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Abstract  42 

Background: Brooding is a critical symptom and prognostic factor of major depressive 43 

disorder (MDD), which involves passively dwelling on self-referential dysphoria and 44 

related abstractions. The neurobiology of brooding remains under characterized. We 45 

aimed to elucidate neural dynamics underlying brooding, and explore their responses to 46 

neurofeedback intervention in MDD. 47 

 48 

Methods: We investigated functional MRI (fMRI) dynamic functional network 49 

connectivity (dFNC) in 36 MDD subjects and 26 healthy controls (HCs) during rest and 50 

brooding. Rest was measured before and after fMRI neurofeedback (MDD-active/sham: 51 

n=18/18, HC-active/sham: n=13/13). Baseline brooding severity was recorded using 52 

Ruminative Response Scale - Brooding subscale (RRS-B).  53 

 54 

Results:  Four recurrent dFNC states were identified. Measures of time spent were not 55 

significantly different between MDD and HC for any of these states during brooding or 56 

rest. RRS-B scores in MDD showed significant negative correlation with measures of 57 

time spent in dFNC state 3 during brooding (r=-0.5, p= 1.7E-3, FDR-significant). This 58 

state comprises strong connections spanning several brain systems involved in 59 

sensory, attentional and cognitive processing. Time spent in this anti-brooding dFNC 60 

state significantly increased following neurofeedback only in the MDD active group (z=-61 

2.09, p=0.037). 62 

 63 
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Limitations: The sample size was small and imbalanced between groups. Brooding 64 

condition was not examined post-neurofeedback. 65 

 66 

Conclusion: We identified a densely connected anti-brooding dFNC brain state in 67 

MDD. MDD subjects spent significantly longer time in this state after active 68 

neurofeedback intervention, highlighting neurofeedback’s potential for modulating 69 

dysfunctional brain dynamics to treat MDD.  70 

 71 

Keywords 72 

Dynamic functional connectivity, depression, rumination response scale, real-time fMRI 73 

neurofeedback, brooding condition, resting-state 74 
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Introduction 76 

Rumination refers to repeatedly dwelling on negative self-referential thought patterns, 77 

events and experiences (Ehring & Watkins, 2008; Nolen-Hoeksema et al., 2008; 78 

Treynor et al., 2003). This cognitive process has been increasingly recognized as 79 

maladaptive and implicated in the maintenance and exacerbation of major depressive 80 

disorder (MDD) and other mood disorders (Bessette et al., 2020; Ehring & Watkins, 81 

2008; Watkins, 2009a b, 2009b a). It is also considered a crucial element within the 82 

research domain criteria (RDoC) framework (Tozzi et al., 2020). Among its components, 83 

brooding - the passive tendency to dwell on abstract causes and consequences of one’s 84 

problems, symptoms and dysphoric mood (Treynor et al., 2003) - stands out for its 85 

strong association with increased risk and sustenance of depression and mood 86 

disorders (Lackner & Fresco, 2016; Treynor et al., 2003; Watkins, 2009a).  87 

 88 

Emerging functional magnetic resonance imaging (fMRI) literature on the neurobiology 89 

of rumination have broadly implicated aberrations within default-mode network (DMN), 90 

salience network (SN) and central executive network (CEN) (Berman et al., 2011, 2014; 91 

Hamilton et al., 2015; Jacob et al., 2020; Mısır et al., 2023; Zhou et al., 2020). These 92 

networks are associated with self-referential and autobiographical thinking (Raichle, 93 

2015), awareness and arousal (Menon & Uddin, 2010), and adaptive cognitive control 94 

(Dosenbach et al., 2007) respectively. A meta-analysis of task-fMRI studies 95 

investigating rumination found convergent increases of activation in dorsal anterior 96 

cingulate cortex (ACC), precuneus, superior temporal gyrus (STG) and other areas, 97 

such that the significant findings maximally overlapped with DMN subsystems that are 98 
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relevant to repetitive and passive mental dwelling on past events, future scenarios, and 99 

feelings (Zhou et al., 2020). Similarly, a recent systematic review implicated increased 100 

FC of subgenual ACC, posterior cingulate cortex (PCC), medial prefrontal cortex 101 

(mPFC), and amygdala, among other regions in DMN, SN and CEN (Mısır et al., 2023). 102 

However, despite the higher clinical significance of brooding compared to other 103 

rumination subtypes, the neurobiology of brooding remains unclear. Increased brooding 104 

has been associated with varying neurobiological changes across the fMRI literature, 105 

such as reduced FC between amygdala and temporal pole in MDD and healthy samples 106 

(Satyshur et al., 2018), increased FC between PCC and subgenual ACC during rest in 107 

MDD and healthy samples (Berman et al., 2011), reduced variability of DLPFC activity 108 

in MDD (Philippi et al., 2022), increased FC within SN (particularly involving dorsal 109 

ACC) in young girls (Ordaz et al., 2017), increased FC between insula and hippocampal 110 

areas in healthy individuals (X. Li et al., 2022), and FC changes in the triple-network 111 

(i.e., DMN, SN and CEN) in MDD (Pisner et al., 2019). These observations suggest that 112 

brooding is likely supported by excessive self-directed thought, impaired regulation of 113 

negative emotional stimuli and disrupted flexibility to disengage from repetitive negative 114 

thinking and dysphoria.  115 

 116 

Brain function is largely dynamic and context-dependent (Rabinovich et al., 2012). 117 

Dynamic time-varying FC can illuminate complex time-varying neural interactions 118 

underlying fluctuating cognitive states that are typically missed by static time-averaged 119 

