1	
2	
3	Main title: The causal correlation between gastroesophageal reflux disease and
4	chronic widespread pain: a bidirectional mendelian randomization study
5	
6	Short title: gastroesophageal reflux disease and chronic widespread pain
7	
8	
9	Menglin Chen ^{1,2} , Houshu Tu ^{1,2} , Jiaoli Zhou ^{1,2} , Yi Zhang ^{1,2} , Shuting Wen ^{1,2} , Yao
10	Xiao ^{1,2} , Ling He ^{1,2*}
11	
12	
13	¹ Jiangxi University of Traditional Chinese Medicine, Nanchang, China
14	² Gastroenterology Department, Affiliated Hospital of Jiangxi University of
15	Traditional Chinese Medicine Nanchang, China
16	
17	
18	* Corresponding author
19	E-mail: heling118@126.com (LH)
20	
21	
22	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

23 Abstract

24	Background: Previous observational research found a relationship between
25	gastroesophageal reflux disease (GERD) and chronic widespread pain (CWP). Despite
26	this, it is unknown which, if any, of the conditions produces the other. Our study will
27	use bidirectional Mendelian randomization (MR) to evaluate their causal link.
28	Methods: We examined two sets of publically accessible data from genome-wide
29	association studies (GWAS): GERD (129,080 cases and 602,604 controls) and CWP
30	(6,914 cases and 242,929 controls). We used the inverse variance weighting (IVW)
31	approach as the major analysis method, but we also ran weighted median and MR-
32	Egger regression analyses. We performed various sensitivity studies to assess the
33	conclusions' consistency, horizontal pleiotropy, and stability.
34	Results: MR analysis showed that CWP increased the risk of developing GERD
35	[N _{SNP} = 4, odds ratio (OR): 245.244; 95% confidence interval (CI): 4.35E+00,1.38E+04;
36	p = $0.007 < 0.05$] and vice versa (N _{SNP} = 28; OR:1.019; 95% CI: 1.009-1.029; p = 0.029
37	< 0.05). Bidirectional evidence of causality existed. The sensitivity analysis
38	demonstrated the robustness and reliability of the findings.
39	Conclusions: Our study demonstrated a bidirectional causal relationship between
40	GERD and chronic widespread pain, and future interventions for CWP may be an
41	effective strategy for preventing or mitigating GERD and vice versa.
42	
43	Keywords: Mendelian randomization; bidirectional; Causal; gastroesophageal reflux
44	disease; chronic widespread pain; fibromyalgia

45 Introduction

46	Gastroesophageal reflux disease (GERD), which causes heartburn and
47	regurgitation, is a prevalent chronic gastrointestinal condition (1). It impacts up to 20%
48	of the population in the West, and its incidence is rising globally as the world's
49	population grows and ages (2, 3), posing a major public health concern.
50	Chronic widespread pain (CWP) is clinically defined as musculoskeletal
51	discomfort with a diffuse pattern that lasts three months or more (4). It is one of the
52	characteristic symptoms of fibromyalgia (FM) condition, involving 10.6% to 11.8% of
53	the general population (5). Meanwhile, strong research indicates that patients who
54	suffer from CWP have an increased chance of mortality (6). This emphasizes the
55	importance of proactive risk-reduction s initiatives, as well as early prevention and
56	treatment for illness. Prioritizing early detection, diagnosis, and management of CWP
57	is critical for improving patients' overall health outcomes.
58	It is commonly acknowledged that the term FM is the most precise approach to
59	characterize CWP after all other plausible explanations have been ruled out (4).
60	Retrospective research discovered that patients with FM commonly have GERD as a
61	secondary disorder (7). Meanwhile, previous cross-sectional research discovered a
62	positive link between FM and GERD (8), signaling that persons with CWP may be
63	more likely to acquire GERD. Currently, research suggests that CWP is linked to a
64	variety of illnesses, including anxiety, depression, sleep difficulties, and migraine
65	headaches (9). However, there is no clear evidence that CWP causes GERD. Mendelian

66 randomization (MR) is a great approach for researchers who want to avoid confounding

67	biases and causal inversion (10, 11). To ensure the validity and reliability of its results,
68	it uses genetic variants, namely single nucleotide polymorphisms, or SNPs, as
69	instrumental variants (IVs) (12).
70	The aim of the research is to evaluate the causal relationship between GERD and
71	CWP via a two-sample bidirectional MR analysis (MRA) method, which will provide
72	some basis for etiology and treatment.

