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ABSTRACT 

Background: Susceptibility to type 2 diabetes mellitus (T2D) is driven by genetic and 1 

environmental risk factors. Dietary preferences are a modifiable and largely environmental risk 2 

factor for T2D. The role of diet in disease liability has been limited to observational and 3 

epidemiologic studies with mixed findings.  4 

Objective: To clarify the role of diet on susceptibility to T2D using genetic variants associated 5 

dietary preferences.  6 

Methods: We collected genome-wide association data for 38 dietary preference traits plus T2D 7 

and 21 related cardiometabolic traits. We performed Mendelian randomization (MR) using 8 

genetic variants to test causal hypotheses between diet as the exposure and T2D or 9 

cardiometabolic traits as outcomes using univariable and multivariable methods along with the 10 

MR Robust Adjusted Profile Score (MR-RAPS) approach to increase power. We performed 11 

mediation analyses to evaluate the effects of dietary preferences on T2D to elucidate potential 12 

causal graphs and estimate the effects of dietary preferences mediated by potential mediators.  13 

Results: We report 17 significant relationships between dietary preferences and T2D or a 14 

cardiometabolic risk factor (Bonferroni-corrected P < 5.99 x 10-5), including that higher intake of 15 

cheese, dried fruit, muesli, or fat-based spreads protected against T2D. We detected 7 additional 16 

associations (Bonferroni-corrected P < 1 x 10-4), with inclusion of additional genetic variants in 17 

MR-RAPS analysis. In multivariable MR, we discovered that body mass index (BMI) was a 18 

common, shared mediator for many of these observed associations. In mediation analysis, we 19 

confirmed that substantial proportions of the protective effects of cheese, dried fruit and muesli 20 

intakes on T2D were mediated by BMI. We further observed that educational attainment was an 21 

additional mediator exclusively for muesli intake-T2D association.  22 
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Conclusions: Our results provide genetic evidence supporting a link between diet and body 23 

weight, and are in line with observation of obesity and T2D in individuals and their specific 24 

preferences for food.  25 

ABBREVIATIONS 26 

ALP, Alkaline phosphatase; ALT, Alanine transaminase; ASAT, Abdominal subcutaneous adipose 27 
tissue; AST, Aspartate aminotransferase; BMI, Body mass index; CORNFLAK, Corn 28 
flakes/frosties; DBP, Diastolic blood pressure; DRIEFRU, Dried fruit; EA, Educational 29 
attainment; FG, Fasting glucose adjusted for BMI; FI, Fasting insulin adjusted for BMI; GGT, 30 
Gamma-glutamyl transferase; GWAS - Genome-wide association study; HbA1c, Hemoglobin 31 
A1c; HDL, High-density lipoprotein; INFO, Information score (quality measurement of 32 
imputation); IV, Instrumental variables; IVW, Inverse variance weighted; LDL, Low-density 33 
lipoprotein; LDSC, Linkage disequilibrium score regression; Liverfat, Liver fat content; 34 
Liveriron, Liver iron level; Livervol,  Liver volume; MAF, Minor allele frequency; MR, 35 
Mendelian Randomization; MR-RAPS, Mendelian Randomization Robust Adjusted Profile 36 
Score; MVMR, Multivariable Mendelian Randomization; PAL, Highly palatable; Pancfat, 37 
Pancreas fat content; Panciron, Pancreas iron level; Pancvol, Pancreas volume; PHY, Physical 38 
activity; SAVCAL, Savory/ caloric; SBP, Systolic blood pressure; SED, Sedentary behavior at 39 
work; STR, Strong flavored; T2D, Type 2 diabetes mellitus; TG, Triglyceride; UVMR, 40 
Univariable Mendelian Randomization; VAT, Visceral adipose tissue; WHR, Wait-hip ratio; 41 
WHRadjBMI, Wait-hip ratio adjusted for BMI; WM, Weighted median 42 

