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Abstract

The increasing need to protect individual privacy in data releases has led to significant advance-

ments in privacy-preserving technologies. Differential Privacy (DP) offers robust privacy guarantees

but often at the expense of data utility. On the other hand, data pooling, while improving utility, lacks

formal privacy assurances. Our study introduces a novel hybrid method, termed PoolDiv, which

combines differential privacy with data pooling to enhance both privacy guarantees and data util-

ity. Through extensive simulations and real data analysis, we assess the performance of synthetic

datasets generated via traditional DP methods, data pooling, and our proposed PoolDiv method,

demonstrating the advantages of our hybrid approach in maintaining data utility while ensuring pri-

vacy.

1 Introduction

Privacy-preserving synthetic data generation and analysis has gained considerable attention in var-
ious fields ranging from heath care to social media [1, 2]. The recent surge in the amount of data
collected, in health-care for example, provides interesting avenues for exploration and insightful dis-
covery. However, collecting and sharing sensitive, usable, micro-data without disclosing personal
information is challenging. In some cases, e.g. through adversarial attacks such as linkage re-
identification of individual participants is a possibility.[3]

Differential privacy provides a formal guarantee for confidentially [4, 5]. The mechanism promises
that an individual participant’s record would remain private even if the adversary has complete knowl-
edge of the rest of the database. This stringent promise has made DP the gold standard for data
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release [6]. Most agencies provide differentially private synthetic datasets which are often labeled
as true representations of the sensitive dataset. [7] Consequently, users must implicitly assume the
agency (or curator) has a detailed knowledge of the data characteristics, and that the synthetic data
generation model employed by the DP mechanism is well defined. In many cases, users are unable
to determine if and how much their analysis results have been impacted by the synthesis process.
Inevitably, the accuracy of some analyses deteriorates significantly due to imperfect data genera-
tion models. Another formal complain DP synthetic data, is that the mechanism destroys potential
insightful data structure such as voids or manifolds.

Another synthetic data generation method that has gained prominence over the years is data aggre-
gation (also referred to as specimen pooling) [6, 8, 9]. Pooling offers an attractive alternative to the dif-
ferential privacy mechanism as it is much easier to implement in practice. However, it doesn’t provide
a formal privacy guarantee. The technique randomly combines information from individuals of the
same outcome category or exposure of interest, which is then shared with an analyst. This method
suggests preserving privacy by sharing aggregate data instead of individual-level data.[10, 11, 12]

The present study was structured around three primary objectives:

1. Performance Comparison: Our first goal was to assess the performance of synthetic data
generated from traditional Differential Privacy (DP) mechanisms in comparison to those gener-
ated through pooling mechanisms. This evaluation utilized regression modeling to analyze the
impact of each method on data utility and accuracy.

2. Hybrid Mechanism Development: We proposed a novel hybrid mechanism that combines
differential privacy with data pooling, referred to as the pooled-DP mechanism. This initiative
was undertaken to enhance privacy protection in pooled data setups without compromising data
utility. Subsequently, the performance of this hybrid mechanism was compared with traditional
DP and pooling methods to ascertain its effectiveness.

3. Data Clustering Analysis: The third objective focused on examining the clustering patterns of
synthetic data produced using both the newly developed pooled-DP mechanism and traditional
methods. Analyzing these patterns aids in understanding how various synthetic data generation
techniques influence the underlying structures and relationships within the data.

These objectives were designed to collectively advance our understanding and refinement of data
privacy techniques, ensuring robust privacy protections while maintaining the synthetic data’s utility
and quality for analytical purposes.

2 Related Work

This section explores the foundational techniques employed in the generation of synthetic data, par-
ticularly focusing on ensuring confidentiality and utility. Differential privacy and data pooling methods
have been extensively used to address these dual objectives. Here, we delve into differential privacy,
its definitions, key mechanisms, and their application in data protection.
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2.1 Differential Privacy

Differential Privacy (DP) was introduced as a robust framework for protecting the confidentiality of
individual data in datasets used for research and analysis [5]. It is designed to offer strong protection
against adversaries who may have access to auxiliary information, thus ensuring that the participation
of any individual in a dataset does not significantly influence the outcome of any analysis. For a
survey of differential privacy, we refer reader to these articles [13, 14].