FC estimations (Hutchison et al., 2013). Studies investigating dynamic FC in rumination 120 

and MDD have observed links to disrupted FC dynamics of the DMN, CEN and other 121 
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networks, suggesting impaired neural communications associated with cognitive control, 122 

flexibility and self-referential processing. High variability (and low stability) of FC 123 

dynamics in DMN regions such as mPFC, hippocampus and PCC (Chen (��) & Yan 124 

(�超�), 2021; Kaiser et al., 2016; Kim et al., 2023; Kucyi & Davis, 2014) was 125 

associated with increased rumination and mind-wandering across MDD and healthy 126 

samples, and dynamic FC of dorsal mPFC was found to strongly predict rumination in 127 

MDD (Kim et al., 2023). Similarly, lower stability and shorter dwelling in dynamic FC 128 

states with positive FC of DMN, sensorimotor areas and subcortical regions have been 129 

associated with MDD pathology (Long et al., 2020; Wu et al., 2019). In contrast, higher 130 

stability and longer dwelling in dynamic FC states with positive FC in DMN and CEN 131 

(Yao et al., 2019) and higher activity in SN, somatomotor and attention networks 132 

(Javaheripour et al., 2023) have also been observed during resting-state in MDD. 133 

Despite the emerging efforts to characterize dissociable dynamic FC states of 134 

rumination and MDD broadly, there is a paucity of literature examining dynamic FC 135 

associated with brooding.  136 

 137 

The goal of this study is to bridge the gap in our understanding of neurobiological 138 

underpinnings of brooding by comparing dynamic FC properties between resting-state 139 

and experimentally induced brooding condition across MDD subjects and healthy 140 

controls (HCs). This approach may also inform the development of interventions that 141 

target the neural dysfunction underlying pathological brooding, like real-time fMRI 142 

neurofeedback (Pindi et al., 2022), where individuals learn to modulate a specific brain 143 
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function and associated behavior with guidance from real-time feedback of personalized 144 

fMRI brain activity.   145 

 146 

The primary aim of our study was to identify dynamic FC states most relevant to 147 

brooding severity in MDD subjects and HCs. Specifically, we aimed to estimate whole-148 

brain, time-varying dynamic functional network connectivity (dFNC) states associated 149 

with brooding and resting-state fMRI using a well-validated dynamic FC analysis 150 

technique (Allen et al., 2014; Sendi et al., 2022), and subsequently examine the 151 

association between key temporal indices (like time spent) of the identified dFNC states 152 

and baseline brooding scores (measured using Rumination Response Brooding 153 

subscale (RRS-B)). An additional exploratory aim involved examining the impact of real-154 

time fMRI neurofeedback on the dynamics of brooding-related dFNC states, thereby 155 

expanding on findings from our previous double-blind, randomized, and sham-156 

controlled, clinical trial of real-time fMRI neurofeedback and its effects on static FC 157 

associated with brooding (Misaki et al., 2020; Tsuchiyagaito et al., 2021, 2023).   158 

 159 

We hypothesized that: (1) During brooding, compared to HCs, MDD subjects would 160 

show significant decreases in time spent and increases in temporal variability in distinct 161 

dFNC states with strong connections within and between various DMN (e.g., PCC, 162 

mPFC), CEN (e.g., DLPFC), SN (e.g., insula, dorsal ACC), and subcortical (e.g., 163 

hippocampus, thalamus) regions, building upon prior observations of brooding-related 164 

static FC (Berman et al., 2011; X. Li et al., 2022; Ordaz et al., 2017; Philippi et al., 2022; 165 

Pisner et al., 2019; Satyshur et al., 2018) and rumination-related dynamic FC (Chen 166 
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(��) & Yan (�超�), 2021; Kaiser et al., 2016; Kucyi & Davis, 2014) alterations; and 167 

(2) increase in brooding severity would be significantly associated with decrease in time 168 

spent and increased temporal variability in the dFNC states during brooding rather than 169 

resting-state, as experimentally-induced brooding is expected to be more sensitive in 170 

capturing the active cognitive aspect of brooding compared to resting-state (Berman et 171 

al., 2014; Chen (��) & Yan (�超�), 2021; Misaki et al., 2023). Since our clinical trial 172 

did not include a brooding condition after neurofeedback, we performed an exploratory 173 

analysis to identify any changes in the dynamics of brooding-related dFNC states from 174 

pre- to post-neurofeedback resting-state. 175 

 176 

Methods 177 

The study protocol was approved by the Western Institutional Review Board 178 

(IRB#20210286) and registered on ClinicalTrials.gov (NCT04941066). The complete 179 

study details can be found elsewhere (Tsuchiyagaito et al., 2021, 2023). 180 

 181 

Study sample  182 

The recruited subjects comprised 39 individuals with MDD and 28 healthy control 183 

(HC) volunteers. All subjects were aged 18-65 years, fluent in English, and did not 184 

endorse any abnormal neuromorphological brain profiles, pregnancies or 185 

contraindications to MRI.   186 

MDD inclusion criteria involved: unipolar MDD categorized by Mini-International 187 

Neuropsychiatric Interview 7.0.2 (MINI) (Sheehan et al., 1998) and Montgomery-Åsberg 188 

Depression Rating Scale (MADRS) scores > 6 (Montgomery & Asberg, 1979). MDD 189 
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exclusion criteria included: lifetime history of bipolar disorder, schizophrenia or other 190 

psychotic disorders, DSM-5 criteria for substance abuse or dependence within 6 months 191 

before study screening, active suicidal ideation measured using Columbia-Suicide 192 

