pore or agonist binding site will necessarily correlate with 

trafficking, which involves other parts of the receptor, we did not include an assessment of 

surface expression. This means that our categorization as Increasing and Decreasing function 

will not necessarily predict patient Gain- or Loss-of-Function as defined by Myers et al. (2023)28. 

Rather, this predictor will indicate whether a missense variant is likely to alter function of a 

receptor once it reaches the cell surface. In addition, for a subset of 69 variants, we did not have 

a measure of variant actions on deactivation time course, however this correlates with agonist 

EC50 and thus this effect is in part captured by our measure of potency in these variants  (Xu et 

al., 2024) 81,82. We aggregated electrophysiological readouts from published and newly recorded 

data (Supplemental Table S1-3) in this study for 159 variants and classified all variants 

according to their molecular effect as described in the methods.  We found the number of 

variants could be categorized as follows: NIncrease = 89, NDecrease = 71. The results for this set of 

variants are summarized in Supplementary Tables S2-5. We observed that proximity to the pore, 

and in particular to the Mg2+ binding sites are associated with variants that “increased” function 

effects and depleted for variants that “decreased" function in all the GRIN genes (Figure 5D). In 

GRIN2A (P-value = 0.01), variants that “decreased” function are associated with close proximity 

to glutamate binding sites, compared to variants that “increased” function (Figure 5A).  
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Figure 5: Variant distances from NMDAR ligands significantly differ between variants with different 

electrophysiological readouts in the GRIN-genes. In plot A) and B) variants whose molecular effect was 

classified into either decreasing (A) or increasing (B) effect are shown on the NMDA structure. In plots C), D) and 

E) the boxplot of the distances between the variant and the ligands for the variants with different molecular effect 

are shown. Only variants that are located in the domain where the target ligand binds are considered. C) distance 

from glutamate, D) distance from glycine, and E) distance from Mg2+. 

 

 

  

 

     
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.06.24306939doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306939


 

ML-based method using ligand and pore proximity to predict functional effect of variants 

With a similar procedure as that for pathogenicity predictor, we independently developed four 

different binary classifiers to predict the functional consequences of variants in GRIN1, GRIN2A 

and GRIN2B described in Table 2. All performances are shown in Table 4 and Figure 6. While 

the predictors based on only evolutionary or biophysical features (FP-evo and FP-biophys, 

respectively) are poor predictors (with MCC of 0.269 and 0.404, respectively), the FP-dist 

predictor, based only on the 3D distances of variants from each of the four considered ligands, 

reaches an overall accuracy of 0.740 and a MCC of 0.482. This shows here, for the first time, 

that distances of the variant from ligands contain information about the direction (“increasing” or 

“decreasing” activity) of the functional effect of the variant and that can be used for functional 

effect prediction.  

If we combine distance and evolutionary scores, our final best functional predictor for GRIN 

variants, FP-dist&evo reaches an overall accuracy of 0.765 and a MCC of 0.523 (for predictions 

see Supplementary Table 1). As a comparison, are also reported in Table 4 the performances of 

the pathogenicity predictor Alphamissense and of the only other available non-protein specific 

functional (LoF/GoF) predictor LoGoFunc 

(https://www.biorxiv.org/content/10.1101/2022.06.08.495288v1.full.pdf). These performances 

show that pathogenicity prediction scores like Alphamissense have little to no predictive power 

for the functional effects of variants and FP-dist&evo clearly outperforms, on the GRIN variants, 

the only other available functional predictor. 

 
Table 4 Performances of the binary predictors for the functional effect of variants (either increased or 

decreased function) on the data set of 159 experimentally characterized NMDAR variants. 
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Predictor Q2 MCC AUC TNR NPV TPR PPV Nincrease Ndecrease 

Functional (Increased/Decreased function) predictors specifically trained on GRIN variants 

FP-dist 0.740 0.482 0.800 0.644 0.776 0.828 0.716 64 59 

FP-evo 0. 6841 0.269 0.635 0.551 0.613 0.714 0.659 84 69 

FP-biophys 0.703 0.404 0.740 0.500 0.761 0.871 0.679 85 70 

 FP-dist&evo 0.765 0.523 0.809 0.667 0.780 0.845 0.755 84 69 

LoGoFunc predictor on the data set of 159 functionally tested GRIN variants 

LoGoFunc 0.522 0.217 0.510 0.971 0.482 0.161 0.875 70 87 

AlphaMissense evolutionary score on the data set of 159 functionally tested GRIN variants  

