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Abstract 

A variety of classical machine learning approaches have been developed over the past ten years with 

the aim to individualize drug dosages based on measured plasma concentrations. However, the inter-

pretability of these models is challenging as they do not incorporate information on pharmacokinetic 
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(PK) drug disposition. In this work we compare well-known population PK modelling with classical and 

a newly proposed scientific machine learning (SciML) framework, which combines knowledge on drug 

disposition with data-driven modelling.  Our approach lets us estimate population PK parameters and 

their inter-individual variability (IIV) using multimodal covariate data of each patient. A dataset of 549 

fluorouracil (5FU) plasma concentrations as example for an intravenously administered drug and a 

dataset of 308 sunitinib concentrations as example for an orally administered drug were used for anal-

ysis. Whereas classical machine learning models were not able to describe the data sufficiently, the 

proposed model allowed us to obtain highly accurate predictions even for new patients. Additionally, 

we demonstrated that our model could outperform traditional population PK models in terms of accu-

racy and greater flexibility when learning population parameters if given enough training data. 

 

 

 

 

1.Introduction 

The vision of precision medicine is to provide the right drug to the right patients at the right time and 

dosage. The choice of the optimal drug dosage is based on different criteria in which pharmacokinetics 

(PK) in an individual patient is an essential factor. For this purpose, population PK models are tradi-

tionally formulated as compartmental differential equations. In these models, individual differences 

relative to the population average are described as random statistical effects. A limitation of this estab-

lished approach is that in case of incomplete or missing knowledge about specific PK processes (e.g. 

absorption) the formulation of model equations can become challenging. Moreover, these models do 

not always provide accurate predictions for new patients who have not been part of the training da-

taset and, therefore, might come from a different distribution.  

Thus, during the last decade various machine learning techniques have been studied as a comple-

mentary strategy for the estimation of drug plasma concentrations, aiming to individualize doses. The 

most frequently used algorithms for dose optimization are decision trees and their ensembles, support 
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vector machines and neural networks. Additionally, reinforcement learning plays an increasing a role. 

The identified algorithms primarily aided in the dose individualization of anticoagulants, immunosup-

pressants and antibiotics [1–5]. In oncology, most of the studies we identified used reinforcement 

learning, including classical Q-Learning [6–9], deep Q-Learning [10, 11], deep double Q-Learning [12], 

fuzzy reinforcement learning [13, 14], conservative Q-Learning [15] and other approaches [16, 17]. 

Recently, several models have been proposed using neural networks for the prediction of drug con-

centrations [4, 18–20].  Lu et al. proposed to learn the initial conditions of a neural ordinary differential 

equation (ODE) system trained to predict PK profiles [4]. A hybrid of an ODE and a neural network 

was employed by Qian [18]. Similarly, Janssen et al. used a neural network to learn covariate effects 

which were employed in a compartment model for describing drug concentrations [19]. Valderrama et 

al. [20] introduced PK-SciML, a Scientific Machine Learning (SciML) [21, 22] approach for learning an 

unknown absorption mechanism while simultaneously estimating PK parameters. Although their model 

showed promising results, it was only tested on synthetic data and did not consider the inter-individual 

variability (IIV) of the clinical data, hence only generating populational level predictions for different 

dose groups. Considering that a SciML framework has the advantage of not needing to establish the 

relationships between covariates and parameters a priori while allowing the integration of domain ex-

pertise, we here introduce a multimodal pharmacokinetic SciML (MMPK-SciML) approach, an exten-

sion of PK-SciML, which aims to learn the IIV based on multimodal covariate data of individual pa-

tients.  

