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Abstract
Individuals with Autism Spectrum Disorder may display interfering behaviors that limit their inclusion

in educational and community settings, negatively impacting their quality of life. These behaviors may
also signal potential medical conditions or indicate upcoming high-risk behaviors. This study explores
behavior patterns that precede high-risk, challenging behaviors or seizures the following day. We analyzed
an existing dataset of behavior and seizure data from 331 children with profound ASD over nine years.
We developed a deep learning-based algorithm designed to predict the likelihood of aggression, elopement,
and self-injurious behavior (SIB) as three high-risk behavioral events, as well as seizure episodes as
a high-risk medical event occurring the next day. The proposed model attained accuracies of 78.4%,
80.68%, 85.43%, and 69.95% for predicting the next-day occurrence of aggression, SIB, elopement, and
seizure episodes, respectively. The results were proven significant for more than 95% of the population
for all high-risk event predictions using permutation-based statistical tests. Our findings emphasize the
potential of leveraging historical behavior data for the early detection of high-risk behavioral and medical
events, paving the way for behavioral interventions and improved support in both social and educational
environments.

1 Introduction
Autism Spectrum Disorder (ASD) is characterized by difficulties in social communication and interactions
and the presence of restricted and repetitive behavior patterns [35]. The prevalance of ASD continues to rise,
affecting one in 36 children in the United States[7]. There is a broad spectrum of abilities observed within
this population. Many individuals with this diagnosis live a fulfilling independent life, while others require
24-hour support to function and maintain safety. Professional and parent advocates recently began referring
the latter group as having "profound" autism. This diversity underscores the importance of a personalized
approach to care and intervention, tailored to the unique needs and strengths of each individual with ASD.

1.1 High-Risk Behaviors
In addition to diverse neurodevelopmental challenges associated with ASD, challenging behaviors often emerge
that interfere with daily functioning. [22, 34, 5]. A range of impact exists from mild disruption to high-risk
behaviors that have the potential to cause injury or even death such as aggression, elopement (wandering or
bolting away from supervision), pica (ingestion of inedible objects or poisonous fluids), and self-injurious
behaviors (SIB).

Self-injurious behaviors have the potential to result in tissue damage, broken bones, and contusions.
Concussions and retinal detachment resulting in permanent loss of vision may occur in the case of head-
directed SIB. Emerging research into sports where athletes sustain frequent hits to the head shows an
association between repeated head trauma and long-term neurological conditions such as chronic traumatic
encephalopathy (CTE) [28]. Outcomes of CTE include mood disorders, cognitive decline, memory problems,
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poor impulse control, and aggression [40]. It is logical that this line of research applies to head-directed SIB
as well with an even more detrimental impact when there is an existing ASD disability.

Elopement is another high-risk behavior with potentially tragic outcomes. For individuals who lack safety
awareness, elopement has resulted in drowning, death from hyperthermia or hypothermia, and being struck
by vehicles or trains [27].Restrictive environmental modifications are often needed to ensure safety such as
fencing, window locks or blocks, door alarms, and interior bolt-locks. Some people with elopement may
require GPS or radio tracking devices.

Aggression may cause injury to both the person engaging in the behavior and those who are intervening to
maintain safety. Injuries from aggression result in extended time away from work or permanent disability for
workers in an industry already plagued by staffing shortages and frequent turnover. Workman’s compensation
claims can be costly for agencies serving those with high-risk behaviors. Aggression often leads to the need for
physical interventions that can be traumatizing and harm trust and relationship building with care partners.

While in some cases, the underlying causes of these high-risk behaviors may be difficult to determine, many
times they stem from a combination of environmental and internal factors along with underlying skill deficits,
particularly in communication and self-regulation. As part of best practices, behavioral clinicians conduct
functional behavior assessments to evaluate variables that contribute to a behavior of concern. Despite this
technology, it is not always possible to predict whether a particular set of circumstances will trigger a behavior
on a given day or if a mild versus a more severe form of a behavior will occur. Understanding and addressing
high-risk behaviors is vital, as they significantly impact the quality of life for many individuals with ASD and
their care partners.