Severity Rating Scale (C-SSRS) (Posner et al., 2011), suicide attempts within 12 193 

months before study screening, commencement of psychotropic medication for 194 

depression and/or anxiety less than a month before study screening, or commencement 195 

of psychological therapy less than a month before study screening. HC volunteers had 196 

no prior psychotropic medication use or neuropsychiatric conditions as assessed by 197 

MINI. All participants provided written informed consent and received financial 198 

compensation for their participation. 199 

 200 

MRI scanning  201 

MRI data was acquired on a 3 Tesla MR750 Discovery (GE Healthcare) scanner with 8-202 

channel receive-only head array coil. Blood-oxygen-level-dependent (BOLD) fMRI data 203 

was acquired using T2*-weighted gradient echo-planar sequence with sensitivity 204 

encoding (GE-EPI SENSE) which had the following parameters: TR/TE=2000/25ms, 205 

acquisition matrix=96×96, FOV/slice=240/2.9mm, flip angle=90°, voxel size 206 

2.5×2.5×2.9mm3; 40 axial slices, SENSE acceleration R=2. The anatomical T1-207 

weighted (T1w) MRI images were acquired using magnetization-prepared rapid 208 

gradient-echo (MPRAGE) sequence with parameters: FOV=240×192 mm, 209 

matrix=256×256, 124 axial slices, slice thickness=1.2 mm, 0.94×0.94×1.2mm3 voxel 210 

volume, TR/TE=5/2ms, SENSE acceleration R=2, flip angle=8°. Concurrent 211 
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physiological signals were recorded using MRI-compatible GE respiration belt and pulse 212 

oximetry sensor.  213 

 214 

FMRI design  215 

The fMRI session included resting-state (6min 50s), experimentally induced brooding 216 

condition (6min 50s), 3 neurofeedback runs with baseline and transfer, and post-217 

neurofeedback resting-state (6min 50s). During resting-state, subjects were instructed 218 

to clear their mind and not think about anything in particular. Prior to MRI, all subjects 219 

were instructed to specify emotionally salient personal events that triggered brooding 220 

(e.g., experiencing rejection). These events were subsequently used as personalized 221 

cues to elicit brooding in the scanner, with a specific instruction, ‘Why did you react the 222 

way you do?” while subjects viewed a fixation cross. For neurofeedback, subjects were 223 

instructed to implement strategies for regulating brooding, guided by real-time visual 224 

feedback associated with decrease in their FC between PCC and right TPJ. Each of the 225 

MDD and HC groups were further subdivided into an active group (MDD N=18; HC 226 

N=13) receiving contingent and real FC neurofeedback, and a sham group (MDD N=18; 227 

HC N=13) receiving non-contingent and artificially synthesized neurofeedback.  228 

 229 

Brooding score  230 

Here, we examined the relationship between the intensity of brooding, measured using 231 

the ‘brooding’ subscale of the 22-item Ruminative Response Scale (RRS-B) (Nolen-232 

Hoeksema & Morrow, 1991; Treynor et al., 2003), and dynamic FNC. With a 4-point 233 
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Likert scale, RRS-B evaluates one’s tendency to passively dwell on causes and 234 

consequences of depressive events/mood (e.g., think ‘why can’t I handle things better’).  235 

 236 

MRI preprocessing 237 

Data was converted to BIDS format and preprocessed using fMRIPrep 23.1.3. 238 

T1-weighted (T1w) anatomical images were corrected for intensity non-uniformity, and 239 

skull-stripped using Advanced Normalization Tools (ANTs) (Avants et al., 2009). Brain 240 

tissue segmentation of cerebrospinal fluid (CSF), white matter (WM) and gray matter 241 

(GM) was performed on the brain-extracted T1w using FSL FAST (Smith et al., 2004; 242 

Zhang et al., 2001). Finally, volume-based spatial normalization of the brain-extracted 243 

T1w images to standard space (MNI152NLin2009cAsym) was performed through 244 

nonlinear registration using ANTs. 245 

Prior to preprocessing fMRI BOLD data, its first 5 volumes were discarded to 246 

allow for equilibration of the magnetic fields, resulting in 200 volumes per run per 247 

subject. Subsequently for each run and subject, the following preprocessing steps were 248 

performed in fMRIPrep (Esteban et al., 2019). Reference volume and skull-stripped 249 

versions of the BOLD data were generated. The BOLD reference was co-registered to 250 

the T1w reference using boundary-based registration with six degrees of freedom in 251 

FreeSurfer (Greve & Fischl, 2009). Head-motion parameters with respect to the BOLD 252 

reference (transformation matrices, and six rotation and translation parameters) were 253 

estimated prior to spatiotemporal filtering. Fieldmap-less B0 inhomogeneity distortion 254 

correction was performed by fMRIPrep, and slice-timing correction was performed using 255 

AFNI (Cox & Hyde, 1997). All resamplings were performed with a single interpolation 256 
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step to derive the fully preprocessed spatially normalized BOLD data. Spatial smoothing 257 

was performed on the pre-processed data using a gaussian kernel size of 6 mm full-258 

width half-maximum with FSL. Denoising with nuisance regression was performed 259 

separately on the outputs of ICA prior to estimation of dFNC. Physiological nuisance 260 

predictors (8 respiration, 6 cardiac, 4 respiration x cardiac, 1 heart rate (Chang et al., 261 