As a case study, we use two real datasets for two different oncology treatments as examples for an iv 

and an oral treatment route and compare our model with different classical machine learning and pop-

ulation PK models. We demonstrate that our model produces reliable predictions, while being able to 

simulate new patients.  
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2. Methods 

2.1. Data collection and preprocessing 

2.1.1. Fluorouracil (5FU) 

In this work, plasma concentrations of patients who received fluorouracil (5FU)-based infusional 

chemotherapy at the Oncological Outpatient Clinic UnterEms in Leer, Germany, were retrospectively 

analyzed. This study was approved by the local medical ethics committee, but trial registration was not 

conducted due to the retrospective nature. Patients with documented therapeutic drug monitoring 

(TDM) of 5FU were included in the analysis. Plasma 5FU concentrations were obtained at steady state 

during continuous infusion and quantified using the My5-FU™ immunoassay (Saladax Biomedical Inc., 

Bethlehem, PA, USA) [23]. The dataset included 549 TDM samples from 157 patients and further in-

formation on demographics, blood counts and adverse events. Adverse events (AE) were graded at 

each patient visit according to the Common Terminology Criteria for Adverse Events (CTCAE) version 

5.0 [24]. Outliers were defined as individuals with a concentration below the lower limit of quantification 

(< 52 ng/mL) or a clearance above 1478 L/h [25] and were excluded from the analysis. Missing data 

was imputed using the last observation carried forward approach within the same treatment cycle. 

2.1.2. Sunitinib 

Sunitinib PK data were pooled from two PK/PD studies focusing on sunitinib treatment in patients with 

metastatic renal cell carcinoma (mRCC) and patients with metastatic colorectal cancer (mCRC) [26, 

27].  The C-IV-001 study (EudraCT-No: 2012-001415-23, date of authorisation: 17.10.2012) was a 

phase IV PK/PD substudy of the non-interventional EuroTARGET project, which recruited patients with 

mRCC at nine medical centres in Germany and the Netherlands [26]. Sunitinib doses ranged from 

37,5-50 mg daily, administered orally on a 4-week on/2-week off schedule. The C-II-005 study 

(EudraCT-No: 2008-00151537, date of authorisation: 11.06.2008) was conducted to investigate the 

beneficial effect of sunitinib added to biweekly folinate, fluorouracil and irinotecan in patients with 

mCRC and liver metastases Patients were prescribed a daily dose of 37,5 mg sunitinib on a 4-week 
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on/2-week off schedule taken orally [27]. Both studies were performed in accordance with the Declara-

tion of Helsinki. 

A total of 308 sunitinib TDM samples were obtained from 26 mRCC and 21 mCRC patients. 345 sam-

ples were analysed for the pharmacodynamic biomarker sVEGFR2 and 337 for sVEGFR3, respec-

tively [28]. Sunitinib measurements below the lower limit of quantitation (<0,06 ng/mL) and patients 

without plasma concentration data were excluded from the analysis. 

2.1.3. Data preprocessing 

The total dataset was split using a 10-fold cross-validation setting with a training-test split of 80/20, 

keeping data from one patient strictly in the same set to avoid a splitting bias. For the classical ma-

chine learning algorithms, categorical features were one-hot encoded and continuous features were 

scaled between zero and one. Additionally, missing data was imputed using MissForest within the 

cross-validation process for each split if the ‘last observation carried forward’ approach was not appli-

cable. 

2.2. Population pharmacokinetic modeling 

The population pharmacokinetic (PopPK) model for 5FU comprised of a one‐compartment model with 

linear elimination to describe 5FU disposition [29]. An IIV term was implemented on 5FU clearance 

and the volume of distribution together with its IIV were fixed to previously estimated values [29]. The 

residual variability was modelled as proportional and the body surface area, centered on the popula-

tion median, was included as a linear covariate on clearance. Differently from the original model [29], 

the skeletal muscle index was not included as a covariate, because it was not available for all included 

patients. While Schmulenson et al. used the FOCE-I method to estimate the parameters [29], we 

compared this method to stochastic approximation expectation maximisation (SAEM) using NON-

MEM®. First, we estimated the pharmacokinetic parameters for the training patients of each split using 

the different methods and initial estimates as in [29]. In the next step, these values were used to simu-

late the expected concentrations for the test data. Mean concentration values were calculated from 

1000 simulations.  
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The structure of the population-pharmacokinetic model for sunitinib is depicted in Figure S1. A 

two‐compartment model for sunitinib disposition and a biphasic distribution for its active metabolite 

SU12662 were used [28, 30]. Presystemic formation of SU12662 was modelled via a hypothetical 

enzyme compartment incorporated into the central compartment of sunitinib. An intercompartmental 

clearance connected the central compartment and the enzyme compartment and was fixed to the liver 

blood flow. Interindividual variability (IIV) was included for the central volumes of distribution for sunit-

inib and SU12662, the clearance of sunitinib and the fraction metabolized in a block matrix. Propor-

tional errors for the parent drug and metabolite were used to describe the residual unexplained vari-

ability. Originally, the FOCE-I method was used for parameter estimation. Again, we compared this 

method to SAEM. Moreover, we simulated the expected concentrations for the test data and applied 

the same evaluation methods as for described for 5FU. 