1.2 Medical Events
Reflecting the complexity of ASD, individuals with ASD frequently encounter a spectrum of co-morbid medical
issues, including sleep disturbances [2, 3, 36, 8], sensory sensitivities [42, 6], gastrointestinal disorders [16, 9],
and seizure disorders [44, 13]. Co-morbid psychiatric conditions are also common among those with ASD[31].
These co-morbid medical conditions increase complexity, adding to treatment challenges and significantly
affecting the quality of life of those with ASD [25]. Among these, seizure disorders represent a particularly
complex challenge, standing out for their critical implications on health and well-being compared to other
co-morbidities [15, 45]. The high frequency of seizure episodes in individuals with ASD [15] necessitates
urgent and effective management strategies. Immediate use of rescue medications is often essential for
effective control of these episodes. Given the additional challenges individuals with ASD face, such as
communication and behavioral issues, seizures introduce further complexity to their care. There’s a critical
need for swift intervention during seizures to mitigate their effects. Enhancing seizure prediction could lead
to efficient management, diminishing the impact of seizures on both healthcare systems and the individuals’
well-being, thus highlighting the significance of predictive models and well-structured care plans in improving
the management of ASD.

Research highlights a significant correlation between the incidence of seizures and the diagnosis of
ASD [20, 29], particularly among children and adolescents. A hypothesis could be that sensory sensitivities,
often observed in individuals with ASD, might serve as predictive indicators for seizure episodes, suggesting a
connection where heightened sensory processing challenges precede seizure activity [26]. This insight into the
relationship between sensory sensitivities and seizures underscores the critical need for predictive models that
can preemptively identify and mitigate these high-risk events.

Additionally, children with ASD are notably more likely to be admitted to the hospital following an
emergency department visit for seizure-related disorders, with 4.7% [45]of such visits related to seizure
disorders. This statistic not only reflects the severe impact of seizures on this population but also points
to the broader implications for healthcare systems and families [43, 21]. The ability to predict and manage
seizure episodes in individuals with ASD could significantly reduce emergency department visits and hospital
admissions, thereby improving outcomes.

Various approaches have been explored to predict seizures, with a primary method involving the analysis
of electroencephalography (EEG) data to identify patterns or anomalies indicative of upcoming seizures [30,
10, 39, 32, 11, 33, 24, 1, 33]. Beyond traditional EEG methods, recent advancements in seizure forecasting
have leveraged machine learning to enhance algorithmic accuracy and have investigated non-EEG-based
indicators, incorporating heart rate variability [17], in-ear EEG signals [18], and electromyography from

2

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.06.24306938doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306938
http://creativecommons.org/licenses/by/4.0/


biceps muscles [4], environmental factors [37], and cyclic seizure patterns [19, 14]. Additionally, stress levels,
heart rate variability, and sleep quality have been identified as promising noninvasive markers for monitoring
seizure susceptibility over extended periods [41].

1.3 High-Risk Event Prediction
Despite the promising advancements in models for predicting high-risk medical and behavioral events, several
limitations and challenges hinder their application, particularly among children with ASD. Firstly, the
continuous and long-term use of EEG devices for seizure detection can be impractical and not well-tolerated,
especially for children with the sensory sensitivities common in ASD. These sensitivities may lead to discomfort
or distress, making consistent device wear challenging. Secondly, challenging events forecasting aims to
estimate the likelihood of an occurrence of the event on any given day, offering a potentially more practical
approach over predicting the precise timing of the next seizure.