AlphaMissense 0.491 0.193 0.651 1.000 0.467 0.080 1.000 71 88 

The Q2 is the overall accuracy of the predictor; MCC is the Matthews correlation coefficient; AUC is the area under 

the ROC curve; TNR is the true negative rate; NPV is the negative predicted value; TPR is the true positive rate; 

PPV is the positive predicted value (see Supplementary Material for details). Nincrease and Ndecrease are the 

number of variants experimentally determined as increased/decreased function in the training dataset for which 

all the features for each predictor were available. The best predictor is highlighted in bold. 
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Figure 6 ROC curve for the four ML-based functional predictors (PP-dist, PP-evo, PP-biophys, PP-dist&evo), 

the EVE score and AlphaMissense pathogenicity predictor, and the LoGoFunc LoF/GoF predictor on the 

dataset composed of 159 variants in the GRIN genes. 

 

 

Global incidence estimates of increase/decrease subdisorders 

We previously published a mutation-rate-informed prediction model to predict the birth 

incidence of de novo variant-associated disorders such as GRIN disorders. However, we were 

not able to separate GoF vs LoF disorder subtypes. In the final set of analyses, we estimated the 

fraction of molecular mechanism defined disorder subtypes using two approaches. In the first, 
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we predicted for all observed variants in our expert curated patient cohort the “increasing” and 

“decreasing” function (Supplementary Table 1) status (75% most confident class assignments). 

The fraction for either classification was used as factor for the previous gene level birth 

incidences. Among our patient cohort, using our increased/decreased functional predictor, we 

predicted an increased functional effect in 52% of all cases in GRIN1. In contrast, in patient 

variants observed in GRIN2A and GRIN2B the more recurrent predicted functional effect was 

“decreasing" function (Decreasing GRIN2A= 61%, Decreasing GRIN2B= 56%, Figure 7B). Since the 

first approach might be confounded by a not yet recognized ascertainment bias of our cohort, we 

used a second approach to estimate the ratio of variants that “increase”/”decrease” function in the 

patient population. We applied the functional prediction algorithm to all possible variants along 

GRIN1, GRIN2A and GRIN2B which we classified as pathogenic using our pathogenicity 

prediction algorithm (N = 4,630). “Decreasing” effects are suggested as the dominant functional 

effect in each of the three GRIN genes (Figure 7C). Notably, this model doesn’t consider that 

some variants might occur de novo more frequent that others due to CpG rich codons. Therefore, 

our two approaches, that each have advantages and disadvantages, we estimate the incidence for 

“increasing” function variant associated disorders for GRIN1as 2.15-2.81, for GRIN2A as 0.32-

1.08 and for GRIN2B 0.50-2.31 in 100,000 births. Similarly, for “Decreasing” variant associated 

disorders we obtained an incidence estimate for GRIN1 of 2.63-3.33, for GRIN2A as 1.7-2.46 

and for GRIN2B 3.03-4.85 in 100,000 births. Inclusion of measures of surface localization 

together with parameters used to define “Increasing” and “Decreasing” function are needed 

before LoF and GoF can formally be used. 
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Figure 7 Prediction of the missense variant effects across our cohort of patient variants. A) Incidence estimates for 

the functional effect of NMDAR encoding genes. Overall incidences were obtained from (López-Rivera et al., 

2020)83. Function specific incidences were calculated based on the gene-wise observed ratio of variants with an 

Increasing/Decreasing effect. *according to 3,659,289 births in USA. ** predicted with PP-dist&evo pathogenicity 

model. B) Gene wise fraction of patient variants from our patient cohort (see methods for details) predicted to cause 

an increasing or decreasing function considering the 75% most confident class assignments. C) As in B but 

predicting the function of all variants in GRIN1, GRIN2A and GRIN2B that were predicted to be pathogenic using 

our best pathogenicity prediction method, PP-dist&evo (considering the 75% most confident class assignments).  