2.3. Classical Machine Learning Algorithms 

Various classical machine learning methods were used for concentration prediction prediction. We 

compared Random Forests, Gradient Boosting, Extreme Gradient Boosting (XGBoost), Light Gradient 

Boosting (LGBoost), Support Vector Machines (SVM) with a radial basis function kernel and simple 

neural networks with a possible range of 2-10 units per layer in terms of performance. The input varia-

bles consisted of dose, weight, lean body mass (LBM), fat mass (FM), body surface area (BSA), age, 

sex, height and time since last dose for 5FU and sex, age, weight, height, BSA, time since last dose 

and the sVEGFR-2, sVEGFR-3 plasma concentrations for sunitinib. These potential covariates, de-

spite most of them having been excluded in stepwise covariate modeling (SCM), were included to 

enable the machine learning algorithms to make use of potential previously missed relationships within 

the data as they have shown to outperform SCM in some cases [31]. All algorithms were applied with 

and without feature selection using XGBoost. Hyperparameter tuning was performed using the Bayes-

ian hyperparameter optimisation software framework Optuna [32] and models were selected applying 

5-fold cross validation with the mean squared error as the objective function. The neural networks 

were regularised applying common techniques such as drop-out, L1 regularization and gradient clip-

ping to avoid overfitting.   
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To investigate whether the model performance of the classical machine learning methods could be 

further improved by synthetic data, the training datasets were augmented for each split according to 

Table S1. To simulate patient data according to the correct distributions for each cross-validation fold, 

a PK model was fitted by NONMEM® on each fold and the obtained estimates were used for simula-

tion. 1000 synthetic patients were created for each fold respectively and added to the clinical training 

data. 

 

2.4. Multimodal Pharmacokinetic SciML model (MMPK-SciML) 

The main motivation of our MMPK-SciML model was to overcome the existing limitations of PK-SciML 

[20] predictions, i.e., we wanted to build a model learning the IIV using neural networks and multimod-

al patient information. Following the classical pharmacokinetic framework, individual parameters using 

IIV are defined as follows: 

�� � exp���	�
���  log ���    �1� 
Where 
�� is the typical - populational value of the parameter � and �� is the IIV also referred in this 

paper as eta value. 

Our proposed architecture is composed of 2 main blocks: i) a neural network encoder which aims to 

predict the � values using patient covariates and ii) a structural well-defined ODE system to describe 

the PK dynamics. Therefore, given a set of � predicted patient parameters �������:� , a dose regimen, 

and a time horizon, the individual concentration profiles were predicted by solving the initial value 

problem of the ODE system. 

Following PK-SciML [20] and Lu et al. [4] the dosage was added to the first compartment of the ODE 

system. Additionally, we fixed the initial conditions to zero to guarantee a plausible ODE system. Mod-

el implementation is available on GitHub at https://github.com/SCAI-BIO/MMPK-SciML. 
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2.4.1. Variational Inference  

Let ���, � �  � denote the concentration profile measured at time points � for patient �. Furthermore, �� 

are patient-specific covariates. From a Bayesian inference perspective, we are interested in the poste-

rior 

�� � �� ���, ���� � � �����, ���� � ������
�����, ����� � �����, ���� � ������

 �� ���, ���� �� � �����!�       �2� 

Unfortunately, solving the integral is analytically intractable. Approximations via Markov Chain Monte 

Carlo techniques are possible but very time-consuming. To overcome this problem, Kingma et al. [33] 

introduced a stochastic variational inference framework for neural networks which allows quantification 

of epistemic uncertainty, i.e. uncertainty due to missing data. The key idea is to approximate 