Definition 1 (ϵ-Differential Privacy): A mechanism M is said to satisfy ϵ-differential privacy if for any
two adjacent datasets D and D′ that differ by a single individual’s data, and for all events Z in the
output space of M, the probability that M outputs Z satisfies the following inequality:

log

(
Pr[M(D) = Z]

Pr[M(D′) = Z]

)
≤ ϵ, (1)

where ϵ > 0 is a small constant that determines the level of privacy. The smaller the ϵ, the greater
the privacy protection, as the outputs from D and D′ are made statistically more indistinguishable.

The definition can be extended to (ϵ, δ)-differential privacy to allow a small probability δ of the mech-
anism failing to meet the ϵ-differential privacy condition. This relaxation is particularly useful when
dealing with complex data or when aiming to improve the utility of the data after applying privacy-
preserving techniques.

Within this framework, several mechanisms have been developed to enforce differential privacy:

1. Randomized Response Mechanism: This mechanism enhances privacy by introducing ran-
domness in the responses. For example, in a survey, respondents might flip a biased coin in
private and only provide their true answer if the coin comes up heads. This simple approach
provides a foundational layer of privacy by dissociating the individual’s response from their ac-
tual data.

2. Laplace Mechanism: One of the most common methods for implementing differential privacy
involves adding noise generated from a Laplace distribution to the query results. The scale of
the Laplace noise is proportional to the sensitivity of the function being computed over the data
(denoted as SM) and inversely proportional to ϵ, ensuring that the added noise maintains the
utility of the data while protecting individual privacy.

O(D) = M(D) + γ, γ ∼ Laplace
(
0,

SM
ϵ

)

3. Exponential Mechanism: Used primarily for selecting outputs from a set of possible outcomes.
This mechanism assigns probabilities to these outcomes based on a scoring function, which
quantifies the utility of each outcome. The selection is skewed towards outcomes with higher
utility, adjusted exponentially in accordance with the privacy parameter ϵ.

Definition 2 (Sensitivity): The sensitivity of a query function M, essential for calculating the requisite
noise addition in differential privacy, is defined as the maximum change in the output of M when any
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single individual’s data is changed or removed.

SM = max
(D,D′)

∥M(D)−M(D′)∥ (2)

where ∥ · ∥ denotes the L1 norm. The effectiveness of these mechanisms is illustrated in Appendix
A (Figure ??), showing how different privacy budgets impact the degree of noise and hence the
privacy-utility trade-off.

2.1.1 ϵ-Differential Private Synthetic Data

Differential privacy has emerged as a robust framework for data sharing, particularly attractive for its
stringent privacy guarantees. This framework has spurred the development of both interactive and
non-interactive methods for data release, which adapt various techniques to balance privacy with
data utility [15, 16].

We focus on two primary categories of differential privacy mechanisms for generating synthetic data:
non-parametric and parametric methods.

Non-parametric Methods: Non-parametric methods do not assume any underlying statistical model
for data generation. Instead, they directly utilize the empirical distributions of data attributes to gen-
erate synthetic data [5]. One common approach is the histogram perturbation method, where noise
is added to the histograms of the data attributes to protect privacy before generating synthetic data
from the perturbed histograms.

Algorithm 1: Histogram Perturbation Method
Input : Private database D = (d1, d2, . . . , dk) of Z+ and a privacy budget ϵ.
Standardize the entries and add Laplace perturbation:

d̄i =
di∑k
i=1 di

+ γi for all i,

where γi are iid sampled from Laplace
(
0, SM

ϵ

)
and SM = max(D,D′) ∥M(D)−M(D′)∥1.

for i = 1 to k do

d̄′i = max(d̄i, 0) and renormalize d̃i =
d̄′i∑k
j=1 d̄

′
j

return D̃ = (d̃1, d̃2, . . . , d̃k), the synthetic data

Parametric Methods: Parametric methods assume a statistical model for the original data and
use parameters estimated from the data to generate synthetic datasets. These methods often use
a Bayesian approach, where data is generated from a distribution defined by posterior parameters
perturbed according to differential privacy requirements.
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Algorithm 2: Multinomial-Dirichlet Synthetic Data Generation
Input : Private dataset D = (d1, d2, . . . , dk) and the privacy budget ϵ.
Set the prior parameters:

αi =
ñ

exp(ϵ)− 1
for i = 1, 2, . . . , k,

Sample the posterior distribution:

π̃ ∼ Dirichlet(α+D),

Sample a synthetic dataset:
D̃ ∼ Multinomial(ñ, π̃).

return D̃, differentially private synthetic data of size ñ

Figure 1 presents a schematic representation of these mechanisms, illustrating the general approach
to generating synthetic data under differential privacy. Both methods are vital in scenarios where the
original data must remain confidential, yet the utility of the data for analysis cannot be compromised.

Figure 1: Synthetic data generating architecture

These mechanisms facilitate a range of applications from academic research to industry analytics,
ensuring that data privacy does not hinder the potential for data-driven insights.
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Figure 2: Differential privacy generating mechanisms for different privacy budgets. [L] Randomized
response mechanism, [M] Laplace noise mechanism, [R] Exponential noise.

2.1.2 Pooled synthetic data generation

Pooling promises data privacy with minimal loss of data utility. The method, however, doesn’t pro-
vide a formal privacy guarantee nor does it provide a mechanism for quantifying privacy loss when
generating synthetic data with the pooling mechanism. More precisely, pooling doesn’t proclaim a
guarantee that an individual’s data could not be inferred by an adversary. The cost-effectiveness of
pooled analysis and the individual data mask it provides has made it appealing among statisticians
and epidemiologists who are able to share aggregate data instead of individual-level data. [8, 6, 9]

Various methods have been proposed for pooling based on a relevant outcome of interest or exposure
group. We present below a generic algorithm for generating pooled synthetic data.

Algorithm 3: Pooled Synthetic Data Generation
Input : Private dataset D = (d1, d2, . . . , dk) ∈ Rn×k with k attributes and n individual entries.
Set the pool size g for the database.
Sample the n individuals to create n/g pools.
Aggregate individuals in the same pool such that

d̃i =

n/g∑
j=1

dji for all i

return D̃ = (d̃1, . . . , d̃k), the synthetic data ∈ R(n/g)×k where g is the pool size.

3 Pooled (ϵ, δ)-Differentially Private Data: PoolDiv

In this section, we introduce PoolDiv, a novel hybrid algorithm that synergistically combines the robust
privacy measures of differential privacy from Section 2.1 with the utility-enhancing features of data
pooling as described in the Appendix. This approach moderates the stringent privacy parameters
typically associated with differential privacy to adopt a more flexible (ϵ, δ)-differential privacy model.
This relaxation allows for a practical balance between privacy protection and data utility, paving the
way for more effective data analysis in sensitive domains.

The main innovation in PoolDiv lies in its two-stage process where differentially private data are first
generated with a relaxed (ϵ, δ) privacy budget, and subsequently, the data are pooled according
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to predefined group sizes. This method not only enhances privacy but also reduces computational
complexity by minimizing the overhead associated with strict privacy controls. The following algorithm
describes the detailed steps involved in generating pooled differentially private data using PoolDiv:

Algorithm 4: Generation of Pooled (ϵ, δ)-Differentially Private Data using PoolDiv

Input : Private database D = (d1, d2, . . . , dk) ∈ Rn×k with k attributes and n individual entries,
aiming to return a pooled (ϵ, δ)-differentially private dataset D̃ ∈ R(n/g)×k where g is the
pool size.

Generate differentially private data by applying Algorithm 1 with a relaxed (ϵ, δ) budget.
Set the pool size g, and create n/g pools by randomly assigning individuals to each pool.
Aggregate the differentially private data within each pool to form D̃ = (d̃1, . . . , d̃k).
return D̃, the pooled (ϵ, δ)-differentially private synthetic dataset

PoolDiv ensures privacy by making the information about any individual indistinguishable from others
within the same pool. This is achieved through the differential privacy guarantees applied prior to
pooling, which are quantified by the relaxed (ϵ, δ) parameters. These parameters are chosen based
on the desired level of privacy and the specific requirements of the application context. By adjusting
the pooling granularity (i.e., the size of g), we can further optimize the balance between data utility
and privacy. We hypothesize that PoolDiv, by integrating relaxed differential privacy with pooling, will
not only safeguard privacy but also enhance the utility of the synthesized datasets, thereby facilitating
more effective and efficient data analysis.