 43 

INTRODUCTION 44 

Type 2 diabetes mellitus (T2D) is a complex metabolic disease with individual risk influenced by 45 

both genetic and environmental factors [1,2]. The growing incidence of T2D in parallel with the 46 

obesity epidemic suggests the essential role of environment to disease risk [3]. While genome-47 

wide association studies (GWAS) have elucidated the polygenic nature of the disease with 48 

discovery of hundreds of associated genetic loci [4,5], the spectrum of the environmental 49 

components that cause T2D is poorly understood. Improvements in this understanding could 50 

facilitate personalized interventions for patients who are at the most risk of cardiovascular, 51 

neurological and renal complications of diabetes based on these factors [6]. 52 
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Despite observational data supporting the role of diet as a major but modifiable risk factor 53 

associated with T2D [7,8], a causal role of dietary factors and cardiometabolic disease is far less 54 

established with only a handful of examples in evidence [9,10]. Previous work supporting strong 55 

association between unhealthy diet and T2D has been largely accrued through observational 56 

studies in which a formal assessment of causality is difficult if not impossible. Moreover, 57 

previous reports on the effects of diet on susceptibility to T2D have been inconsistent and 58 

inconclusive [11-13], compounding the challenge of establishing a robust assessment of 59 

causality. Thus, a key challenge is to elucidate how specific dietary risk factors – or potentially 60 

how established risk factors like obesity – mediate or cause diabetes, and subsequently how to 61 

use these insights to action downstream interventional studies.  62 

While non-genetic contributions to dietary preference are large and central, some food intake 63 

patterns have been observed to be heritable [14,15] and interact with T2D-relevant genes [16], 64 

suggesting that genetics may contribute a small component to interindividual variability in 65 

dietary preferences. Recently, GWAS have reported genetic associations with macronutrient 66 

intake, dietary habits, and food preferences [17-19]. Excitingly, these data offer the opportunity 67 

to examine evidence of causal relationships between diet and cardiometabolic outcomes using 68 

statistical approaches.  69 

In this report, we utilized the framework of Mendelian randomization (MR) using genetic 70 

summary data related to diet and 42 dietary preferences to understand the role of these factors for 71 

T2D susceptibility and other cardiometabolic traits (Figure 1). MR is one statistical approach 72 

designed to infer causal effects between an exposure and an outcome. This method leverages 73 

genetic variants associated with an exposure (here, dietary preference) as instrumental variables 74 
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(IVs) to estimate the effect of that exposure on an outcome (e.g., liability to T2D) [20]. MR has 75 

been used to confirm or refute a range of risk factors for T2D [22-23], including other diseases 76 

[24-26], as well as using dietary instrumental variables as exposures [27]. We developed 77 

instruments for 42 dietary preferences as exposures and performed univariable and multivariable 78 

experiments using T2D and 21 cardiometabolic risk factors as outcomes.  79 

 80 
METHODS 81 

Acquisition of dietary trait summary genetic data 82 

For dietary traits, we selected 42 dietary preferences, which were composed of: (i) 4 relative 83 

macronutrient intake measures, (ii) 26 dietary habits, and (iii) 12 food-liking traits. The summary 84 

statistic association data for these dietary traits were obtained from 3 studies on diet composition 85 

[17], dietary habits [18] and food liking [19] (Supplementary Table 1). These studies were 86 

conducted mainly on groups of individuals similar to the 1000 Genomes Project Continental 87 

group from Europe as a reference. 88 

Based on 24h dietary food recall questionnaire, which contains ≥70 food items assessed in UK 89 

Biobank participants, the summary association data for diet composition, which was adjusted for  90 

sex, year of birth, and the first 10 genetic principal components, identified genetic associations 91 

with relative intake of carbohydrate, sugar, fat and protein [17]. The carbohydrate intake 92 

included a consumption of all saccharides, while the sugar intake mono- and disaccharides only. 93 

The measurements for 4 macronutrient intakes were corrected for total energy intake. The energy 94 

values of the macronutrients were obtained using the conversion factor of 4 kcal/gram for 95 

protein, sugar and carbohydrate, and 9 kcal/gram for fat.  96 
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The summary association data for dietary habits, in which covariates were age in months, sex 97 

and 10 genetic principal components, was based on UK Biobank food frequency questionnaire 98 