�� � �� ���, ������ � by a distribution #� � �� ���, ������ �, which is typically supposed to be Gaussian. The 

mean and (log) variance of this distribution are learned from the observed data via an encoder neural 

network $	: 

%&
�
; log()
�

� *+
���:�

� $	���, ������     �3� 
The initial value problem can then be solved by sampling from the distribution -(&
�

, )
�

� * while taking 

advantage of the re-parametrization trick [34]. With that it is possible to formulate a loss function for 

training $	 by maximizing the so-called Evidence Lower Bound (ELBO) on the true posterior on log-

scale:   

log �� � �� ���, ������ � . /�������, ����� � 01log �� ���, ���� �� � �2344444454444446
���� ����������

7 8���9#����|��, ����;������34444444544444446
��������������

 

where 8���9#����|��, ����;������ denotes the Kullback-Leibler divergence (a statistical distance meas-

ure) between the approximate posterior distribution #����|��, ���� and a prior distribution �����. Suppos-

ing ����� � -�0, =�� and Gaussian noise, the negative ELBO can be re-written as a loss function 

ℓ���?���, ������: 

7/�������, ����� @ ℓ���?���, ������: � 1
B C C (��� 7 �?��*�

D��
�

���

7 1
2 E)
�

�

=�
 &
�

�

=�
 log =�

)
�

�
F  �

���

  �4� 
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where D��
�  is the variance of the measurement noise and �?�� the ODE predictions. For the following 

experiments we assumed a proportional error D��
� @ ���. Note that a smaller = H 0 results in a stronger 

regularization of )
�

�  and &
�

�  towards their values in the prior distribution. 

2.4.2. Model details 

2.4.2.1. 5FU 

Because all the measurements were taken at steady state there is only one measurement per individ-

ual patient. As structural ODE System we used an intravenous model which is defined as follows:  

 

!I1
!� � 8

J
 7 IK
� I1     �5� 

I1�� � 0� � 0 

Where 8 is the dose and J
 is the infusion time. 

To learn the � values, we defined $	 as an encoder network using the concatenation of the measured 

concentration, dose, weight, LBM, FM, BSA, age, sex and height was used as input for the first layer. 

Specifically, only IIV on CL was learnt for 5FU.  Figure 1 (top) shows an overview of our model archi-

tecture for 5FU. Model hyperparameters and more details can be found in Appendix A 

2.4.2.1. Sunitinib 

Unlike the 5FU dataset, for sunitinib we took advantage of having measurements at different time 

points during the PK profile. We used as structural ODE system the model proposed by Diekstra et al. 

[28]: 

IKJ� �  M I�  N!�2"
I2

N!  IK"

     �6� 

!I�!� �  7M I� 

!I�!� � N!IKJ� 7 N!�2"

I� 7 N"�2"

I�  N"�3"

I# 

!I#!� � N"�2"

I� 7 N"�3"

I# 
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!I$!� � P%IK"IKJ� 7 IK%�2%

I$ 7 N%�2%

I$  N%�3%

I& 

!I&!� � N%�2%

I$ 7 N%�3%

I& 

I1�� � 0� � I2�� � 0� � I3�� � 0� � I4�� � 0� � I5�� � 0� � 0 

 

As in the original work the ODE parameters were first calculated following equation 1 and then scaled 

based on the weight of the patient. Specifically, IK", N", IK%, N%, N! were scaled by a factor of 

Q'�����

()
R�

 and �2", �3", �2%, �3% by a factor of 
'�����

()
 

 

$	 was defined as a multimodal encoder containing three blocks. The first block was an encoder for 

static covariates ����. The second block encoded the longitudinal covariates �����, and for this purpose 

we used the Time-LSTM [35]. The output of both encoders was concatenated and used by a third 

block, the projection encoder, with 2 subnetworks each producing M outputs which define 

%&
�
; log()
�

� *+
���:�

. We defined K=4 corresponding to the IIV for IK", �2", P%, �2%. Figure 1 (bottom) 

shows an overview of our model architecture for sunitinib. Model hyperparameters and more details 

can be found in Appendix A. 