2009), 1 respiratory volume (Harrison et al., 2021)) were estimated with 262 

RETROspective Image CORrection (RETROICOR) (Glover et al., 2000) within the 263 

PhysIO toolbox (Kasper et al., 2017) using the respiration and cardiac data measured 264 

during fMRI.   265 

 Subjects whose mean framewise displacement (mean FD; estimated in 266 

fMRIPrep) exceeded a threshold of 0.3 mm were excluded (3 MDD subjects and 2 HCs) 267 

due to excessive head motion, thereby leading to a final sample of 36 MDD subjects 268 

and 26 HCs.  269 

 270 

Independent Component Analysis (ICA) 271 

Following standard recommendations (Allen et al., 2014) in GIFT toolbox v4.0.4.10 272 

(https://trendscenter.org/software/gift/), the preprocessed BOLD data was combined 273 

across all subjects (from MDD and HC groups) and runs, decomposed into functional 274 

networks using group-level spatial ICA, and denoised. Specifically, after intensity 275 

normalization of the preprocessed data, dimensionality reduction was initiated via 276 

subject-level principal components analysis (PCA) (130 PCs). Subsequently, group-277 

level PCA (across all runs and subjects) using expectation-maximization (EM) algorithm 278 

(Roweis, 1997) retained 100 PCs. The Infomax ICA algorithm (Bell & Sejnowski, 1995) 279 
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was repeated 15 times in ICASSO (http://www.cis.hut.fi/projects/ica/icasso/) to estimate 280 

100 reliable group ICs. Subject-specific ICs were derived from the group ICs using 281 

GICA1 back-reconstruction (Calhoun et al., 2001; Erhardt et al., 2011). Following 282 

established guidelines for IC classification (Griffanti et al., 2017), two raters (SG and 283 

AT) independently classified the 100 group ICs into signal and artifactual (e.g., 284 

physiological, movement, imaging artifacts) ICs based on spatial, temporal and spectral 285 

characteristics. Final consensus between raters enabled identification of 34 signal ICs 286 

(Figure 2) as functional networks showing peak activations in known cortical and sub-287 

cortical regions, minimal spatial overlap with known vascular, ventricular, motion, and 288 

susceptibility artifacts, and predominantly low-frequency time-courses (Allen et al., 289 

2011; Cordes et al., 2000).  290 

All subject-level signal ICs were temporally denoised by low-pass filtering (0.15 291 

Hz cutoff),  motion outlier de-spiking (replacing outliers via third-order spline 292 

interpolation) (Allen et al., 2014), detrending linear, quadratic and cubic trends, and 293 

multiple regression using 20 RETROICOR physiological and 12 fMRIPrep head motion 294 

(6 rotation+translation & derivatives) regressors.  295 

 296 

DFNC estimation 297 

DFNC was estimated with standard settings in the temporal dFNC toolbox (Allen et al., 298 

2014) packaged within GIFT. Specifically, sliding window covariance (window 299 

length=22TRs(44s), Gaussian taper σ=3TRs, step length=1TR) was computed across 300 

the 34 denoised IC timecourses, resulting in 178 concatenated sequential FNC windows 301 

per run per subject. Covariance was computed from sparse L1-regularized precision 302 
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matrices (Smith et al., 2011; Varoquaux et al., 2010) using a graphical LASSO 303 

approach (Friedman et al., 2008), wherein the regularization parameter lambda (λ) was 304 

optimized via within-run cross-validation framework. The dFNC estimates were 305 

controlled for subject-level covariates including age, sex and mean FD, and Fisher 306 

transformed resulting in normalized correlation matrices (34x34) that varied across time 307 

for each run per subject.  308 

To investigate the dynamics of recurring FNC states, k-means clustering (Lloyd, 309 

1982) (with Manhattan distance) was performed on the windowed correlation matrices. 310 

Initial clustering with randomized centroid initializations was performed 500 times on 311 

subsampled data (subject exemplars (Pascual-Marqui et al., 1995)) to avoid local 312 

minima while minimizing computational burden. The resulting centroids (cluster 313 

medians) were then used to initialize clustering of all data (62subjects x 3runs x 314 

178windows=33,108matrices). The optimal number of clusters was determined as four 315 

(k=4) using the elbow criterion of the cluster validity index (within-cluster distance ⎟ 316 

between-cluster distance). 317 
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 318 

Figure 1: Graphical illustration of the dynamic Functional Network Connectivity (dFNC) 319 

method used in the study. Group Independent Component Analysis (ICA) is performed 320 

on concatenated data and subsequent back-reconstruction produces subject-specific 321 

and fMRI condition-specific independent components (ICs). Sliding-window correlation 322 

is performed across the timecourses of these ICs, to extract FNC matrices that are then 323 

clustered to produce group-level centroid states. Finally, the state transitions are 324 

estimated for each subject and fMRI condition, which are used to compute mean dwell 325 

time and fraction of time associated with each centroid state.  326 
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 327 

Outcomes 328 

Based on the dFNC state transitions of each fMRI condition and subject (Figure 1), 329 

dwell time and fraction of time were calculated for each of the four dFNC states. Dwell 330 

time refers to the average number of consecutive FNC windows occupied by a given 331 

dFNC state. Fraction of time represents the proportion of total time spent in a given 332 

dFNC state. The dwell time and fraction of time of each dFNC state were compared 333 

between MDD and HC during the baseline resting-state and the brooding condition 334 

using independent non-parametric Wilcoxon rank sum tests. Subsequently, the 335 

association between these outcomes (dwell time, fraction of time) and brooding (RRS-B 336 

scores) were examined using non-parametric Spearman correlation for each dFNC 337 

state during the baseline resting-state and brooding condition, within the MDD and HC 338 

groups separately. FDR correction (p<0.05) was used to control for the multiple 339 

comparisons. Note that not all subjects visit every dFNC state during an fMRI run. 340 