73 Methods

The present study exploited genetic information from an extensive publicly accessible database of genome-wide association studies (GWAS), which required no further ethical approval.

77 Research design

This study employed two-sample MRA to determine the causal link between CWP and GERD. This study tested the following primary hypotheses (13): (1) SNPs were significantly related with exposure. (2) The SNPs showed no correlation with putative confounders of the CWP-GERD relationship. (3) SNPs altered the result solely by connection with the exposure. This work was designed and written in accordance with the STROBE-MR reporting criteria (14). Fig 1 displays the general process chart.

84 Fig 1. The general process chart of the MR study

85 Data sources

A large-scale GWAS comprising 473,524 controls and 129,080 patients provided 86 the GERD data (15). The CWP data, on the other hand, came from a GWAS 87 investigation at the UK Biobank that included 6914 cases and 242,929 controls (16). 88 89 The patients were categorized based on the self-identified diagnosis of fibromyalgia and/or the presence of more than three months' worth of knee, arm, hip, spine, or 90 generalized discomfort. Exclusion criteria included people with systemic lupus 91 92 erythematosus, ankylosing spondylitis, arthritis of the joints, rheumatic polymyalgia, and myopathy. 93

It is important to emphasize that there was no sample duplication between the two research groups and that every participant was of European heritage, reducing the possibility of ethnic bias. The study met with ethical standards and legal requirements and used data that was already publicly available. As a result, no further ethical assessment or clearance was needed.

99 Screening of SNPs

In accordance with the MR hypothesis criterion, an SNP correlation screen was carried out. Using CWP as an exposure factor, we had to modify the genome-wide relevance criterion ($p < 5 \times 10^{-6}$) to acquire more meaningful SNPs (17). For the purpose of the reverse MR analysis with GERD as a trigger factor, we only included SNPs with a significant connection and genome-wide significance level ($p < 5 \times 10^{-8}$). To reduce the impact of severe linkage disequilibrium, we employed tight selection criteria for

106	SNPs, such as $R^2 = 0.001$, with a genetic frame of 10,000 kb in the European 1000
107	Chromosome standard panel (18). We utilized PhenoScanner V2
108	(http://www.phenoscanner.medschl.cam.ac.uk) to determine whether the SNPs
109	employed were associated with important potential confounding factors (19), and if so,
110	excluded them. We evaluated the statistical significance of each SNP using the F -value
111	$(F = \beta^2/SE^2)$, where β describes the allele effect value and SE denotes the standard error.
112	Excluded SNPs having <i>F</i> -value ≤ 10 (20). Finally, we identified genuine SNPs that are
113	substantially related with GERD or CWP.

114 Sensitivity analyses

The Cochran's Q test allowed us to determine the presence of heterogeneity among those risk factors. A p-value ≥ 0.05 suggests a low chance of heterogeneity (21). To see if other factors were influencing the outcomes, we employed the MR Egger's intercept test (22). The occurrence of substantial disparities highlighted the necessity to explore other variables. To locate any outliers that might affect the results, the MR pleiotropy residual sum and outlier (MR-PRESSO) test was applied (23).

We reanalyzed the data after subtracting the outliers to eliminate any other factors that could have biased the results. To ascertain the impact of genetic variation, we also implemented a leave-one-out sensitivity analysis (24).