(FFQ) on 85 single food items on daily and/or weekly basis [18]. The measurement of the intake 99 

of each food item was in either quantitative continuous variables (e.g., cups per day, pieces per 100 

day, bowls per week) or ordinal non-quantitative variables (e.g., number of intakes per day or 101 

week). The GWAS for dietary habits also estimated SNP heritability (h2
g) of those single food 102 

intake using BOLT-lmm software (v.2.3.2) pseudo-heritability measurement representing the 103 

fraction of phenotypic variance explained by the estimated relatedness matrix [18]. We selected 104 

26 specific dietary habits that were in the top 25 percentile of the observed SNP heritability (h2
g 105 

> 0.028).  106 

The summary association data obtained for food liking conducted an assessment for likings for 107 

139 specific foods and beverages using the food preferences/liking questionnaire. This 108 

questionnaire uses the 9-point hedonic scale, where 1 corresponds to “Extremely dislike” and 9 109 

to “Extremely like”. The GWAS for food liking included age, sex and the first 10 genetic 110 

principal components as covariates for the analysis. Because these foods and beverages are not 111 

generalized and overlap with some of the dietary habits, we selected 3 main dimensions and 9 112 

sub-dimensions of food likings that were categorized by taste and food type in the multi-level 113 

hierarchical manner [19].  114 

Acquisition of T2D and related traits summary genetic data 115 

For T2D, we obtained the latest summary statistics from Million Veteran Program (MVP) study 116 

[4], which included age, sex and ten genetic principal components as covariates. We selected the 117 

following 21 cardiometabolic risk factors related to T2D: Body mass index (BMI) [28], Waist-118 
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hip ratio (WHR) [28], Waist-hip ratio adjusted for BMI (WHRadjBMI) [28], Fasting glucose 119 

adjusted for BMI (FG) [29], Fasting insulin adjusted for BMI (FI) [29], Glycated hemoglobin 120 

(HbA1c) [29], High-density lipoprotein cholesterol (HDL) [30], Low-density lipoprotein 121 

cholesterol (LDL) [30], Triglyceride (TG) [30], Abdominal subcutaneous adipose tissue volume 122 

(ASAT) [31], Visceral adipose tissue volume (VAT) [31], Pancreas fat (Pancfat) [34128465], 123 

Pancreas iron content (Panciron) [31], Pancreas volume (Pancvol) [31], Liver fat (Liverfat) [31], 124 

Liver iron content (Liveriron) [31], Liver volume (Livervol) [31], Alkaline phosphatase (ALP) 125 

[32], Alanine aminotransferase (ALT) [32], Aspartate transaminase (AST) [33], and Gamma-126 

glutamyl Transferase (GGT) [32]. For reasons of statistical power, we focused primarily on 127 

European ancestry data, which had the largest sample sizes. The locations, sample sizes and 128 

other information for these summary data are detailed in Supplementary Table 2. 129 

GWAS data processing and quality control 130 

Prior to selection of genetic instruments for dietary traits, we first removed rare variants (MAF < 131 

0.01) and, if applicable, variants with low imputation quality (INFO < 0.5) in the summary-level 132 

data sets for dietary traits (Supplementary Figure 2). As additional quality control, we also 133 

eliminated duplicate variants. Finally, we obtained consensus rsIDs for all variants (dbSNP build 134 

155) and aligned them to GRCh37 for all traits (see Code Availability).  135 

Selection of variants for genetic instruments for dietary traits 136 

We used PLINK (v1.9 software) [34] and European 1000 Genomes Project Phase 3 data (EUR, 137 

GRCh37) for LD reference to group loci together using the ‘LD clumping’ procedure to select 138 

genome-wide significant (P < 5 x 10-8) and independent genetic instruments (instrumental 139 

variables) with low pairwise linkage with one another (r2 < 0.001) within a window of 500kb 140 
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[21,35] (Supp. Figure 2). After clumping, we excluded four dietary traits from the MR analysis 141 

because they had relatively few IVs contributing (less than n = 5): Flora spread intake, low-fat 142 

spread intake, low-fat milk intake and liking for healthy foods. 143 

We removed palindromic (A/T or C/G) genetic variants that are present in the dietary traits to 144 

ensure robustness of our instruments (Supplementary Table 3). The genetic variants that were 145 

present in the dietary traits but not the outcomes of interest (e.g., T2D and related traits) were 146 

removed from MR analysis and not replaced with proxy variants. With this approach, we 147 

identified 931 genetic instruments (803 unique SNPs) in total across 38 dietary traits. The final 148 

genetic instruments used for MR are shown in the Supplementary Tables 14 and 15, and the 149 