Therefore, we also conducted a chi-squared test of proportions to examine if there were 341 

any significant differences between MDD and HC in the proportion of subjects entering 342 

each dFNC state, during resting-state and brooding condition.  343 

 344 

As a secondary analysis, non-parametric Wilcoxon signed rank tests were 345 

conducted to explore the difference between time spent (i.e., dwell and fraction) in RRS-346 

B related dFNC state/(s) during baseline resting-state and post-neurofeedback resting-347 

state within each neurofeedback subgroup. This was to examine if and whether time 348 
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spent in the dFNC state/(s) related to brooding was affected by the neurofeedback 349 

training.  350 

  351 

Results 352 

The final sample included HC (N=26) and MDD (N=36) groups each subdivided into 353 

active and sham neurofeedback subgroups. Table 1 lists the sample size, age, sex and 354 

RRS-B scores in each subgroup. 355 

 356 

 357 

Table 1: Age, sex, sample size and baseline RRS-B scores in MDD active, MDD sham, HC 358 

active and HC sham groups. 359 

Sample type Sample size 
(N) 

Age in years 

(mean∓s.d) 

Females/Males RRS-B scores 

(mean∓s.d) 

MDD active 18 32.2∓10.1 12/6 12.9∓3.2 

MDD sham 18 32.4∓10.9 14/4 12.5∓3.2 

HC active 13 23.2∓4.3 9/4 6∓1.2 

HC sham 13 22.3∓3.7 11/2 6.4∓1.1 

 360 

 361 

 362 
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Functional networks from ICA 363 

A total of 34 functional networks (ICs) were identified from the group ICA analysis. 364 

These networks were labeled and grouped into six domains based on standard 365 

taxonomy (Uddin et al., 2019), and established network (Yeo et al., 2011) and 366 

subcortical (Tian et al., 2020) parcellations. The domains include default-mode, central 367 

executive, salience, attention, somatomotor, and visual. Two cortical networks and the 368 

five subcortical networks did not fit into a single domain. Figure 2 shows the spatial 369 

brain maps and labels of all the functional networks identified using ICA, grouped within 370 

their respective domains.  371 

 372 

 373 
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Figure 2: Spatial maps of the 34 functional networks extracted from group ICA, overlaid 374 

on discrete anatomical brain slices. Where applicable, the networks are labeled and 375 

grouped within rectangles into their respective domains of functional affiliation. Note that 376 

functional networks 24-29 indicate different visual subnetworks. A – anterior, P – 377 

posterior,  R – Right, L – Left; T.P.J - Temporoparietal junction, aDMN - anterior default-378 

mode network, pDMN - posterior default-mode network, mPFC - medial prefrontal 379 

cortex, STG - superior temporal gyrus, prec. - precuneus, PCC - posterior cingulate 380 

cortex, PPC - posterior parietal cortex, DLPFC - dorsolateral prefrontal cortex, FPN - 381 

frontoparietal network, SFG - superior frontal gyrus, ACC - anterior cingulate cortex, 382 

mid-cing. - mid-cingulate cortex, SMA - supplementary motor area, DAN - dorsal 383 

attention network, a. hippocampus - anterior hippocampus, p. hippocampus - posterior 384 

hippocampus. 385 

 386 

Dynamic functional network connectivity (dFNC) states 387 

Clustering of the time-varying FNC states formed by the 34 functional networks 388 

produced four centroid dFNC states, as shown in Figure 3.  389 

 390 

 391 

 392 

 393 

 394 
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 395 

Figure 3: Graphical representation of the four recurring centroid dFNC states extracted 396 

from dFNC analysis. The matrices are symmetric, and the black lines within each matrix 397 

indicate boundaries of functional network domains (as displayed in Figure 2). The value 398 

of functional connectivity correlation between any two IC networks determines the color 399 

(‘hot’ color gradient) of the corresponding matrix entry. med. - medial, a. insula - anterior 400 

insula, dlpfc - dorsolateral prefrontal cortex, sfg - superior frontal gyrus, hipp. - 401 

hippocampus. 402 

 403 

 404 

 405 
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 406 

DFNC state 1 is a sparsely connected state, marked by moderate positive FC within 407 

default-mode (between anterior and posterior default-mode networks), and dorsal 408 

attention networks, strong positive FC within visual networks, and strong negative FC 409 

within anterior and mid-cingulate salience networks. DFNC state 2 is a hyperconnected 410 

state, with strong positive FC within and between most networks throughout the brain, 411 

and strong negative FC between the anterior and mid-cingulate salience network and 412 

the whole brain. The hippocampi, striatum and some central executive subnetworks 413 

however show weak FC with the whole brain.  414 

 415 

DFNC state 3 is a densely connected integrated state, comprising strong positive FC 416 

within attention, somatomotor and visual networks, moderate-to-strong positive FC 417 

within default-mode networks, and strong positive FC between attention, somatomotor, 418 

default-mode (superior temporal gyrus (STG) and temporoparietal junction (TPJ)) and 419 

visual networks. Posterior default-mode networks (posterior cingulate cortex (PCC) and 420 

precuneus) show strong positive FC with visual networks. The thalamus shows strong 421 

negative FC with attention, somatomotor and default-mode networks (TPJ and STG). 422 

The anterior and mid-cingulate salience network shows strong negative FC with 423 

somatomotor, attention, visual, central executive parietal, medial parietal, and default-424 

mode networks (TPJ, STG and precuneus). Subnetworks from CEN (DLPFC, parietal 425 

CEN) have moderate-to-strong positive FC with attention, visual, somatomotor and 426 

default-mode networks.  427 

 428 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2024. ; https://doi.org/10.1101/2024.05.05.24306889doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.05.24306889
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