124 MR analysis

125 Inverse variance weighted (IVW) analysis was the main statistical method used in

126	this work (24). In parallel, stability analyses and findings validations were carried out
127	using the weighted median and MR-Egger regression models (22, 25). The study
128	yielded odds ratios (OR) and 95% confidence intervals (95% CI) for the MR results.

129

Statistical methods

- Version 5.1.0 of the R software (26) 's "TwoSample MR" package was used for 130
- 131 all statistical studies. p < 0.05 was used for demonstrating statistical significance.

Results 132

Genetic instrumental variables 133

Following a rigorous surveillance, we narrowed our selection to 7 separate SNPs 134 for GERD and 28 SNPs for CWP. To do this, we eliminated chain imbalances and 135 136 associated confounders, with smoking being recognized as a risk factor for GERD and smoking, obesity, mental illness, cancer, and osteoarthritis as risk factors for CWP (27-137 29). Furthermore, SNPs that did not appear in the endpoint GWAS were deleted. 138 Following this, it came to light that all SNPs had F statistics > 10, demonstrating that 139 the causal conclusions obtained in our investigation can be understood without taking 140 into account weak SNPs. S1 Table summarizes our findings and offers a detailed 141 142 overview of the combined information from the identified SNPs.

Causal effect of CWP on the risk of GERD 143

To determine the robustness of the causal link between GERD and CWP, a 144

145 sensitivity analysis was performed. Heterogeneity among SNPs was demonstrated by the Cochran's O p-values in MR-Egger (O = 38.443, p < 0.001) and IVW (Fig 2, O =146 40.197, p < 0.001). As an outlier, rs1491985 was removed based on the initial MR 147 PRESSO result (Table 1, p = 0.0001 < 0.05). rs923593 and rs7541613 were eliminated 148 149 as well since the second MR PRESSO result suggested they might be potential outliers 150 (Table 1, p = 0.018 < 0.05). There were no outliers in the third MR PRESSO data (Table 1, p = 0.076 > 0.05). For the final MR analysis, 4 SNPs were chosen based on the 151 analysis above. Even with the continuous heterogeneity [MR-Egger (Q=10.116, p =152 153 0.006) and IVW (Fig 2, Q=12.035, p = 0.007)], the accuracy of the MR results would remain unaffected using the random-effects IVW model. This study did not exhibit 154 pleiotropy, according to the MR-Egger intercept test (Fig 2, p = 0.601). Additionally, a 155 156 leave-one-out analysis was carried out, eliminating SNPs one at a time, and it was shown that no SNP had a statistically significant impact on the entire results (Fig 3A). 157 Fig 2. Results of sensitivity analysis (CWP': SNPs of CWP used in the first Mendelian 158 analysis; CWP": SNPs for CWP used in the second Mendelian analysis, CWP: SNPs 159 for CWP used in Mendelian analysis after removing all outliers.) 160

161 **Table 1 Results of MR analysis**

Fig 3. Results of MR analysis (A-Scatter plots of estimates for the association of
GERD on CWP; B- Leave-one-out results for GERD on CWP; C-Scatter plots of
estimates for the association of CWP on GERD; D- Leave-one-out results for CWP on
GERD)

166 The results of IVW showed that the genetically predicted prevalent population

167	would have a significantly increased risk of GERD compared to those without CWP
168	$(N_{SNP} = 4, OR: 245.244; 95\% CI: 4.35E+00, 1.38E+04; p = 0.007 < 0.05)$ (Table 1). The
169	result of the weighted median method also corroborated the trend observed in the IVW
170	analysis. Nevertheless, the MR-Egger results weren't compatible with the IVW
171	direction. The two methods did not yield statistically significant results (Table 1).
172	To determine how the outliers affected the final MR results, MR analysis was also
173	done for each SNP before the outliers were eliminated. The IVW results demonstrated
174	that the MR data support the function of CWP in raising the chance of suffering from
175	GERD, even with outliers (S2 Table, S1 Fig). These findings indicate that CWP patients
176	is a causal risk factor for GERD.