SNP selection process is described in Supplementary Figure 1. 150 

For each genetic instrument, we estimated R2, the proportion of variance explained of exposure 151 

by created IV, assuming a strictly additive model [36]. For a single SNP R2  given by: 2 × p × (1 152 

– p) × β2, where p is the minor allele frequency and β is the estimated effect size of the SNP for 153 

the exposure trait [36]. The total variance explained then is simply the sum across all SNPs, 154 

R2
total. Once we obtained R2

total, for each exposure, we calculated the F-statistic (F) to assess the 155 

strength of the instrumental variables. The formula for F is (N – K – 1)/K × R2
total /(1 – R2

total), 156 

where N is the sample size, and K is the number of SNPs used for the IV [37]. All of our 157 

generated instruments exceeded an F > 10, suggesting minimal effects from weak instrument 158 

bias (Supplementary Table 4). 159 

We used the LD-clumping procedure described above using 1000 Genomes Project Phase 3 160 

(EUR) as the LD reference to identify the best LD proxy (r2 ≥ 0.8 with given index variants) for 161 

index variants that were present with dietary genetic instruments but not present in the summary 162 

association trait data used in multivariable MR (MVMR) analyses.  163 
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For the analysis using MR-RAPS (Robust Adjusted Profile Score) [38], we used the same 164 

approach described above (LD-clumping via PLINK, [34]), and applied the same parameters to 165 

obtain independent, sub-genome wide (P < 1 x 10-4) significant genetic variants as additional 166 

instruments. As described above for the primary MR analyses, we removed palindromic genetic 167 

variants in the MR-RAPS analysis. 168 

Mendelian randomization methods 169 

MR is a statistical causal inference analysis that employs genetic variants associated with an 170 

exposure (here, dietary preference) as instrumental variables (IVs) to estimate the effect of that 171 

exposure on an outcome (e.g., liability to T2D) [20]. Specific assumptions for instrumental 172 

variables are required, namely that: (i, Relevance assumption) genetic variants are associated 173 

with the exposure, (ii, Independence assumption) genetic variants are not associated with any 174 

potential confounders in the exposure-outcome association, and that (iii, Exclusion restriction 175 

assumption) genetic variants can influence the outcome only through the exposure 176 

(Supplementary Figure 1). Given Mendel’s law of segregation and independent assortment at 177 

meiosis, the design of an MR experiment is analogous to the design of the randomized control 178 

trial via random allocation of genetic variants [21] and can address issues of confounding and 179 

reverse causality in assessment of causality.  180 

We populated STROBE-MR checklist as a guideline to conduct all our MR analyses and report 181 

the results clearly (Supplementary Data 1). 182 

For primary analysis, we performed two-sample univariable MR (UVMR) using summary 183 

statistic association data from 38 dietary traits as exposures and from T2D plus 21 T2D-related 184 

cardiometabolic traits as outcomes. Though partial sample overlap exists between dietary traits 185 
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and some outcome traits, the bias due to the observed sample overlap were estimated to be small 186 

in the analysis, especially when the strength of genetic instruments estimated by F-statistic (F) is 187 

strong (F > 10) and the datasets are of different sample size [39] (Supplementary Table 21). 188 

Using TwoSampleMR package (v.0.5.8) [40,41], we employed three standard UVMR methods to 189 

estimate causal effects: Inverse variance weighted under the random effects model (IVW), 190 

Weighted median (WM), and Egger regression. Each method has different sensitivity for the IV 191 

assumptions. IVW has the greatest statistical power because it assumes all variants do not violate 192 

any IV assumptions; WM assumes at least half of IVs are valid instruments, providing robustness 193 

to Assumptions 2 and 3; Egger regression estimates the causal effect after accounting for 194 

horizontal pleiotropy in IVs, providing robustness to Assumption 3 [42]. We used the Egger bias 195 

intercept test as a quantitative indicator of bias due to horizontal pleiotropy (Supplementary 196 

Table 5). After exclusion for instrument size (see above) and checking the presence of exposure 197 