DFNC state 4 is characterized by strong positive FC within visual and attention 429 

networks, moderate-to-strong positive FC within default-mode networks, scattered 430 

moderate positive FC of default-mode with visual, central executive with default-mode, 431 

attention with somatomotor, amygdala and thalamus with default-mode, and parietal 432 

with visual and default-mode networks, and moderate-to-strong negative FC between 433 

anterior/mid-cingulate network and the whole brain.  434 

 435 

Differences in time spent in dFNC states between groups  436 

There were no significant differences in the time spent (dwell time or fraction of time) in 437 

any dFNC state between MDD and HC groups during baseline brooding condition or 438 

resting-state. Mean values of dwell time and fraction of time for each condition, group 439 

and dFNC state can be found in Supplementary Table 1. Additionally, the proportion of 440 

subjects entering each dFNC state was not significantly different between MDD and HC 441 

groups during resting-state or brooding. The proportions of subjects per dFNC state for 442 

each group and condition are shown in Supplementary Table 2.  443 

 444 

Association between time spent in dFNC states and RRS-B scores 445 

The dwell time and fraction of time spent in dFNC state 3 showed strong negative 446 

correlation with RRS-B scores in the MDD group during the brooding condition. These 447 

were the only associations that remained significant after FDR correction across all 448 

correlation analyses (dwell time: r(34)=-0.5, p-FDR=0.031; fraction of time: r(34)=-0.5, 449 

p-FDR=0.031) (Figure 4a, 4b). The correlations were non-significant for MDD in resting-450 

state (Figure 4e, 4f) and for the HC group (Figure 4c, 4d, 4g, 4h). Illustrations of the 451 
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correlations for the other dFNC states are shown in Supplementary Figures SF1, SF2 452 

and SF3. None of these survived FDR correction. 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 
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Figure 4: Scatter plots showing associations between brooding severity (RRS-B scores) and outcomes of dFNC state 3 in 462 

MDD group during brooding condition (dwell time in (a) and fraction of time in (b)), HC group during brooding condition 463 

(dwell time in (c) and fraction of time in (d)), MDD group during resting-state (dwell time in (e) and fraction of time in (f)), 464 

and HC group during resting-state (dwell time in (c) and fraction of time in (d)). In each scatter plot, the RRS-B scores are 465 

depicted in the y-axis while the outcome of dFNC state 3 is shown in the x-axis. The green line represents the linear fit of 466 

the association between RRS-B scores and the dFNC outcome, while the blue dotted curved lines represent the 95% 467 

confidence interval of the linear fit. The only associations significant after FDR correction for multiple comparisons were 468 

observed in the MDD group during the brooding condition ((a) and (b)). RRS-B - Rumination Response Scale - Brooding 469 

subscale 470 
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 471 

Differences in time spent in dFNC state 3 between pre-neurofeedback and post-472 

neurofeedback resting-state  473 

Neurofeedback training related changes in dwell time and fraction of time spent in the 474 

brooding-associated dFNC state 3 in MDD active, MDD sham, HC active and HC sham 475 

subgroups were explored through paired t-tests (Figure 5). The fraction of time spent in 476 

dFNC state 3 showed a significant increase from pre-neurofeedback resting-state to 477 

post-neurofeedback resting state in the MDD active neurofeedback group only (Figure 478 

5e; z=-2.09, p=0.037). Changes in dFNC state 3 measures were non-significant (Figure 479 

5) for all other neurofeedback subgroups (i.e., HC active, HC sham and MDD sham). 480 

 481 
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Figure 5: Bar graphs, with corresponding p values and z-score approximations, representing mean changes in the 483 

outcomes of dFNC state 3 from pre- to post-neurofeedback resting-state in the MDD active neurofeedback ((a) and (e)), 484 

MDD sham neurofeedback ((b) and (f)), HC active neurofeedback ((c) and (g)), and HC sham neurofeedback ((d) and (h)) 485 

subgroups. The top four graphs ((a)-(d)) represent changes in dwell time of dFNC state 3 (y-axis), while the bottom four 486 

graphs ((e)-(h)) represent changes in fraction of time of dFNC state 3 (y-axis). The bars represent mean values and the 487 

black lines on each bar represents standard error about the mean. The only significant change (indicated by red asterisk) 488 

was found in the MDD active neurofeedback group (e), where the fraction of time spent in dFNC state 3 increased after 489 

neurofeedback. This significance however did not survive correction for multiple comparisons. 490 

 . 
C

C
-B

Y
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 7, 2024. 
; 

https://doi.org/10.1101/2024.05.05.24306889
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.05.05.24306889
http://creativecommons.org/licenses/by-nd/4.0/


30 

 

 491 

 492 

Discussion 493 

We examined whole-brain time-varying dynamic functional network connectivity (dFNC)  494 

associated with resting-state and brooding fMRI in depressed and healthy individuals to 495 

illuminate brain states associated with brooding severity, a critical symptom of 496 

depression measured using RRS-B scores. We identified four group-level summary 497 

dFNC states that were inhabited for varying durations by each individual in each fMRI 498 

condition. The first hypothesis, positing that the time spent in the identified dFNC states 499 

would differ between MDD and HC during resting-state and brooding conditions, was 500 

not supported. Time spent in these states was not significantly different between MDD 501 

and HC in resting-state or the brooding condition, suggesting that the presence and 502 

maintenance of these states are not uniquely altered in MDD at a detectable level with 503 

the current sample size. However, our second hypothesis was supported: greater 504 

brooding severity was significantly associated (FDR-corrected p<0.05) with lesser time 505 

spent (i.e., proportion of time and dwell time) in the densely connected dFNC state 3, 506 

which is primarily characterized by moderate-to-strong positive FC within and between 507 

default-mode, attention, somatomotor, and visual networks, between central-executive 508 

and default-mode regions, and strong negative FC of ACC and thalamus with 509 

aforementioned networks. Notably, this relationship was significant only in the MDD 510 

group during the brooding condition, highlighting the utility of mood induction paradigms 511 

in capturing neurobiological effects sensitive to brooding and rumination in MDD.  512 