 

2.5. Model Comparison 

To assess predictive performance, the mean absolute error (MAE), and the root mean squared error 

(RMSE) were calculated and compared for the different approaches used in this project. Goodness-of-

fit (GOF) plots were used to support the quantitative results.  In the case of the population PK models, 

mean concentration values were calculated from 1000 simulations using parameters estimated on the 

training data as initials and then plotted. For the classical ML methods, the final predictions on the test 

set were used for the calculation of the metrics. For the MMPK-SciML approach, the results were ob-

tained by using the means predicted by the model for each of the eta values because these represent 

the expected value.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.06.24306555doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306555
http://creativecommons.org/licenses/by/4.0/


12 

 

 

 

 

Furthermore, to evaluate how well the models perform in simulating new patients, prediction corrected 

visual predictive checks (pcVPCs) were generated. These graphs could only be obtained for the popu-

lation PK and the MMPK-SciML models because the classic machine learning approaches are not 

generative. 

3. Results 

3.1. Dataset characteristics 

A dataset of 549 fluorouracil (5FU) plasma concentrations from 157 patients as example for an IV 

administration and another dataset of 308 sunitinib concentrations from 47 patients as example for a 

po administration were used for analysis. Baseline characteristics of all patients included in our anal-

yses can be seen in Table 1. 

3.2. Population pharmacokinetic modeling results 

In the Pop-PK analyses, all PK parameters and their IIVs as defined in the original publications [28, 

29] could be estimated for all data splits. The mean estimated parameter values were in a similar 

range to the original estimated values for the whole datasets as depicted in Table 2 and the � values 

appeared to be normally distributed for all tested methods. There were no relevant differences be-

tween the estimated parameters and the simulated concentrations for the test data of the FOCE-I and 

SAEM methods.  

For 5FU, using both FOCE-I and SAEM, we observed balanced � distributions.  However, the GOF 

was still relatively poor, and showed wide confidence intervals (Figures 2, 4)  

In the case of sunitinib, initial convergence problems for some splits with the SAEM algorithm had to 

be resolved by setting the initial estimates closer to the final values obtained by Diekstra et al. [28] 

Once this issue was resolved, we obtained similar results to FOCE-I and comparatively good fits for 

both methods (Figures 3, 4).  
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3.3. Classical machine learning methods 

 The proposed classical ML methods were not able to learn relationships within the data and accurate-

ly predict plasma concentrations of both drugs as can be seen in the GOF plots in Figure 2, and the 

cross-validated accuracy metrics in Table 3. Results did not differ relevantly between algorithms with 

and without feature selection. Therefore, we only depict results of the algorithms where feature selec-

tion was applied. The only comparatively well performing classical algorithm on the sunitinib data was 

the Light Gradient Boosting algorithm. However, the performance differed vastly across splits and 

GOF plots suggest a rather poor performance (Figure 2).  

To investigate whether the poor model performance could be improved with additional synthetic data, 

we augmented the training data with data that was simulated by the population PK model and repeat-

ed the model runs. As a limitation, the sunitinib biomarker data had to be simulated using the final 

parameter estimates from Diekstra et al. [28] due to matrix singularity in parameter estimation. How-

ever, as can be seen in Table 3, the prediction accuracy was not substantially improved for both da-

tasets. Optimized hyperparameters and selected features are reported in Supplementary Tables S2 

and S3. 

3.4. MMPK-SciML 

Our proposed MMPK-SciML model generates accurate predictions for the different oncology treat-

ments routes used in this paper. Figure 2, bottom row, illustrates the GOF plots for 5FU. On the right 

side we depict a second version of our model using a fixed volume population parameter 
�* � 40.0, 

which will be referred to as MMPK-SciML* in the tables and figures. Opposed to classical machine 

learning methods a close correlation between the predictions and the real data was found. At the 

same time, cross-validated RMSE and MAE metrics were even lower than those of the population PK 

model (Tables 3, S4). Importantly, results were highly accurate for both versions of our model, indicat-

ing that the model in both cases was able to learn  
�+�. Especially for 5FU, we observed an at least 

three times better MAE than all other methods, and at least 30% improvement in RMSE for all the 

folds. At the same time there was a considerable difference in the predicted￼ across model versions 
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(Table 2).  Although the 
�*￼ on average was close to the fixed volume, the variance of our standard 

MMPK-SciML model was larger than in the second version. Hence, during the cross-

validation
�+�, 
�*￼estimates differed. 