IVs in the endpoint data, we performed UVMR that tested a total of 835 exposure-outcome 198 

pairwise associations (Supplementary Table 5). We also performed MR-Steiger test [41] to 199 

examine whether assumption that exposure causes outcome is valid and determine the 200 

directionality of those associations by using the same input data that were used to estimate 201 

effects via the 3 standard UVMR methods.  202 

To address the burden of multiple testing, we considered Bonferroni correction to determine the 203 

adjusted nominal p-value threshold for significance (n=835 tests with a 5% error rate: P < 5.99 x 204 

10-5). We considered Bonferroni-corrected exposure-outcome associations further if two 205 

additional criteria were met: (i) they were associated across at least two MR analyses, and (ii) at 206 

least 5 IVs were used in the sensitivity analyses.  207 

Analysis using MR-RAPS (Robust Adjusted Profile Score) 208 
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17 nominally but not multi-test corrected significant (i.e., MR P < 1 x 10-3 but P > 5.99 x 10-5) 209 

exposure-outcome associations across at least two sensitivity analyses were further analyzed 210 

using the MR-Robust Adjusted Profile Score (MR-RAPS) method. MR-RAPS minimizes 211 

measurement error in SNP-exposure effects due to weak instruments bias and is robust to 212 

systematic pleiotropy [38]. In addition to genome-wide significant variants (P < 5 x 10-8), sub-213 

genome wide significant (P < 1 x 10-4) genetic variants as weak instruments were included to 214 

increase the power of MR for causal inference and re-assess those associations via this method.  215 

For statistical stringency, we applied the following criteria to determine whether the associations 216 

are significant and additional associations were identified by increased power from MR-RAPS: 217 

(i) when estimated using the combined set of both weak (P < 1 x 10-4) and strong (P < 5 x 10-8) 218 

instruments, the association exceeds the threshold p-value that was applied for the primary 219 

UVMR analysis (e.g., P < 5.99 x 10-5); (ii) when estimated using only weak (P < 1 x 10-4) 220 

instruments, the association exceeds the threshold p-value that was applied for the primary 221 

UVMR analysis (P < 5.99 x 10-5); and (iii) the effect direction of the association that meets those 222 

two criteria above was concordant with that observed from the initial UVMR methods described 223 

above. 224 

Multivariable MR experimental methods 225 

To further evaluate exposure-outcome associations that emerged as significant from UVMR, we 226 

used MVMR package (v.0.4) [43] along with the TwoSampleMR package (v.0.5.8) and 227 

performed multivariable MR (MVMR) using IVW to estimate the direct effects of dietary 228 

preferences by accounting for the indirect effects mediated through selected potential mediators 229 

(Supplementary Figure 3). Since T2D is a multi-factorial, complex disease, we relied on 230 

biological prior and literature-based observations in T2D to narrow the list of potential traits that 231 
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could possibly mediate the causal effects of exposures on outcomes. Then, we conducted 232 

Linkage Disequilibrium Score Regression (LDSC) analysis [44] on those traits to ensure that 233 

they are genetically correlated with T2D and dietary exposures of interest (Supplementary 234 

Tables 17-18). Based on these factors, we selected 8 potential mediators: Body mass index 235 

(BMI) [28], Fasting insulin (FI) [29], Waist-hip ratio (WHR) [28], Diastolic blood pressure 236 

(DBP) [45], Systolic blood pressure (SBP) [45], Physical activity (PHY) [46] and Sedentary 237 

behavior at work (SED) [46], and Educational Attainment (EA, Supplementary Table 2) [47].  238 

Our MVMR analysis consisted of two parts: single-mediator MVMR and multiple-mediator 239 

MVMR. For both single-mediator and multiple-mediator MVMR, the genetic instruments 240 

selected for potential mediators and outcomes were based on the genetic variants that were 241 

considered strong, viable genetic instruments for the primary exposures (here, dietary 242 

preferences), namely exposure-centric instruments. In other words, all the exposure-centric 243 

instruments were the same instruments utilized for UVMR.  244 

In single-mediator MVMR, each of the 8 selected potential mediators was applied in a pairwise 245 

manner to estimate the direct effects of the primary exposures on T2D and related 246 

cardiometabolic traits as outcomes. In the multiple-mediator MVMR, at least 2 potential 247 

mediators were included when assessing the effect of the primary exposures on the outcomes.  248 