 513 
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Secondary analysis further revealed that our real-time fMRI neurofeedback trial was 514 

associated with significant increase (uncorrected p=0.037) in the proportion of time 515 

spent in the anti-brooding dFNC state 3. The increase from pre-to-post neurofeedback 516 

resting-state was significant only in the MDD active neurofeedback group. Such 517 

preliminary evidence suggests that neurofeedback may mitigate brooding in MDD 518 

beyond sham neurofeedback by modifying brooding-related FC dynamics, in addition to 519 

time-averaged FC as previously demonstrated (Tsuchiyagaito et al., 2023). 520 

 521 

Dynamic FC associated with brooding in depression 522 

Consistent with our hypothesis, brooding was associated with time spent in a densely 523 

connected dFNC state 3 containing unique FC patterns involving DMN, SN (ACC), CEN 524 

(parietal areas) and subcortical areas (thalamus). We also found prominent involvement 525 

by additional networks, namely dorsal attention, somatomotor and visual. DFNC state 3 526 

is an integrated densely connected state comprising moderate-to-strong FC primarily 527 

within and between default-mode, attention, somatomotor and visual networks. The 528 

temporal dynamics of these connections are particularly relevant to MDD. MDD has 529 

been associated with more time spent having reduced FC within somatomotor and 530 

dorsal attention networks (Javaheripour et al., 2023), less time in integrated states with 531 

increased FC between sensory and default-mode networks (Wu et al., 2019), and more 532 

time with reduced FC within and between visual, auditory, somatomotor and default-533 

mode networks (Xu et al., 2022). Similarly, recent mega- and meta-analytic evidence of 534 

prominent static FC alterations in MDD implicated hypoconnectivity within and between 535 

dorsal attention, somatomotor, parietal and visual networks (Javaheripour et al., 2021; 536 
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Tse et al., 2023). This is consistent with our observation of increased MDD brooding 537 

severity with decrease in time spent having hyperconnectivity in these same networks. 538 

Importantly, as shown in Figure 4, several MDD individuals with high brooding severity 539 

did not even visit the densely connected dFNC state 3 (i.e., fraction of time = 0).  540 

 541 

Higher interconnectedness of the default-mode network with the attention, somatomotor 542 

and visual networks, as observed in dFNC state 3, may facilitate improved integration of 543 

ongoing self-referential processing with present-moment environmental, sensory and 544 

bodily experiences. Such improved integration can potentially enable frequent 545 

interruptions to passive brooding in MDD through attention to present-moment stimuli 546 

triggering mood change. DFNC state 3 additionally includes strong negative FC 547 

involving mid-cingulate cortex, ACC and thalamus. Mid- and anterior cingulate cortices 548 

are generally implicated in emotion and cognitive regulation (Stevens et al., 2011), while 549 

thalamus is involved in brain-wide, multimodal sensory processing, arousal and 550 

perception (Hwang et al., 2017; Shine et al., 2023). These areas are particularly 551 

dysfunctional in MDD, brooding and rumination (Berman et al., 2011; Chen (��) & 552 

Yan (�超�), 2021; Long et al., 2020; Yao et al., 2019). Therefore, their strong 553 

anticorrelation with auditory default-mode (TPJ, STG), somatomotor, attention and 554 

visual networks in dFNC state 3 suggests that more time in this state may promote 555 

adaptive emotional and cognitive processing, facilitated by increased integration of 556 

somatosensory and external perceptual updates into self-related thinking. Additionally, 557 

such adaptive processing is likely facilitated by the state’s moderate-to-strong positive 558 
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FC between CEN and DMN regions, which may promote cognitive disengagement from 559 

brooding in MDD (Y. Li et al., 2021; Pisner et al., 2019).  560 

 561 

On the contrary, shorter fraction of time and dwell time (i.e., time spent continuously in a 562 

state before transitioning to another state) in dFNC state 3 or not visiting the state at all 563 

likely minimize these adaptive processes, exacerbating brooding and MDD. This effect 564 

is consistent with several dynamic FC studies that found increases in rumination with 565 

higher temporal variability of FC in several areas and networks, including DMN, visual 566 

network, somatosensory network, temporal areas, mPFC, ACC, dorsal attention 567 

network, inferior parietal lobe (IPL), TPJ and superior parietal lobe (SPL) (Chen (��) & 568 

Yan (�超�), 2021; Kim et al., 2023; Kucyi & Davis, 2014). Particularly, these areas 569 

also form prominent FC patterns in dFNC state 3, whose shorter dwell time (or higher 570 

temporal variability) is related to increased brooding severity here, illustrating some of 571 

the shared neural dynamics underpinning rumination and its MDD-sensitive component 572 

- brooding. Shorter dwell times in strongly connected states similar to dFNC state 3 573 

have also been associated with suicide risk and ideation (Xu et al., 2022). 574 

 575 

Dynamic time-varying FC is a promising avenue to elucidate intricate time-sensitive 576 

neuronal mechanisms underlying various states of cognition, disease and 577 

consciousness, with greater potential to characterize psychiatric biomarkers compared 578 

to traditional static FC alone (Calhoun et al., 2008, 2014; Cohen, 2018; Ganesan et al., 579 