 

Discussion 

Tailoring treatment to individual patients’ genetic variants has made significant progress in many 

fields of medicine in recent years 84. For disorders caused by genetic variants in GRIN genes, the 

possibility of successful drug treatment critically depends on the knowledge of the change in 

function caused by the pathogenic variant, that is gain or loss (partial or complete) of the 

NMDAR function. Indeed, the knowledge of the molecular mechanism affected by a variant can 
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guide safe and effective targeted treatment45. To date, only 20% of all the single amino acid 

exchanges in GRIN genes have been characterized by electrophysiological and biochemical 

readouts85. In this work we collected the most comprehensive dataset of GRIN variants located 

in the structurally resolved regions of the NMDAR, with 201 patient variants curated by clinical 

and genetics experts together and 631 population variants and 159 variants whose molecular 

consequences have been characterized by in vitro electrophysiology. Taking advantage of this 

comprehensive clinical and functional dataset of GRIN variants and using machine learning, we 

identify distance from ligands as a main predictive feature for both pathogenicity and functional 

prediction and we provide the most accurate pathogenicity prediction specifically developed for 

GRIN variants and the first computational method for the prediction of variant functional 

consequences in the GRIN genes (for prediction scores see Supplementary Table 1). 

On the one hand, protein-unspecific pathogenicity predictors take the advantage of large training 

datasets and of capturing general principles of protein functioning though the use of massive 

evolutionary information78,86–88. On the other hand, protein-specific pathogenicity predictors that 

can incorporate knowledge on protein-specific structure and function, have been shown to 

enhance the accuracy of pathogenicity prediction50,51,89,90. When allowed by data availability, 

protein-specific pathogenicity predictors can improve the accuracy of pathogenicity prediction, 

by capturing protein-specific structural patterns and constraints. Here we increase the accuracy 

of pathogenicity prediction for missense variants in the GRIN genes by integrating structural 

information on the distance of variant residues to functionally important sites, ligands and the 

pore.  

We also showed that distance from ligands and the pore has predictive power also for functional 

prediction. A limitation of this work, however, is that we explicitly omit effects of variants on 
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trafficking, which almost certainly have structural determinants beyond the ion channel pore and 

agonist binding pocket. Surface expression is clinically important, and a topic we will explore 

separately. So, our functional predictor is predicting increased and decreased function and not 

GoF/LoF. In line with previously reported observations in which variants with a LoF effect are 

predominantly located in the ABD domain, due to a disturbance of the agonist binding sites of 

GluN1 and GluN2A/B4,14 we also find an enrichment of variants with increased functional effect. 

For a couple of variants close to the ligand binding site it has been proposed that the amino acid 

substitutions lead to a reduced agonist binding59,60. In contrast most variants in the TMD have 

been shown to have a GoF (or complex) effect91–93. Here we quantify for the first time the 

correlation of the functional effects of variants in NMDAR proteins with their spatial distance 

from the ligands. Hence these 3D distances can be used as a proxy to estimate the functional 

consequence of yet untested variants. Although this is the first step towards an accurate model 

specifically designed to predict the functional effect of NMDAR variants, we show that protein-

unspecific models trained for pathogenicity were not sufficient to develop a strong prediction 

model for variant effects in NMDAR genes, and only including our newly generated distance 

features sufficiently boosts the performances to allow functional prediction. 

This work is affected by the limitations that classification of the functional consequence of a 

variant in the two classes of LoF and GoF is an over-simplification of the real biophysical 

modifications which take place on a molecular level. Still, we could separately show that the 

distance of variant residues to ligands that regulate the NMDAR in particular correlate with the 

ligand-specific fold change potency, demonstrating its validity also on the level of individual 

electrophysiological readouts. Consequently, once more specific electrophysiological readouts 
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will become available our spatial distance to functional site annotation will become even more 

helpful to train models that predict the molecular consequence with higher granularity.   

In summary, we introduced a potentially powerful approach to predict the directionality of the 

functional effects of likely pathogenic missense variants in GRIN genes. In a clinical setting like, 

treatment decisions must often be made before functional studies of disease-causing variants can 

be done. In the future, our prediction method could be adapted and benchmarked for use in 

conjunction with best current clinical practices, for example, to predict which individuals with 

pathogenic variants may be likely to benefit from a particular treatment based on their variants’ 

LoF or GoF effects. Our method could potentially be refined with large-scale experimental data, 

for example, by introducing more specific types of predictions than the mere binary LoF and 

GoF classification, such as directly predicting a specific change of potency (e.g., glutamate). 

Because most GRIN genes are depleted for functional variants in the general population, it is 

likely that more GRIN genes could contribute to disease for which disease associations or 

mechanisms have not yet been elucidated and to which our method could potentially be applied – 

such as LoF variants in GRIN2D. In future iterations, also clinical and phenotypic data might be 

incorporated to enhance predictions for the underlying molecular defect. 
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