 

Similarly, Figure 3 (bottom row right) illustrates the GOF plots of our MMPK-SciML model for Sunitinib. 

Although the GOF plots were not as good as those for 5FU, our model still showed comparable per-

formance to the FOCE-I method, and much lower variance in prediction accuracy across data splits 

than the best performing classical machine learning method LightGBM (Tables 3, S4).   

 

As can be seen in Figure 4, the MMPK-SciML models performed well in simulating new patients, as 

the associated statistics of the real data are within the 90% confidence intervals (shaded region) of the 

predictions. Additionally, our models approximated the posterior � distributions in a reliable manner 

(Figure S2). 

4. Discussion 

Using two examples of oncological treatments with different administration routes (IV and oral), our 

results demonstrate that generally a compartmental model structure is required to make accurate pre-

dictions of drug plasma concentrations. Overall, only the MMPK-SciML as well as the Pop-PK meth-

ods were able to adequately describe the underlying drug disposition.  In contrast to MMPK-SciML, 

other ML-based PK models are entirely data-driven and cannot accurately learn the PK profile when 

working with a small number of measurements and dose schedules [4, 20, 36]. Moreover, these mod-

els have the limitation that they need to be initialized with test data to generate simulations, which in 

real application scenarios is usually not possible. Although our previously proposed PK-SciML [20] 

does not have this limitation, it only generates population level predictions and does not process mul-

timodal data. Altogether, this demonstrates a clear advantage of our MMPK-SciML architecture pro-

posed in this paper. 
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Remarkably, LightGBM performed well for the sunitinib analysis. Nevertheless, its performance was 

rather inconsistent across splits and not good enough to be used in practice, as can be seen in the 

GOF plots. The comparatively good performance of LightGBM may be explained by the fact that gra-

dient boosting machines construct an ensemble of decision trees. Decision trees implicitly split the 

data into different subspaces, resulting in an implicit discretization. This behavior could be advanta-

geous in situations in which the data is of multimodal nature, as typical in clinical studies. 

Overall, the classic machine learning models were not able to appropriately learn key aspects of the 

data generating process to produce accurate PK predictions. Additionally, data augmentation could 

not further improve the performance of classical machine learning algorithms, suggesting that the in-

herent complexity of the temporal dynamics, the variance and the presence of outliers are difficult to 

learn by methods that have been designed for comparably simple tabular data only and thus use no 

information about the PK related processes. However, the results possibly could have been improved 

if we had more clinical training data. 

4.1. 5FU 

 Our proposed MMPK-SciML model was able to predict the population volume for 5FU, which was 

impossible to obtain with FOCE-I due to convergence problems [29]. We observed that the predicted 

volume was often overpredicted, which could be due to outliers in the training data. We hypothesize 

that FOCE-I is less robust to outliers than the MMPK-SciML method and thus required the population 

volume to be fixed. This behavior illustrates one of the main advantages for using a SciML model for 

PK modeling, namely greater flexibility compared to traditional modeling approaches. However, a ma-

jor limitation of our analyses was that the genotypes and the activity of the main metabolizing enzyme 

of 5FU, dihydropyrimidine dehydrogenase, which are important predictors for 5FU pharmacokinetics, 

were not available for our patient cohort. This information probably could have improved the perform-

ance of all tested models and should be reported in future studies.   
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4.2. Sunitinib 

For the sunitinib dataset we observed relatively wide confidence intervals of the MMPK-SciML esti-

mates, while interestingly the predicted population parameters differed from those reported by Diekstra 

et al. [28]. We identified that although the absorption rate was predicted higher compared to Diekstra 

et al. (0,13/h vs. 0,31/h) and central volume of distribution was predicted lower (1820 L vs. 1352 L), 

the elimination and redistribution rates were similar across models in most of the cases. Especially 

large differences (> 40%) were observed in the estimates for the population parameters defining the 

concentration of the metabolite. To address that issue, we trained a model adding a proportional error 

between the metabolite concentration and its predictions in Eq. 4. However, this modification did not 

improve the performance of the model. The sunitinib analysis was more challenging than 5FU due to a 

small dataset composed of two different study populations increasing the variability. Moreover, more 

parameters had to be predicted due to the absorption process and the inclusion of metabolite concen-

trations, increasing the task complexity. However, considering that our model performed well despite 

these limitations, we expect that our MMPK-SciML method would produce more confident parameter 

estimates and better predictions if we had more training data. 