177 Causal effects of GERD on the risk of CWP

Similarly, sensitivity studies were carried out to determine the strength of the 178 179 causal link between GERD and CWP. There was no indication of possible directed pleiotropy according to the results of the MR-Egger intercept test (Fig 2, p = 0.162) or 180 MR PRESSO findings. The Cochran's Q p-values in the IVW (Figure 2, Q = 27.171, p 181 = 0.400) and MR-Egger (Q = 29.339, p = 0.345) approaches indicated a low chance of 182 heterogeneity. MR PRESSO was performed, and there were no significant outliers (Fig. 183 2, p = 0.41), indicating that the MR data were credible. Furthermore, leave-one-out 184 185 analysis revealed no significant differences in the associations found when any one SNP was deleted (Fig 3C). 186

study discovered that people with GERD have a greater chance of having CWP (N_{SNP} = 28; OR:1.019; 95% CI: 1.009-1.029; p = 0.029 < 0.05) (Table 1). The weighted median technique confirms the trend found in the IVW analysis (N_{SNP} = 28; OR: 1.018; 95% CI: 1.004-1.033; p = 0.013 < 0.05) (Table 1). Nonetheless, the MR-Egger results did not match the IVW orientation (Fig 3D).

193 **Discussion**

Our findings provide solid proof that GERD and CWP are causally connected. Individuals with a genetic predisposition to GERD may be at a higher risk for CWP. Those with CWP have a higher chance of acquiring GERD. We verified these findings with a sensitivity analysis, confirming causality between these two diseases. Several hypotheses try to explain the link between CWP and GERD. The potential causes include psychosocial variables as well as brain-gut interactions.

Psychosocial factors such as negative childhood memories, catastrophic life events, 200 and interpersonal disputes all have a substantial impact on the onset, severity, and 201 susceptibility of CWP (30). Prolonged psychological discomfort can lead to CWP in 202 persons with psychological illnesses such as anxiety and depression (31). Gastric reflux 203 into the throat can be caused by mood disorders by psychological stress that restricts 204 the lower part of the sphincter. Furthermore, it can increase the gastrointestinal tract's 205 206 sensitivity to stomach acid (32). Additionally, numerous stressful situations and psychiatric illnesses might exacerbate the symptoms of GERD (33). 207

The gut-brain axis and the hypothalamic-pituitary-adrenal (HPA) axis are 208 hypothesized to play roles in the pathophysiology of certain disorders. When the brain 209 210 detects stress, the HPA axis is engaged, and the hypothalamus produces corticotropinreleasing factor (CRF), which is found in both the brain and the gut (8). Overproduction 211 of CRF can impair intestinal motility, causing greater pain and visceral sensitivity. 212 213 Stressful life events can permanently overproduce CRF and affect the sympathetic and HPA axes (34, 35). The gut-brain axis is regulated bidirectionally. The central nervous 214 system (CNS) can control intestinal pain symptoms and reduce hypersensitivity. The 215 216 gut flora can interact with the CNS via influencing the levels of gut neurotransmitters and cytokines, either directly or indirectly. The association between FM and gut 217 218 bacteria has been proven, with Coprococcus2, Eggerthella, and Lactobacillus being 219 reported to increase the risk of FM (36).

Risk factors for GERD and CWP may be similar, including depression, smoking, 220 and sleep disturbances (29, 37). To prevent inclusion bias from observational studies 221 222 that neglect to omit mutual factors, relevant confounders were eliminated before to the two-sample MR analysis in the current investigation, and GERD and CWP were 223 included as distinct outcomes. The degree of evidence from observational studies and 224 the superiority of MR analysis (38) meant that confounders had less of an impact on 225 the current study's conclusions. Despite the fact that there is heterogeneity among the 226 instrumental factors for positive MR, IVW's random effects model ensures that the 227 228 results are reliable despite the heterogeneity.