The necessity for non-invasive and sensory-friendly alternatives is therefore apparent, as traditional EEG
devices, with their wires and electrodes, can be particularly bothersome for individuals who are sensitive to
tactile sensations. This challenge underscores the need for new approaches that can accommodate the unique
needs of children with ASD, ensuring that seizure prediction methods are both effective and comfortable
for the population. Secondly, available techniques mainly focused on developing prediction algorithms to
manage episodic seizures or high-risk behavioral events. Yet, the application of these algorithms in clinical
settings has been scarcely examined [12]. In contrast, forecasting aims to estimate the likelihood of a seizure
occurring on any given day, offering a potentially more practical approach than predicting the precise timing
of the next seizure.

In this work, we introduce a novel model that utilizes the history of challenging behaviors from over 300
children with profound ASD over a period of nine years to assess the risk of high-risk medical and behavioral
events the following day, including seizure episodes, SIB, aggression and elopement. To the best of our
knowledge, this is the first work aimed at leveraging the relationships between different challenging behaviors
in temporal space to form a more reliable prediction. We developed an AI-driven model using a convolutional
neural network (CNN) to create a mapping between historical behaviors and this likelihood.

2 Data Collection

2.1 Participants
The study was conducted at The Center for Discovery in New York State, a facility that offers educational,
medical, clinical, and residential services to individuals with severe and complex disabilities, including ASD.
The participants in this study needed residential care because they were unable to succeed in less restrictive
settings due to the severity and complexity of their conditions.

We analyzed an existing set of deidentified data routinely collected as part of standard operating procedure
at a residential center serving children and adults with significant disabilities including profound autism. All
those residing at the center have an intellectual disability, with most functioning in the moderate to profound
range. The majority of the residents have limited verbal communication and need assistance to complete
activities of daily living. Those placed at the center were unsuccessful in other settings due to their intensive
support needs and the severity and complexity of their disability. Only de-identified data from residents
previously diagnosed with ASD were included in this study.

The study utilized two datasets. The first dataset encompassed data on challenging behaviors, continuously
collected by trained direct care staff across three shifts within a 24-hour period: morning (7:00-3:00), afternoon
(3:00-23:00), and overnight (23:00-7:00), for 331 individuals over nine years. This dataset included a wide
range of labels for behaviors observed. The most common behaviors tracked included Aggression, Disruptive
Behavior, Elopement, Self-Injurious Behavior (SIB), Impulsive Behavior, Agitation and Mouthing/Pica.
Examples of other behaviors labels included Property Destruction, Task-Refusal, Inappropriate Touch, and
those falling into a category associated with restricted and repetitive behaviors such as Ritualistic Behaviors
and Sensory/ Stimulation behaviors. The second dataset included the duration of seizure episodes during the
daytime and the recovery time from after each episode which included recorded data for 177 individuals. This
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Figure 1: Schematic of the predictive analysis workflow. a) The feature vector is composed of seven selected
behaviors, determined to be most prevalent across the study population, along with any other observed
behaviors, each represented in binary form. This information forms a two-dimensional feature vector covering
a timespan of the past seven/fourteen days, with the label indicating the occurrence of challenging behaviors
and seizure episode on the subsequent day. Cells with lower opacity represent records from previous days,
the feature vector consists of the cells enclosed by the black rectangle, and the yellow cells represent the
upcoming days for which we aim to predict the presence of high-risk events. b) The diagram illustrates the
deep learning model designed for the binary prediction of the occurrence of high-risk behaviorial and medical
events on the following day. The model architecture includes two-dimensional convolutional layers, batch
normalization, max pooling, dense layers with ReLU activation, a dropout layer for regularization, and a
final dense layer with a sigmoid activation function for outputting the likelihood for an individual displaying
a given behavior (e.g., self-injurious behavior, elopement, or seizure episode) the following day.

study was approved by both the CFD’s and Emory’s (Ethical) Institutional Review Board (STUDY00003823:
‘Predicting Adverse Behaviour in Autism’).
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3 Methods