5. Conclusion 

This work shows the need to use a structural model to effectively capture the time course of plasma 

concentrations in patients. In this regard we proposed a novel hybrid machine learning framework, 

which combines the flexibility of modern neural network architectures with a compartmental model 

structure describing pharmacokinetic drug disposition. A limitation of our approach is the need for 

larger datasets compared to standard population PK modeling approaches. On the other hand, we 

offer the modeler the advantage that our approach does not require precisely specifying in which way 

PK parameters are influenced by covariates. This results in a simplification of the modeling process. A 

possible direction of future research is to incorporate our model architecture into more complex 

frameworks for dosage adjustment, e.g. via reinforcement learning.  
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6. Study Highlights 

• What is the current knowledge on the topic?  

Machine Learning and Scientific Machine Learning (SciML) frameworks have shown promising results 

for pharmacokinetic modeling. However, methods for learning the inter-individual variability have not 

been widely investigated.  

• What question did this study address?  

How well do population pharmacokinetic (Pop-PK) and classical machine learning (ML) approaches 

perform in comparison to a SciML approach for PK modeling? Can a neural network be employed in a 

SciML framework to learn inter-individual variability while making accurate PK predictions?  

• What does this study add to our knowledge?  

The proposed MMPK-SciML model learns population PK parameters and their inter-individual variabil-

ity and outperforms classical ML and Pop-PK approaches. Our approach also addresses common 

drug development challenges such as missing values and different time sampling.  

• How might this change clinical pharmacology or translational science?  

Our methodology focuses on comparing different machine learning methods in the PK field. Our final 

framework allows for the development of novel comprehensible and trustworthy strategies for individ-

ual dose adjustment.  
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Figure legends 

Fig 1. MMPK-SciML overview. The mean and log variance of the patient eta´s distribution is predicted 

with a neural network. At the same time, the populational parameters are being learned and are used 

with an eta sample to define the patient-specific parameters, which are used with the patient dose 

regimen to predict the PK profile.  

Fig 2. Goodness-of-fit (GOF) plots for the 5FU dataset showing predicted versus observed concentra-

tions for all trained models. 

Fig 3. Goodness-of-fit (GOF) plots for the sunitinib dataset showing predicted versus observed con-

centrations for all trained models. 

Fig 4. Prediction-corrected Visual Predictive Checks (pcVPC) plots for the 5FU (top) and the sunitinib 

(bottom) dataset. 
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Table 1. Baseline patient characteristics (median and range), sunitinib data characteristics taken 

from [28] 

5 FU 

Demographics   

Sex, M/F 97/60 

Age (years) 64 (35-83) 

Body surface area (m
2
) 1,92 (1,35-2,85) 

Therapy related details  

5FU dose (mg) 4000 (2700-5720) 

5FU AUC (mg × h/L) 
a
 18,7 (1,9-92,3) 

Therapy regimen  

AIO 
b
 48 

FUFOX c (including monoclonal 

antibodies) 

41 

Paclitaxel/cisplatin/5FU/folinat

e 

40 

Other 28 

Tumor entity  

Colorectal cancer 79 

Gastroesophageal cancer 49 

Pancreatic cancer 16 

Other 13 
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 Sunitinib 

 Patients with mRCC (n!=!26) 

d
 

Patients with mCRC (n!=!21) 
e
 

Demographics   

Age 64 (43–75) 61 (33–85) 

Sex, M/F 25/1 12/9 

Weight (kg) 83 (65–106) 73 (57–106) 

Height (cm) 180 (155–186) 172 (149–184) 

BMI (kg/m2) f 25,7 (22,5–34,5) 26,0 (13,3–39,3) 

Notes:  

a Calculated by multiplying the infusion time with the measured steady‐state concentration. 

b Weekly 5FU infusion (2600"mg/m2) over 24"h in combination with folinate (500"mg/m2). 

c Weekly 5FU infusion (2000"mg/m2) over 24"h in combination with folinate (500"mg/m2) and oxaliplatin 

(50"mg/m2). 

d,e,f  (abbreviations): mRCC, metastasized renal cell carcinoma; mCRC, metastasized colorectal cancer; BMI, 

body mass index. 
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Table 2. Cross validation average populational parameters for 5FU and Sunitinib datasets. 