Mediation analysis  249 

We employed a two-step MR approach to conduct mediation analysis, which facilitates 250 

estimation of the indirect effect of a primary exposure on an outcome via a mediating trait and, 251 

consequently, the proportion mediated. For this analysis, the two steps are: (i) estimation of the 252 
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effect of a primary exposure on a mediating trait, and (ii) estimation of the direct effect of a 253 

mediating trait on an outcome, after adjusting for a primary exposure [48,49].  254 

We applied this approach to 3 exposure-outcome pairs of our main interest which were 255 

associations of cheese, muesli and dried fruits intake with T2D. Spreads intake association with 256 

T2D was excluded due to a very small number of genetic instruments available for spreads 257 

intake. For mediation analysis, BMI, DBP and EA were the mediating traits of interest because 258 

they attenuated those 3 associations in single-mediator MVMR.  259 

In the first step, we used “exposure-centric” instruments and obtained the effects of the 3 dietary 260 

preferences on BMI, DBP and EA individually via UVMR. In the second step, we estimated the 261 

direct effects of BMI, DBP and EA on T2D, accounting the effects of the dietary preferences, via 262 

MVMR. Because the 3 mediators were considered the primary exposures in the second step, we 263 

utilized all the genetic variants that serve as strong genetic instruments for each mediator, namely 264 

mediator-centric instruments, to obtain estimates of the second step with increased statistical 265 

power. We chose IVW as a main method for both steps.  266 

We then employed product of coefficients method to multiply the estimates (i.e., the effect sizes 267 

in beta coefficients) from the two steps and obtained the indirect effects of the 3 dietary 268 

preferences on T2D. These indirect effects were divided by the total effects of the dietary 269 

preferences on T2D estimated in the primary UVMR to calculate the proportions mediated by 270 

BMI, DBP and EA, respectively. 271 

Finally, we used RMediation package (v. 1.2.2) [50] to estimate indirect effects and approximate 272 

standard errors and 95% confidence intervals, using 3 different methods: Monte Carlo, 273 

distribution of product and asymptotic distribution (i.e., delta). The package uses the effect sizes 274 
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in beta coefficients and standard errors of the two steps including a parameter rho, which is a 275 

correlation (-1 < rho < 1) between the two steps which are exposure-to-mediator and mediator-276 

to-outcome pathways. We assumed the default value of 0 for this parameter for the 3 methods 277 

and they yielded similar confidence intervals for indirect effects. The indirect effect estimates 278 

from these 3 methods are comparable to the ones computed via product of coefficients method. 279 

Of the 3 methods, we relied on the estimates mainly from delta method, which is relatively more 280 

suitable for summary-level data in two-sample MR [51,52]. 281 

 282 

RESULTS 283 

Univariable MR detected 17 associations of dietary preferences with T2D and cardiometabolic 284 

risk factors. 285 

To examine the relationship between diet and T2D, we first performed two-sample MR on 38 286 

dietary traits as exposures and T2D plus 21 additional cardiometabolic risk factors as outcomes 287 

(Methods, Supplementary Tables 1-2). Supplementary Table 3 shows the number of genetic 288 

instruments our for 38 dietary traits, and we did not observe evidence of potential weak 289 

instrument bias from our generated genetic IVs as calculated by F-statistics (Supplementary 290 

Table 4). Of the 835 exposure-outcome pairs we tested, we considered only those significant 291 

after Bonferroni multiple test correction (nominal P < 5.99 x 10-5, Methods). Of 835 292 

associations, we excluded associations where less than 5 genetic instruments were used in the 293 

analyses. We applied three univariable MR (UVMR) statistics for our initial approach: Inverse 294 

variance weighted (IVW, random effects model), Weighted median (WM) and MR-Egger, 295 

requiring that at least two achieved a Bonferroni corrected p-value to claim significance 296 

(Methods). After filtering, we observed non-zero causal effect estimates for 17 exposure-297 
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outcome relationship (Figure 2). While 16 of them were robust specifically through IVW and 298 