3.1 Preprocessing
In the preprocessing stage for the challenging behavior dataset, we began by identifying the top 7 most
prevalent behaviors across our entire study population as indicated above. Any behaviors not fitting these
categories were grouped under the label Other, resulting in a framework with 8 distinct behavior types
for each recorded episode (i.e., an event that occurred in the morning, afternoon, or evening shifts). By
aggregating the labels across different times of the day, we generated a binary vector with 8 entries for
each day for every participant. Given our focus on predicting aggression, SIB and elopement as high-risk
behavioral events, we excluded records from individuals without any incidents of agression ,SIB or elopement.
Consequently, our refined dataset included records from 259 individuals with Aggression, 177 with SIB and
95 with elopement. For the seizure dataset, we initially identified individuals featured in both datasets.
Subsequently, we introduced a binary feature indicating the presence or absence of a seizure episode for
a given individual on a specific day, resulting in a binary vector with 9 entries for each day. This process
yielded a dataset that included 55 individuals.

In forming the input features for each participant, as illustrated in Fig. 1(a), we used two time win-
dows. The first approach involved using data from the 7 days leading up to an event to forecast aggres-
sion/SIB/elopement/seizure occurrences on the following day. The second approach extended this time
window by using data from the previous 14 days for the same task.

3.2 Prediction Model
In this paper we used a CCN architecture with two-dimensional convolutional layers to extract spatial features
effectively. It integrates batch normalization layers to maintain stable learning conditions and employs
max pooling layers to decrease data dimensionality. The architecture is further enhanced with dense layers
activated by the ReLU function, which are instrumental in identifying nonlinear relationships. To mitigate
the risk of overfitting, a dropout layer is incorporated. The architecture culminates in a dense layer activated
by a sigmoid function, designed for predicting the likelihood of events, as depicted in Fig. 1(b).

3.3 Evaluation Metrics
The training procedure for these models involved allocating 80% of the data for training, while the remaining
20% was set aside for testing purposes. This approach, including both training and evaluation, was conducted
in a subject-specific manner, aiming to preserve the temporal causality while assessing the predicting scores
through a individual-specific analysis.

To evaluate the effectiveness of our model, we utilized area under the receiver operating characteristic
curve (AUROC), area under the precision-recall curve (AUPRC), accuracy, and F1 score. These metrics were
computed through macro-averaging across all subjects and evaluations are presented as mean ± standard
deviation for individuals. Basically, we computed the metrics for each individual and found the population
mean and standard deviation across the population of individuals. For assessing the statistical significance
of the model’s accuracy over randomness, we chose accuracy as the primary metric due to its relevance to
the specific classification tasks. We employed permutation testing as detailed in Algorithm 1. This method
shuffles the labels of the test set to generate distributions of accuracy under the null hypothesis that our
model’s performance is comparable to random guessing (i.e., prevalence aware guessing). The performance of
our model is deemed statistically significant if it surpasses the accuracy benchmarks for a specific individual,
as determined by comparing the actual model’s performance against this distributions.

Moreover, to quantify the improvement offered by the model, we presented the ∆ accuracy which is
the average increase in accuracy compared to the expected accuracy under the null hypothesis random
permutations of the data. This measure illustrates the effect size for each task, indicating the practical
significance of the model’s predictive capability.
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Algorithm 1 Statistical Test
1: Compute the model’s accuracy a on the observed test set.
2: Compute the distribution A for the model’s accuracy under the null hypothesis that the labels are

independent of the data permuting the labels for the test set m = 104 times and calculating accuracy
each time.

3: Determine the p-value p = Pr(A ≥ a) = |{b ≥ a : b ∈ A}|/m as the fraction of permutations m with an
accuracy than is greater or equal to the observed accuracy a.

4: if p < 0.05:
Reject H0, concluding the model’s performance is statistically significant.

Feature importance

Here we explore the feature importance in our CNN model, designed for the binary prediction of high-risk
behavioral and medical events the following day. We utilized Gradient-weighted Class Activation Mapping
(Grad-CAM) [38] on the first convolutional layer of the CNN. Contrary to traditional applications that target
deeper layers, focusing on the first layer allowed us to understand the initial feature extraction process directly
related to the input data. Grad-CAM generates a coarse localization map, visually highlighting the significant
regions in the input image that influence the model’s prediction. The method is formulated as follows:

1. Compute the gradient of the class score, Y c (here did the analysis for positive class c = 1), with respect
to the feature maps, Ak (k here is the index of the filter), of the first convolutional layer to obtain ∂Y c

∂Ak .