Although the screening thresholds were relaxed, only a small number of genome-

wide significant SNPs were found in the CWP GWAS, which may explain the large 230 variability in point estimates across MR methods. This could account for the 231 232 considerable variation in point estimates amongst MR techniques (39). Furthermore, fibromvalgia and/or chronic localized musculoskeletal pain are included in the broad 233 diagnosis of CWP. Inaccurate definitions have the potential to add confounding 234 235 variables to unprocessed GWAS data, decreasing their statistical power. Integrating the distinct GERD and CWP phenotypes is a crucial topic of investigation for subsequent 236 investigations. On the one hand, since the research solely employed GWAS data from 237 238 European groups, it avoids the influence of other populations. It does, however, restricts how broadly the findings may be extended to various populations. 239

In the future, more research with datasets from different populations will be needed. Ultimately, this study deduced the genetic basis of the causal association between GERD and CWP. Nevertheless, the underlying biological mechanisms remain incompletely understood, and further studies are essential to validate this assertion in the future.

245 Conclusion

Our findings indicate that GERD and CWP have a bidirectional causal connection, meaning that having one illness raises the chance of getting the other. These findings support earlier studies and point to the necessity of treatments that can deal with both diseases simultaneously.

250 Acknowledgments

251	Every author-MC, HT, JZ, YZ, SW, YX, and LH-contributed significantly to
252	the study's execution. Their main contributions are as follows: (1) they planned and
253	created the research; (2) they drafted and edited the article; and (3) they submitted the
254	final manuscript for approval. They also collected, analyzed, and interpreted data.
255	Simultaneously, MC assumed control of the entire study procedure.
256	We appreciate the investigators and subjects of the initial MR investigation. We
257	acknowledge the provision of this data by IEU GWAS and the UK Biobank. Author
258	contributions
259	

260 **References**

261	1.	Maret-Ouda J, Markar SR, Lagergren J. Gastroesophageal Reflux Disease
262		Jama. 2020;324(24):2565.

- Ustaoglu A, Nguyen A, Spechler S, Sifrim D, Souza R, Woodland P. Mucosal
 pathogenesis in gastro-esophageal reflux disease. Neurogastroenterol Motil.
 2020;32(12):e14022.
- M Ashworth Dirac, Saeid Safiri, Derrick Tsoi, Rufus Adesoji Adedoyin,
 Ashkan Afshin, Narjes Akhlaghi, et al. The global, regional, and national
 burden of gastro-oesophageal reflux disease in 195 countries and territories,
 1990-2017: a systematic analysis for the Global Burden of Disease Study
 2017. Lancet Gastroenterol Hepatol. 2020;5(6):561-81.

271	4.	Butler S, Landmark T, Glette M, Borchgrevink P, Woodhouse A. Chronic
272		widespread pain-the need for a standard definition. Pain. 2016;157(3):541-3.
273	5.	Mansfield KE, Sim J, Jordan JL, Jordan KP. A systematic review and meta-
274		analysis of the prevalence of chronic widespread pain in the general
275		population. Pain. 2016;157(1):55-64.
276	6.	Da Silva JAP, Geenen R, Jacobs JWG. Chronic widespread pain and
277		increased mortality: biopsychosocial interconnections. Ann Rheum Dis.
278		2018;77(6):790-2.
279	7.	Rivera FA, Munipalli B, Allman ME, Hodge DO, Wieczorek MA, Wang B,
280		et al. A retrospective analysis of the prevalence and impact of associated
281		comorbidities on fibromyalgia outcomes in a tertiary care center. Front Med
282		(Lausanne). 2023;10:1301944.
283	8.	Savin E, Tsur AM, Watad A, Gendelman O, Kopylov U, Cohen AD, et al.
284		Association of fibromyalgia with cancerous and non-cancerous
285		gastrointestinal comorbidities: a cross-sectional study. Clin Exp Rheumatol.
286		2023;41(6):1248-53.
287	9.	Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH. Physical
288		activity and exercise for chronic pain in adults: an overview of Cochrane
289		Reviews. Cochrane Database Syst Rev. 2017;4(4):Cd011279.
290	10.	Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian
291		randomization: using genes as instruments for making causal inferences in
292		epidemiology. Stat Med. 2008;27(8):1133-63.