4 Regression on Synthetic Databases

Regression analysis is a powerful statistical tool used to model the relationship between a dependent
variable and one or more independent variables. In the context of synthetic databases, this technique
helps us understand how well the synthetic data can replicate the relationships present in the original
data [17] or if bias within the data might have an impact of statistical modeling [18, 19]. Let us
consider a regression scenario where y = (y1, . . . , yn)

T ∈ Rn represents the measured responses
for n individuals, and X ∈ Rn×p is the non-random design matrix of predictors. In this matrix, xi1 = 1

for each i = 1, . . . , n, to incorporate the intercept term in the regression model.

The model assumes that y is a realization of the linear relationship:

Y = Xβ∗ + ϵ,

where β∗ = (β∗
1 , β

∗
2 , . . . , β

∗
p) ∈ Rp represents the vector of true regression coefficients, and ϵ =

(ϵ1, . . . , ϵn)
T is the vector of error terms. These error terms are assumed to be independently and

identically distributed (iid) with a mean of zero (E[ϵi] = 0) and a constant variance (Var[ϵi] = σ2
∗).

This assumption of homoscedasticity (constant variance) is crucial for the standard least squares
estimation to provide the best linear unbiased estimates (BLUE).

To estimate the regression coefficients from the synthetic data, we employ the least squares criterion,
which is formulated as follows:

β̂∗ = argmin
β∗

∥Y −Xβ∗∥2, (3)
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where β̂∗ represents the estimated coefficients obtained from minimizing the sum of squared resid-
uals between the observed outcomes and those predicted by the model. This vector of estimates
includes β̂1, the intercept, and β̂−1, the coefficients associated with the predictors other than the
intercept.

In synthetic data analysis, it is essential to compare the estimated coefficients β̂∗ derived from the
synthetic data to those obtained from the original data. Such comparisons are crucial for validating
the quality and utility of the synthetic data, particularly how well it preserves statistical properties like
means, variances, and relationships between variables. Since the intercept can vary significantly
with scaling transformations of the dataset, our analysis focuses primarily on β̂−1, the coefficients
of the predictors, which are less sensitive to such transformations. This approach allows for a more
stable and meaningful assessment of the synthetic data’s fidelity to the original data.

The performance of the regression model on synthetic data can be further evaluated by computing
various goodness-of-fit measures such as the R-squared value, Root Mean Square Error (RMSE),
and Mean Absolute Error (MAE). These metrics provide insight into how closely the synthetic data
approximates the real data’s underlying structure and variability, thus indicating the practical utility of
the synthetic data generation process in preserving key statistical characteristics.

4.1 Simulation Study

To evaluate the performance of our proposed mechanisms, we conducted a comprehensive simula-
tion study. We generated three covariates (X1, X2, X3) from Normal distributions, each pair having
a correlation coefficient of ρ1,2 = ρ2,3 = ρ1,3 = 0.15. This setup models realistic scenarios where
variables are not entirely independent, which is common in many fields such as economics, social
sciences, and biostatistics.

We then constructed the outcome variable y using a linear additive model:

y = β∗
1X1 + β∗

2X2 + β∗
3X3,

where β∗ = {β∗
1 , β

∗
2 , β

∗
3} are the true regression coefficients set to known values for the purpose of the

simulation. This model helps to understand how well synthetic data can preserve the relationships
inherent in the original data when subjected to privacy-preserving algorithms.