2. Calculate the neuron importance weights, αc
k, through average pooling of these gradients, expressed as

αc
k = 1

Z

∑
i

∑
j

∂Y c

∂Ak
ij

, where Z represents the total number of pixels (i.e., features) in a feature map,
and i, j are the pixel indices.

3. Produce the Grad-CAM heatmap by applying a weighted combination of these activation maps and a
ReLU function: Lc

Grad-CAM = ReLU
(∑

k α
c
kA

k
)
.

4 Results

Table 1: Performance metrics for Predicting next day high-risk behavior using the historical records of
previous 7 and 14 days (Mean±SD). Significance Achieved represents the number of cases in the population
for which we could reject the null hypothesis. ∆ Accuracy indicates the margin by which our model
outperforms the baseline.

Behavior Days F1 Score (Mean± SD) Accuracy (M ± SD) Significance Achieved ∆ Accuracy (M ± SD)

Aggression 7 days 0.77± 0.19 75.95%± 13.94 233 from 259 12.95± 10.27
Aggression 14 days 0.80± 0.19 78.4%± 16.67 229 from 259 14.86± 11.65
SIB 7 days 0.82± 0.13 79.09%± 12.94 163 from 177 14.51± 10.94
SIB 14 days 0.83± 0.18 80.68%± 16.24 162 from 177 15.78± 12.55
Elopement 7 days 0.85± 0.16 81.93%± 13.54 88 from 95 16.51± 12.29
Elopement 14 days 0.88± 0.13 85.42%± 11.3 91 from 95 18.19± 12.89
Seizure 7 days 0.77± 7.15 69.49%± 5.35 53 from 55 10.25± 4.93
Seizure 14 days 0.77± 0.10 69.95%± 0.06 51 from 55 10.32± 5.29
Severe Aggression 7 days 0.79± 0.13 69.5%± 14.95 3 from 7 2.34± 1.21
Severe Aggression 14 days 0.83± 0.09 73.81%± 0.13 3 from 7 0.68± 1.28
Severe SIB 7 days 0.78± 0.09 68.38%± 10.24 2 from 5 4.13± 2.21
Severe SIB 14 days 0.82± 0.09 73.97%± 11.36 3 from 5 3.25± 1.76
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Figure 2: Confusion matrices for predicting aggression, self-injurious behavior (SIB), elopement, and seizure.
Sub-tables (a), (b), (c), and (d) illustrate confusion matrices predict these behaviors based on a 7-day
historical period. Sub-tables (e), (f),(g), and (h) predict these behaviors based on a 14-day period.
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Figure 3: Representation of features importance using GradCAM for predicting high-risk events. Day −j
refers to the jth day preceding the target day for which the prediction is being made.(a), (b), (c), and (d)
illustrate the feature importance rankings for predicting aggression, SIB, elopement, and seizures, respectively,
based on a 7-day window . (e), (f), (g), and (h) extend the analysis to a 14-day window for the same
outcomes. The comparison highlights how the predictive value of specific features shifts with the extension of
the historical data period.
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4.1 Performance Analysis
The confusion matrices presented in Figure 2 illustrate the model’s predictive performance across a cohort
of individuals exhibiting high-risk behaviors. Specifically, for aggression (recorded in 259 individuals)the
model demonstrated micro accuracies of 80.90% and 84.81% using historical behaviors 7-day and 14-day
time windows, respectively, with corresponding micro F1 scores of 0.737 and 0.789. For SIB, observed in 177
individuals, the model achieved micro accuracies of 82.77% and 85.43%, and micro F1 scores of 0.746 and
0.785 for the same windows sizes. In predicting elopement, identified in 95 individuals, the model reached its
highest micro accuracies of 85.70% and 88.94% for the 7-day and 14-day, respectively, accompanied by micro
F1 scores of 0.761 and 0.809. Seizure events, reported in 55 individuals, were predicted with lower accuracies
of 70.64% and 71.61%, and F1 scores of 0.482 and 0.480 for 7-day and 14-day. These results indicate that
utilizing 14 days of historical data leads to slightly higher accuracy and F1 scores across all tasks.