2022; Hutchison et al., 2013). Notably, dynamic FC can outperform static FC in 580 

predicting individual differences in rumination using diverse clinical and subclinical 581 
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datasets (Kim et al., 2023). Our present work demonstrates the utility of dynamic FC in 582 

characterizing the time-varying behavior of a whole-brain FC state associated with 583 

brooding, a critical symptom and prognostic factor of MDD. In addition to unique FC 584 

patterns comprising DMN, CEN, SN and subcortical networks, we found prominent 585 

involvement by somatomotor, attention and visual networks in brooding-related FC 586 

dynamics.  587 

 588 

Effect of real-time neurofeedback on brooding-related dynamic FC in depression 589 

Our secondary analysis also highlighted the sensitivity of dynamic FC in capturing 590 

intervention effects associated with real-time fMRI neurofeedback. Specifically, following 591 

real-time neurofeedback training aimed at attenuating brooding, MDD subjects were 592 

able to spend significantly more time in dFNC state 3 during rest, suggesting diminished 593 

brooding. Importantly, this effect was non-significant in the sham neurofeedback MDD 594 

group that received artificially synthesized feedback signals, and in the HC subgroups. 595 

This suggests a neurobiologically adaptive response to the neurofeedback training in 596 

MDD, indicating reduced difficulty in sustaining the protective dFNC state 3 and 597 

facilitating a move away from passive dwelling on maladaptive thought patterns. This is 598 

also consistent with previous findings (Tsuchiyagaito et al., 2023) which showed that 599 

only the MDD active neurofeedback, and not MDD sham neurofeedback, subgroup 600 

experienced significant reduction in brooding severity measured one week after 601 

neurofeedback. Overall, the current work highlights the utility of time-varying FC in 602 

examining neurofeedback-related outcomes to capture effects that may be missed by 603 

traditional static FC approaches.  604 
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 605 

Limitations 606 

The sample size used in this study was small and imbalanced between MDD (N=36) 607 

and HC (N=26) groups. This may have biased the dFNC clustering process towards 608 

MDD-related states. Although a modest proportion of subjects did not visit dFNC states 609 

2 and 3 during rest or brooding (i.e., fraction of time = 0), these proportions were similar 610 

in both groups suggesting that such densely connected dFNC states may be occupied 611 

less commonly in general. To increase generalizability, our MDD inclusion criteria did 612 

not consider the dosage and duration of antidepressant medication use, which could 613 

have impacted our findings. Brain areas relevant to MDD such as cerebellum (Phillips et 614 

al., 2015), subgenual ACC (Cash et al., 2021), and inferior and polar temporal areas 615 

(Berman et al., 2014) were excluded from the whole-brain fMRI analysis, due to issues 616 

of MRI signal dropout and limited field-of-view coverage identified during quality 617 

assessment. Future studies should examine whole-brain dynamic FC associated with 618 

brooding using larger and more balanced samples.  619 

 620 

We did not find any significant pre-to-post neurofeedback dFNC changes in the HC 621 

groups, likely because of the small sample size and low scope for improvement in 622 

brooding from baseline among healthy individuals compared to MDD subjects. 623 

Additionally, compared to resting-state, the brooding condition was found to be more 624 

sensitive to dFNC changes associated with RRS-B. However, our experimental design 625 

did not include a brooding condition post-neurofeedback. Consequently, changes in 626 

brooding-related dFNC associated with neurofeedback were examined in resting-state, 627 
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which may not be as sensitive as mood-induction tasks in capturing neuronal indices of 628 

brooding and rumination (Berman et al., 2014; Chen (��) & Yan (�超�), 2021; 629 

Misaki et al., 2023), contributing to the weak effects observed in the exploratory 630 

neurofeedback analysis. These exploratory findings should hence be interpreted with 631 

caution, since the observed significance did not survive correction for multiple 632 

comparisons, and group by time interaction effects were not considered due to the small 633 

subgroup sizes. Causality cannot be implied, as these findings only suggest potential 634 

associations and therapeutic pathways of neurofeedback action on brooding in MDD. 635 

Larger fMRI studies with brooding condition pre- and post-neurofeedback, and 636 

longitudinal follow-up assessments in the future will help inform the durability of these 637 

observed effects on depressive symptomatology and overall cognitive function. 638 

 639 

Conclusion 640 

We investigated whole-brain dynamic functional network connectivity (dFNC) in 641 

depressed and healthy individuals during rest and brooding. We found one brain state 642 

(dFNC state 3) with distinct FC profiles, whose temporal dynamics were most related to 643 

brooding severity, an important symptom and prognostic factor of depression. This 644 

dFNC state was densely connected with moderate-to-strong intra- and inter-network FC 645 

involving several default-mode, somatomotor, attention, visual, central executive, 646 

salience and thalamic areas. Greater time spent and dwell time (stability) in this dFNC 647 

state during brooding (but not rest) was significantly associated with lower brooding 648 

severity in the major depressive disorder (MDD) group, denoting the state’s potential to 649 

offer protection against brooding in MDD. Exploratory analysis revealed that active (and 650 
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not sham) real-time fMRI neurofeedback targeting PCC-TPJ FC in MDD can potentially 651 

increase the time spent in this dFNC state. This work highlights the utility of dynamic FC 652 

and mood-induction tasks for investigating fast timescale fluctuations in fMRI brain 653 

connectivity patterns associated with a critical symptom of MDD, and presents the 654 

promise of real-time fMRI neurofeedback as a tool to cultivate or suppress specific brain 655 

states and modulate their dynamics, offering novel insights into personalized non-656 

invasive treatment approaches for depression.  657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 
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