WM (Supplementary Table 5), only one exceeded the given threshold p-value in all 3 sensitivity 299 

analyses.  300 

We observed that four dietary preferences had inverse associations with T2D. A one-SD 301 

increment in cheese intake (CHEESE), which was measured in a number of consumptions per 302 

day and per week, lowered T2D risk by 57% (IVW, β = -0.84; OR, 0.43 per 1 SD; 95% 303 

confidence (CI), 0.32 to 0.58; P = 2.91x 10-8). A one-SD higher intake of dried fruit 304 

(DRIEDFRU), which was measured in a number of pieces per day, also lower T2D risk (IVW, β 305 

= -1.23; OR, 0.29; 95% CI, 0.19 to 0.45; P = 2.49 x 10-8). Intake of muesli (MUESLI), which is 306 

primarily composed of rolled oats, was also observed to reduce the risk of T2D (IVW, β = -0.93; 307 

OR, 0.40; 95% CI, 0.36 to 0.68; P = 2.58 x 10-9). As a type of cereal, muesli intake was measured 308 

in a number of bowls per week. Lastly, intake of spreads (SPREADS), which consist of number 309 

of uses of various fat-based spreads, was shown to have the largest reduction in T2D risk (IVW β 310 

= -2.60; OR, 0.07; 95% CI, 0.02 to 0.21; P = 1.41 x 10-6), though we note that only five genetic 311 

instruments were used to assess the effect of spread intake against T2D.  312 

Intake of dried fruits, muesli, spreads and corn flakes/frosties are causally associated with 313 

cardiometabolic risk factors. 314 

Consistent with the above effect of diet on T2D susceptibility, dried fruit, muesli and spread 315 

intake also were related to several cardiometabolic risk factors. The protective effect of dried 316 

fruit intake on T2D was reflected through lower body mass index (BMI) (IVW, β = -0.51; OR, 317 

3.21; 95% CI, 0.60 to 0.72; P = 1.27 x 10-8) and lower waist-hip ratio (WHR) (IVW, β = -0.46; 318 

OR, 0.63; 95% CI, 0.53 to 0.74; P = 5.88 x 10-8). Also, dried fruit intake was shown to have a 319 
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mild reducing effect on the liver function measure of gamma-glutamyl transferase (GGT) (IVW, 320 

β = -0.08; OR, 0.92; 95% CI, 0.90 to 0.95; P = 5.25 x 10-7). Likewise, muesli intake lowered 321 

volumes of two adiposity-relevant organs: abdominal subcutaneous adipose tissue (ASAT) 322 

(IVW, β = -0.77; OR, 0.46 ; 95% CI, 0.32 to 0.66; P=2.45 x 10-5) and visceral adipose tissue 323 

(VAT) (IVW, β = -0.70; OR, 0.50; 95% CI, 0.37 to 0.67; P = 2.64 x 10-6). Intake of spreads 324 

elevated high-density lipoprotein (HDL) (IVW β = 1.00; OR, 2.73; 95% CI, 1.97 to 3.79; P=1.91 325 

x 10-9) and lower triglycerides (TG) (IVW β = -0.73; OR, 0.48; 95% CI, 0.37 to 0.63; P=1.17 x 326 

10-7). However, we note that only six genetic instruments were used to assess the relationship 327 

between spreads intake and these two lipids.  328 

In addition, intake of corn flakes/frosties (CORNFLAK), which was based on a number of bowls 329 

per week, increased ASAT by 89% (IVW, β = 0.64; OR, 1.89; 95% CI, 1.62 to .21; P = 6.55 x 330 

10-15) and BMI by 49% (IVW, β = 0.40; OR, 1.49; 95% CI, 1.23 to 1.80; P = 4.65 x 10-5). Intake 331 

of Corn flakes/frosties also elevated Pancreas volume (Pancvol) (IVW, β = 0.50; OR, 1.66; 95% 332 

CI, 1.41 to 1.95; P=8.94 x 10-10) but lowered Liver iron content (Liveriron) (IVW, β = -1.48; OR, 333 

0.23; 95% CI, 0.16 to 0.32; P = 1.70 x 10-17). Corn flakes/frosties intake to Liver iron content 334 

was the only association tested to be significant across all 3 sensitivity analyses. The MR-Egger 335 

causal estimate of this association was consistent with that of IVW and WM, and here the MR-336 