Table 1: Regression coefficients and confidence intervals for private and synthetic data

Predictors Private data Randomised Laplace Pool 2 Pool 4 Pool 6

Est. CI Est. CI Est. CI Est. CI Est. CI Est. CI

X1 0.46 (0.43, 0.49) 0.37 (0.27, 0.46) 0.30 (0.24, 0.36) 0.49 (0.44, 0.53) 0.45 (0.38, 0.51) 0.50 (0.43, 0.57)

X2 -0.13 (-0.16, -0.10) -0.15 (-0.24, -0.06) -0.08 (-0.14, -0.02) -0.12 (-0.16, -0.08) -0.08 (-0.15, -0.02) -0.07 (-0.15, 0.00)

X3 -1.68 (-1.71, -1.65) -1.39 (-1.47, -1.30) -1.17 (-1.23, -1.11) -1.67 (-1.71, -1.63) -1.63 (-1.70, -1.57) -1.62 (-1.69, -1.54)

Obs 1000 1000 1000 500 250 166

R2/R2adj 0.93/0.93 0.504/0.503 0.590/0.589 0.932/0.932 0.923/0.922 0.928/0.926

The estimates of β∗ using synthetic data generated by our differential privacy mechanisms (histogram
perturbation, multinomial-Dirichlet synthesis, and data pooling) are presented in Table 1. We assess
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how closely these estimates match the true coefficients, which serves as a measure of data utility
post-synthesis.

Following this, we used our hybrid algorithm, referred to as PoolDiv (Algorithm 4), to generate (ϵ, δ)-
differentially private synthetic data. We experimented with different pool sizes g = (2, 4, 6, 8) to
explore how the granularity of pooling affects the accuracy of the parameter estimates.

Table 2: Regression Estimates Across Different Pooling Divisions

Pooled-div 2 Pooled-div 4 Pooled-div 6 Pooled-div 10

Predictors Estimates CI p Estimates CI p Estimates CI p Estimates CI p

(Intercept) 0.01 (-0.17, 0.18) 0.953 0.01 (-0.34, 0.37) 0.953 0.02 (-0.52, 0.56) 0.943 0.03 (-0.86, 0.91) 0.952
X1 0.34 (0.21, 0.48) <0.001 0.37 (0.18, 0.55) <0.001 0.24 (0.02, 0.46) 0.035 0.50 (0.22, 0.78) 0.001
X2 -0.15 (-0.27, -0.03) 0.017 -0.03 (-0.21, 0.16) 0.780 -0.12 (-0.35, 0.12) 0.326 0.16 (-0.15, 0.47) 0.317
X3 -1.46 (-1.58, -1.33) <0.001 -1.45 (-1.64, -1.27) <0.001 -1.36 (-1.59, -1.13) <0.001 -1.24 (-1.53, -0.95) <0.001

Obs. 500 250 166 100

The effectiveness of the regression models fitted to each dataset was quantitatively evaluated using
three metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2).
These metrics help in understanding different aspects of model accuracy and fit quality: - **MAE**
measures the average magnitude of the errors without considering their direction, serving as a clear
indicator of average error magnitude. - **RMSE** provides a measure of error magnitude squared,
thus giving higher weight to larger errors. This is particularly useful in emphasizing outliers or larger
deviations from the mean. - **R2** offers insights into the proportion of variance explained by the
model, indicating the strength of the relationship captured by the synthetic data.
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Figure 3: Comparison of model performance across different metrics. RMSE is used as the standard
criterion for model comparison.

Interpretation: The results from the simulations provide critical insights: - Models using pooled syn-
thetic data consistently yielded closer estimates to the true parameters, suggesting that pooling might
help in mitigating the distortion effects introduced by differential privacy noise. For instance, pooling
four observations together (g=4) resulted in unbiased parameter estimates, significantly enhancing
model accuracy. - On the contrary, increasing the pool size beyond a certain point seemed to dete-
riorate the quality of estimates, likely due to over-smoothing or loss of critical data variability. - The
performance comparison across various synthetic datasets (as shown in Figure 3) highlights that
while differentially private datasets generally perform worse than the original data, the introduction of
pooling mechanisms tends to improve performance substantially.

Ultimately, these simulations underscore the importance of choosing appropriate parameters and
mechanisms depending on the specific needs of the dataset and the privacy-utility balance required.
Our findings suggest that hybrid approaches like PoolDiv can offer a promising compromise, effec-
tively balancing privacy concerns with the need for high-quality synthetic data.