5FU 

Parameter Unit FOCE-I (NM) SAEM (NM) MMPK-SciML* MMPK-SciML 

CL L/h 216,1 ± 2,1 214,4 ± 2,80 211,38 ± 3,76 202,68 ± 28,16  

V L 46,1 46,1 46,1 38,78 ± 24,3  

Sunitinib 

Parameter Unit Diekstra et al [28] FOCE-I (NM) SAEM (NM) MMPK-SciML 

KA 1/h 0,13 0,154 ± 0,04 0,148 ± 0,03 0,31 ± 0,02 

QHF L/h 80 80 80 80 

CL   L/h 33,9 33,42 ± 0,96 34,47 ± 1,24 35,52 ± 0,1 

Q  L/h 0,37 0,36 ± 0,04 0,35 ± 0,04 0,41 ± 0,03 

V2 (V2) L 1820 1863 ± 64,64 1883 ± 85,33 1351,68 ± 6,94 

V3
 F
 (V5)  L 588 588 588 588 

CLM L/h 16,5 16,44 ± 0,43 17,13 ± 0,77 10,72 ± 0,21 

QM L/h 2,75 3,18 ± 0,28 2,77 ± 0,24 12,59 ± 0,24 

FM

F - 0,21 0,21 0,21 0,21 

V2M (V3) L 730 678,1 ± 38,85 725,8 ± 80,63 393,95 ± 7,95 

V3M (V4) L 592 618 ± 35,05 624,8 ± 33,03 240,88 ± 4,85 

 

Notes: F Fixed parameter. MMPK-SciML* refers to the model with a fixed volume for 5FU. 
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Table 3. Cross validation average metrics for 5FU and Sunitinib datasets 

 5FU Sunitinib 

Model MAE RMSE MAE RMSE 

Suport Vector Machine 
0,49 ± 0,06 (0,43 

± 0,06) 

0,61 ± 0,1 (0,55 

± 0,03) 

20,01 ± 2,66 

(21,51 ± 3,51) 

23,84 ± 3,41 

(27,37 ± 5,27) 

Random Forest 
0,23 ± 0,03 (0,23 

± 0,03) 

0,33 ± 0,12 

(0,33 ± 0,12) 

17,81 ± 2,59 

(17,13 ± 3,08) 

21,34 ± 3,26 

(21,30 ± 4,82) 

LightGBM 
0,23 ± 0,03 (0.23 

± 0,03) 

0,32 ± 0,12 

(0,33 ± 0,12) 

13,99 ± 3,0 (19,38 

± 3,70) 

16,86 ± 3,40 

(24,43 ± 5,58) 

Multi-Layer Perceptron Two 

Hidden Layers 

0,24 ± 0,04 (0,22 

± 0,03) 

0,33 ± 0,12 

(0,32 ± 0,12) 

21,15 ± 4,85 

(14,22 ± 3,56) 

25,22 ± 5,96 

(17,71 ± 4,92) 

PopPK (FOCE-I) 0,23 ± 0,03 0,32 ± 0,12 9,57 ± 2,63 13,90 ± 3,72 

MMPK-SciML 0, 034 ± 0,02 0,105± 0,159 12,31 ± 3,51 17,99 ± 5,15 

MMPK-SciML * 0,038 ± 0,02 0,09 ± 0,11 - - 

 

Notes: For the classical machine learning methods, we depict the results of the versions with feature 

selection. In green, blue and purple we show the best, second-best and third-best model for each 

dataset. In brackets, we show the results with data augmentation. MMPK-SciML* refers to the 

model with a fixed volume for 5FU. Metrics are reported when using the sampling from the patient 

specific distribution for test subjects. 
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