Table 1 presents the mean and standard deviation (SD) of the macro F1 scores and macro accuracies for
each behavior prediction across different time frames. For aggression, the F1 score was 0.77± 0.19 over 7 days,
which slightly increased to 0.80± 0.19 over 14 days. The model’s accuracy for predicting aggression also rose
from 75.95%± 13.94 to 78.47%± 16.67 as the prediction window extended. In the case of SIB, the F1 scores
were 0.82± 0.13 for the 7-day and 0.83± 0.18 for the 14-day predictions, with accuracies of 79.09%± 12.94
and 80.68%± 16.24, respectively. For elopement, there was an increase in the F1 score from 0.85± 0.16 at 7
days to 0.88± 0.13 SD at 14 days, and accuracy improved from 81.93%± 13.54 to 85.42%± 11.3. The seizure
predictions held steady with an F1 score of 0.77 across both periods and a slight improvement in accuracy
from 69.49%± 0.05 to 69.95%± 0.06.

The micro-averaged scores presented in Table 1 align with the macro-averaged scores, where utilizing 14
days of historical data consistently leads to slightly higher accuracy in behavior prediction. This trend is
reflected across all behaviors, with an increase in mean accuracy when the model incorporates an extended
range of historical data.

4.2 Statistical Analysis
We employed the significance test outlined in the methods section (see subsection 3.3) to evaluate the
statistical significance of the model’s performance for each individual. The number of instances where the
null hypothesis (stating that the model does not predict better than permuted labels) was rejected is also
noted. For aggression, significance was achieved in 233 out of 259 cases over a 7-day period and in 229 out of
257 cases over 14 days. For predicting SIB, the counts were 163 from 174 for the 7-day window and 162 from
177 for the 14-day window. With elopement, the model’s predictions were significant in 88 out of 95 cases for
both 7-day and 14-day periods. Lastly, for seizure predictions, the null hypothesis was rejected in 53 out of
55 cases for the 7-day period and in 51 out of 55 cases for the 14-day period. The delta accuracy (proxy
of the effect size) reinforces the conclusion that a 14-day historical data window significantly enhances the
model’s accuracy for predicting high-risk behaviors.

Table 1 also presents the results for predicting severe aggression and severe SIB in a cohort consisting of 7
individuals with severe aggression and 5 with severe SIB, selecting cases where at least 10% of the target
behavior was recorded as severe. The results, as detailed in the attached table, reveal a nuanced efficacy
of our predictive models. For severe aggression, over a 7-day timeframe, the model’s F1 score was modest
at 0.79± 0.13, with an accuracy of 69.5%± 14.95, while for a 14-day period, the F1 score showed a slight
increase to 0.83± 0.09 with accuracy marginally improved to 73.81%± 0.13. Severe SIB predictions were
similar, with F1 scores of 0.78± 0.09 and 0.82± 0.09 over 7 and 14 days, respectively. The accuracy for these
predictions also saw a modest rise from 68.38%± 10.24 to 73.97%± 11.36 when extending the prediction
window. However, the effect sizes remained low across both behaviors, with delta accuracies ranging from
2.34 ± 1.21 to 3.25 ± 1.76, indicating that the models had minimal success in predicting severe high-risk
behaviors. Significance was achieved in fewer than half of the cases for both severe aggression and severe SIB.