- 293 11. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for
 294 causal inference in epidemiological studies. Hum Mol Genet.
 295 2014;23(R1):R89-98.
- 296 12. Freuer D, Linseisen J, Meisinger C. Association Between Inflammatory
 297 Bowel Disease and Both Psoriasis and Psoriatic Arthritis: A Bidirectional 2298 Sample Mendelian Randomization Study. JAMA Dermatol.
- 299 2022;158(11):1262-8.
- 300 13. Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian Randomization as
 301 an Approach to Assess Causality Using Observational Data. J Am Soc
 302 Nephrol. 2016;27(11):3253-65.
- 303 14. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM,
 304 Swanson SA, et al. Strengthening the Reporting of Observational Studies in
 305 Epidemiology Using Mendelian Randomization: The STROBE-MR
 306 Statement. Jama. 2021;326(16):1614-21.
- 307 15. Ong JS, An J, Han X, Law MH, Nandakumar P, Schumacher J, et al. Multitrait
 308 genetic association analysis identifies 50 new risk loci for gastro-oesophageal
 309 reflux, seven new loci for Barrett's oesophagus and provides insights into
 310 clinical heterogeneity in reflux diagnosis. Gut. 2022;71(6):1053-61.
- Rahman MS, Winsvold BS, Chavez Chavez SO, Børte S, Tsepilov YA,
 Sharapov SZ, et al. Genome-wide association study identifies RNF123 locus
 as associated with chronic widespread musculoskeletal pain. Ann Rheum Dis.
- 314 2021;80(9):1227-35.

315	17.	Zonneveld MH, Trompet S, Jukema JW, Noordam R. Exploring the possible
316		causal effects of cardiac blood biomarkers in dementia and cognitive
317		performance: a Mendelian randomization study. Geroscience.
318		2023;45(6):3165-74.
319	18.	Yuan S, Larsson SC. Adiposity, diabetes, lifestyle factors and risk of
320		gastroesophageal reflux disease: a Mendelian randomization study. Eur J
321		Epidemiol. 2022;37(7):747-54.
322	19.	Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et
323		al. PhenoScanner V2: an expanded tool for searching human genotype-
324		phenotype associations. Bioinformatics. 2019;35(22):4851-3.
325	20.	de Klerk JA, Beulens JWJ, Mei H, Bijkerk R, van Zonneveld AJ, Koivula RW,
326		et al. Altered blood gene expression in the obesity-related type 2 diabetes
327		cluster may be causally involved in lipid metabolism: a Mendelian
328		randomisation study. Diabetologia. 2023;66(6):1057-70.
329	21.	Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in
330		Mendelian randomisation studies with summary data and a continuous
331		outcome. Stat Med. 2015;34(21):2926-40.
332	22.	Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
333		instruments: effect estimation and bias detection through Egger regression. Int
334		J Epidemiol. 2015;44(2):512-25.

335 23. Verbanck M, Chen CY, Neale B, Do R. Publisher Correction: Detection of
336 widespread horizontal pleiotropy in causal relationships inferred from

|--|

338 2018;50(8):1196.

- Reynolds CJ, Del Greco MF, Allen RJ, Flores C, Jenkins RG, Maher TM, et
 al. The causal relationship between gastro-oesophageal reflux disease and
 idiopathic pulmonary fibrosis: a bidirectional two-sample Mendelian
 randomisation study. Eur Respir J. 2023;61(5).
- 343 25. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in
 344 Mendelian Randomization with Some Invalid Instruments Using a Weighted
 345 Median Estimator. Genet Epidemiol. 2016;40(4):304-14.
- 346 26. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The
 347 MR-Base platform supports systematic causal inference across the human
 348 phenome. Elife. 2018;7.
- 27. Larsson SC, Burgess S. Appraising the causal role of smoking in multiple
 diseases: A systematic review and meta-analysis of Mendelian randomization
 studies. EBioMedicine. 2022;82:104154.
- 352 28. Tang Y, Liu W, Kong W, Zhang S, Zhu T. Multisite chronic pain and the risk
 353 of autoimmune diseases: A Mendelian randomization study. Front Immunol.
 354 2023;14:1077088.
- 29. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its
 epidemiology and associated factors in population-based studies. Br J Anaesth.
 2019;123(2):e273-e83.
- 358 30. Häuser W, Jones G. Psychological therapies for chronic widespread pain and