4.2 Case Study

The effectiveness of the algorithms was also tested using a real dataset. We analyzed the lymphoma
microRNA data reported by Shipp et al. [20]. This dataset comprises a significant subset of par-
ticipants diagnosed with non-Hodgkin lymphomas (DLBCL), specifically between 30% and 40% of
the study’s total population. In total, the study included 58 patients with DLBCL, of whom 32 were
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successfully cured, while the remaining 26 suffered from fatal or refractory outcomes. The dataset in-
cludes measurements of 6,817 gene expression levels. These measurements were used to explore
the potential for curative outcomes in patients undergoing a CHOP-based chemotherapy regimen,
consisting of cyclophosphamide, adriamycin, vincristine, and prednisone. The analysis aimed to un-
derstand how gene expression could influence the effectiveness of this treatment in different patient
outcomes.

To assess this high dimension data, we employ a heuristic evaluation of the clustering pattern of
the synthetic datasets generated. We present below heatmaps of the synthetic dataset generated.
More specifically, we compare the clustering patterns of the private data, randomized outcome data,
laplace noise perturbation data, and pooled synthetic datasets.

Figure 4: [Private] clustering of the real dataset studied in [20], [Randomized] Synthetic dataset gen-
erated via outcome randomization, [Laplace] via laplace noise perturbation of independently gener-
ated histograms, [Pool 2,4,6] Synthetic data generated via pooling samples of sizes 2,4,6 respectively

Interpretation. In the heatmaps presented in Figure ??, we see that the true underlying structure
is preserved in the pooled dataset and more prominently exhibited as we continue to pool more
observations. In the DP mechanism (e.g. Laplace perturbation), we see completely altered noise
profiles. This is unsurprising, as DP has been shown to destroy underlying, local data structure.
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5 Discussion

Our research has demonstrated that inferential accuracy from traditional differentially private (DP)
mechanisms typically falls short compared to pooled analysis. However, our proposed hybrid model,
PoolDiv, effectively bridges this gap by combining the robust privacy assurances of DP, specifically
under relaxed privacy budgets, with the enhanced utility found in pooled analysis. The performance of
the PoolDiv mechanism is on par with traditional DP approaches for low-dimensional data regression
and excels in high-dimensional data synthesis.[21, 22, 23]

The PoolDiv mechanism offers significant advantages, particularly in terms of computational effi-
ciency and data structure preservation. Synthetic data generated by PoolDiv tend to be of lower
dimensionality, reducing the computational overhead in downstream analyses. For instance, the com-
plexity of estimating regression coefficients in a dataset synthesized by PoolDiv scales as O

(
np2

g

)
,

where g represents the pool size, thereby reducing computational cost compared to more complex
models. Additionally, PoolDiv excels in maintaining the integrity of the underlying data structure,
which is crucial for the validity of subsequent analyses.

Simulation results underscore several key insights: Pooling consistently outperforms traditional DP
methods in terms of bias reduction and error rates, as evidenced by lower RMSE scores in pooled
synthetic data. Moreover, the hybrid PoolDiv mechanism delivers comparable, if not superior, model
fits relative to those achieved using randomized algorithms or Laplace noise perturbation techniques.

For high-dimensional data, standard DP techniques often prove inadequate and present significant
challenges. The majority of methods capable of generating usable synthetic datasets, such as those
based on neural network models (e.g., see [24, 25]), not only require extensive computational re-
sources but also pose steep learning curves for those not versed in advanced machine learning
techniques. In contrast, the PoolDiv approach is not only more straightforward to implement but also
effectively preserves essential data characteristics, making it highly beneficial for practical applica-
tions.

Despite its strengths, the PoolDiv algorithm is not devoid of limitations. The simplistic nature of
the outcome-randomized mechanism it employs, while facilitating plausible deniability, may lead to
compounded errors when extensive pooling is applied. This is particularly noticeable when more
than two samples are pooled, which can skew the results unfavorably. A potential enhancement
could involve integrating Laplace noise perturbation for handling high-dimensional data, although
this would need to be carefully balanced to avoid exacerbating the computational complexity.

In summary, while the PoolDiv mechanism represents a significant advancement in synthesizing
differential privacy-protected data, continuous improvements and adaptations will be essential to
address the evolving challenges in data privacy and synthetic data generation.
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