4.3 Feature Importance Analysis
Figure 3 presents the impact of each feature using Grad-CAM, presented in the methods section (see 3.3);
we observe that impulsive behavior plays a crucial role in predicting all high-risk events, underscoring its
significance across different high-risk behaviors. Particularly noteworthy is the predictive value that the
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history of seizure events holds when forecasting future seizures; however, it is not the sole contributor. The
analysis indicates that other behaviors, such as disruptive behavior and agitation, also exhibit a prominent
predictive value in seizure forecasts. This insight is crucial as it suggests that considering a spectrum of
behaviors, a multifaceted approach could enhance the accuracy of predicting seizures and other high-risk
events.

The results indicates that, since such behaviors are inherently sparse, the models’ ability to predict
severe high-risk behaviors is constrained. This limitation is particularly pronounced due to the lack of
additional, pertinent information regarding individual subjects, such as major life events, medication usage,
and comorbidities. Therefore, the practical utility of the models for predicting severe high-risk behavior
without incorporating more comprehensive information or features is limited. It underscores the necessity
for a more holistic approach in model development that integrates broader aspects of individual profiles to
enhance predictive accuracy.

Another observation was as we extended the historical window to 14 days, illustrated in panels (e) through
(h), there was a notable shift in the importance of these features. For instance, aggression remained a
dominant feature for predicting SIB over both time frames, whereas impulsive behavior was prominent in the
14 days for predicting elopement. This analysis highlights how extending the historical data window can
recalibrate the predictive value of specific features, which may refine our predictive models’ accuracy for
severe high-risk behaviors.

5 Discussion
The behavioral and medical complexity of those with profound autism presents challenges for those

providing care. While typical antecedents to high-risk behaviors may be identified through functional behavior
assessment procedures, such antecedents may not reliably evoke the behavior of concern. Furthermore,
behaviors targeted for reduction may have differing levels of intensity and corresponding impact on the
person and the environment. Knowing in advance that conditions are such that a high-risk behavior or
medical event is likely would allow care partners to employ additional safeguards and supports. If a seizure is
predicted, a care partner may maintain constant physical contact to prevent or lessen the impact of a fall.
Physical demands could be limited with allowance for more rest. When high-risk behaviors are predicted, care
partners could implement preventative strategies such as environmental modifications, increased reinforcement
for positive behaviors, noncontingent access to preferred people or activities, decreased demands, adapted
schedules, and enhanced staffing.

In this paper we demonstaretd a AI-driven model for predicting such high-risk behavioral and medical
episodes.Table 1 and Figure 4 demonstrated a clear advantage in predictive performance when utilizing
14 days of historical data compared to 7 days. This trend was observed across all high-risk behaviors and
different metrics, where both the F1 score and accuracy show notable improvements. The extended data
window likely provides a more comprehensive behavioral pattern, which enhances the model’s ability to
predict subsequent high-risk behaviors with greater reliability. Although the results indicated that the null
hypothesis could be rejected for over 95% of the population across different tasks, the success in predicting
the severity levels of behaviors was comparatively modest. This limitation may arise from insufficient data on
tasks aimed at predicting high-risk behaviors of varying severity. Since days with severe behaviors are rare,
they limit the effectiveness of the predictive model in these instances.

To analyze the impact of improved prediction accuracy, we explored how enhancements in ∆ Accuracy
for predicting high-risk events could enhance preventive care. Specifically, the ∆ Accuracy values of 10.32%
for Seizure, 14.86% for Aggression, 15.78% for SIB, and 18.19% for Elopement demonstrated the model’s
improved capability over the baseline. When applied in a clinical setting, these gains significantly influenced
the identification of children most at risk. The enhancements provided by the improved models were quantified
under a scenario with 300 individuals, aiming to identify the 30 most susceptible to high-risk events. The
calculations showed that while the baseline model was expected to correctly identify 21 children, the improved
models for Seizure, Aggression, SIB, and Elopement correctly identified 24, 26, 27, and 27 children respectively.
This increase in correct identifications, especially for Aggression, SIB, and Elopement, significantly improved
the likelihood of correctly identifying those most at risk. This precise targeting enabled more effective
allocation of preventive interventions, ultimately improving outcomes for the most at risk children.
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Exploring practical implementations of advancements that improve prediction accuracy for seizure episodes
is essential to reduce risks in real-world scenarios. Enhanced seizure prediction, with a 10.32% increase in
∆ Accuracy, marks an improvement in detection. This is crucial in settings where intervention can prevent
consequences of unexpected seizure episodes. Swift action by healthcare professionals, enabled by predictive
tools, can reduce trauma or complications from seizures. Integrating this technology into patient monitoring
systems permits ongoing risk assessment, creating a safer environment for those prone to seizures. Moreover,
data from predictive models can guide treatment plans, fostering an epilepsy management approach that
adjusts to the disorder’s variability.