359		fibromyalgia syndrome. Best Pract Res Clin Rheumatol. 2019;33(3):101416.	
360	31.	Santos DM, Lage LV, Jabur EK, Kaziyama HHS, Iosifescu DV, De Lucia	
361		MCS, et al. The influence of depression on personality traits in patients with	
362		fibromyalgia: a case-control study. Clin Exp Rheumatol. 2017;35 Suppl	
363		105(3):13-9.	
364	32.	Song EM, Jung HK, Jung JM. The association between reflux esophagitis and	
365		psychosocial stress. Dig Dis Sci. 2013;58(2):471-7.	
366	33.	Menezes MA, Herbella FAM. Pathophysiology of Gastroesophageal Reflux	
367		Disease. World J Surg. 2017;41(7):1666-71.	
368	34.	Sun Y, Li L, Xie R, Wang B, Jiang K, Cao H. Stress Triggers Flare of	
369		Inflammatory Bowel Disease in Children and Adults. Front Pediatr.	
370		2019;7:432.	
371	35.	Mayer EA. The neurobiology of stress and gastrointestinal disease. Gut.	
372		2000;47(6):861-9.	
373	36.	Wang Z, Jiang D, Zhang M, Teng Y, Huang Y. Causal association between	
374		gut microbiota and fibromyalgia: a Mendelian randomization study. Front	
375		Microbiol. 2023;14:1305361.	
376	37.	Bonanni E, Schirru A, Di Perri MC, Bonuccelli U, Maestri M. Insomnia and	
377		hot flashes. Maturitas. 2019;126:51-4.	
378	38.	Zhou W, Cai J, Li Z, Lin Y. Association of atopic dermatitis with autoimmune	
379		diseases: A bidirectional and multivariable two-sample mendelian	
380		randomization study. Front Immunol. 2023;14:1132719.	

381	39.	Zhao SS, Holmes MV, Alam U. Disentangling the relationship between
382		depression and chronic widespread pain: A Mendelian randomisation study.
383		Semin Arthritis Rheum. 2023;60:152188.

384

385 Supporting information

S1 Fig. Results of MR analysis before excluding outliers.(A-Scatter plots of 386 estimates for the association of GERD on CWP'; B- Leave-one-out results for GERD 387 on CWP'; C- Funnel plots of estimates for the association of GERD on CWP';D- Scatter 388 plots of estimates for the association of GERD on CWP"; E- Leave-one-out results for 389 390 GERD on CWP"; F- Funnel plots of estimates for the association of GERD on CWP".) S1 Table. SNPs used as genetic instrumental variables for GERD or CWP. (EAF-391 392 effect allele frequency, SE-standard error, CWP'- SNPs of CWP used in the first Mendelian analysis, CWP"- SNPs for CWP used in the second Mendelian analysis, 393 CWP- SNPs for CWP used in Mendelian analysis after removing all outliers.) 394 S2 Table. Results of MR analysis before excluding outliers. 395

	Cochran's Q test	MR-Egger	MR PRESSO	p value
CWP'	4.17E-07	0.653	1.00E-04	1.0
CWP"	0.003	0.894	0.018	0.9
CWP	0.007	0.601	0.076	0.7
GERD	0.345	0.162	0.410	0.4 0.3 0.2 0.1 0

Figure 🛛

SNP effect on CWP

MR Test

SNP effect on GERD

Figure 🛛

в