The findings of this study extend the understanding of seizure prediction by highlighting not only
physiological predictors but also the role of changes in behaviors and moods as indicators of imminent
seizure episodes. This is supported by a comprehensive online survey conducted across Canada, involving
participation from 196 patients and 150 caregivers. According to the survey results, a notable percentage of
both patients and caregivers, specifically 12.2% and 12.0% respectively, reported the ability to anticipate
seizures. Remarkably, some were able to make these predictions up to 24 hours in advance. They identified a
range of preictal symptoms, including dizziness, shifts in mood, and cognitive disturbances, as reliable signs
of the approach of a seizure episode. These observations underline the potential for non-physiological cues to
play a critical role in seizure forecasting, offering valuable time for preemptive measures [23].

Another observation from this study, as illustrated in Figure 3, relates to the influence of previous days and
distinct behaviors on the prediction of high-risk events. It was observed that each behavior or medical event,
such as seizure, played a significant role in predicting occurrences of the same type, indicating a cyclic pattern.
This suggests that historical instances of a particular behavior tend to recur, highlighting the potential for
targeted preventive interventions. Moreover, disruptive behavior was found to have a notable impact on the
prediction of all high-risk events. This widespread influence could be attributed to the pervasive nature of
disruptive behaviors, which are often symptomatic of underlying instability or distress that may precipitate a
variety of high-risk events. These observations underscore the complexity of behavioral dynamics and the
critical need for holistic approaches in predictive modeling and intervention strategies and CFD provides a
good environment to deploy and evaluate the system.

6 Conclusion
This study demonstrated the feasibility of using a deep learning-based algorithm to predict high-risk behaviors
and seizure episodes in children with profound ASD. By analyzing an extensive dataset covering nine years
of behavior and seizure data from 331 children, our model has shown significant potential in prediction
of high-risk events. The developed model attained accuracies of 78.4%, 80.68%, 85.43%, and 69.95% for
predicting the next-day occurrence of aggression, SIB, elopement, and seizure episodes, respectively. The
results were proven significant for more than 95% of the population for all high-risk event predictions using
permutation-based statistical tests.

Our findings highlight the interplay between behavioral and medical challenges in profound autism,
underscoring the critical need for advanced predictive tools. The ability to forecast high-risk behaviors and
medical events could revolutionize the care paradigm, enabling personalized interventions and support that
are anticipatory rather than reactive. This proactive approach allows for the optimization of environmental
and staffing adjustments, the implementation of preventive measures against seizures, and a reduction in the
potential impact of high-risk behaviors on individuals and their environments. Such a model could also help
minimize high-risk behaviors, thereby reducing caregiver injuries that lead to prolonged absences, staffing
shortages, and costly workers’ compensation claims.
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Figure 4: Representation of prediction results using 7-day and 14-day spans of prior historical data for
predicting SIB, elopement, and seizure, presenting AUROC, AUPRC, accuracy, and F1 score. Blue and
yellow circles represent cases where we achieved, and could not achieve, statistical significance, respectively.
Subfigures (a), (c), (e), and (g) depict the results for aggresion, SIB, elopement, and seizure using 7-day data,
while (b), (d), (f), and (h) illustrate the results for SIB, elopement, and seizure using 14-day data.
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