Egger intercept was 0.04 (P = 2.28 x 10-3, Supplementary Table 5), suggesting a suppressive 337 

effect. Corn flakes and frosties are processed, refined carbohydrate-based foods with a high 338 

glycemic index. Hence, the associations of corn flakes/frosties intake with these two organs 339 

suggest the presence of dietary role in affecting the health of diabetes-relevant organs in the 340 

development of T2D. Together, the relationships between these four dietary traits and 341 
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cardiometabolic risk factors agree with observational data that suggests both central adiposity 342 

and dyslipidemia are strongly linked to T2D susceptibility [53,54].  343 

Preferences for Savory/Caloric foods and Strong-flavored foods are causally linked with 344 

cardiometabolic risk factors.  345 

Finally, UVMR revealed two food preference traits related with cardiometabolic risk factors. 346 

Preference for savory/caloric (SAVCAL) food increased VAT (IVW, β = 0.13; OR, 1.14; 95% 347 

CI, 1.09 to 1.19; P = 2.70 x 10-9). SAVCAL falls under one of main food liking categories, 348 

namely 'highly-palatable’, which consists of high caloric, energy-dense foods, such as meat and 349 

deep-fried foods. Preference for strong flavored (STR) food increased HDL (IVW, β = 0.06; OR, 350 

1.06; 95% CI, 1.04 to 1.08; P = 7.42 x 10-12), though the effect size was relatively modest. STR 351 

is a part of the other main food liking category, 'acquired’, which consists of bitter, spicy, sharp 352 

flavored foods, such as coffee and cheese, where preferences are acquired throughout life. 353 

To evaluate the directionality of the causal effect estimated between dietary traits and outcomes, 354 

we conducted the MR-Steiger test (Supplementary Table 6) [41]. We observed that 14 of the 17 355 

exposure-outcome associations were predicted to have the causal effect direction indicated by 356 

UVMR analyses. For the remaining three, the test showed significant reverse causality (corn 357 

flakes/frosties intake to Liver iron content, Steiger P = 3.23 x 10-19) or was inconclusive on this 358 

test (muesli intake to ASAT and VAT, Steiger P > 0.05). The possible explanations for the 359 

opposite direction of causality could be due to the presence of pleiotropy in genetic instruments 360 

and unmeasured confounding, which can be examined through inclusion of potential mediators 361 

in multivariable MR (MVMR).  362 
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MR-RAPS included weak genetic instruments and detected 7 additional associations.  363 

To identify additional exposure-outcome associations that could provide more information about 364 

the Diet-T2D relationship, we employed MR-RAPS (Robust Adjusted Profile Score), an 365 

alternative to the 3 standard MR methods, to re-assess 17 nominally significant (P < 1 x 10-3) 366 

(Supplementary Table 7) associations in at least 2 sensitivity analyses. Thus, in addition to 367 

strong instruments selected for UVMR, we included weak instruments, which are sub-genome 368 

wide significant (P < 1 x 10-4), for MR-RAPS analysis. 369 

Out of 17 associations, we identified seven additional exposure-outcome effects that met our 370 

criteria for significance (Methods, Figure 3). These associations surpassed the Bonferroni-371 

adjusted p-value (P < 5.99 x 10-5) applied in the primary MR analysis (Supplementary Table 372 

8) and were in the correct direction of causality based on Steiger’s test (Supplementary Table 373 

9). The directionality of these seven associations estimated by MR-RAPS and standard MR 374 

methods was concordant, although as expected the effect size estimated from in MR-RAPs based 375 

on a larger panel of SNP (P < 1 x 10-3) was substantially lower in many cases, relative to 376 

instruments from genome-wide significant variants (P < 5 x 10-8).  377 

In MR-RAPS, elevated preference for cheese consumption lowered BMI (β = -0.18; OR, 0.84 378 

per 1 SD; 95% CI, 0.82 to 0.86; P=1.35 x 10-33) and higher preference for muesli also lowered 379 

BMI (β = -0.16; OR, 0.85 per 1 SD; 95% CI, 0.83 to 0.88; P = 6.15x 10-28). These 2 associations 380 

were in line with the protective effects of cheese and muesli intake on T2D observed in the 381 

primary analysis. Also, they support that BMI is a potential mediator of the associations of these 382 

2 dietary traits with T2D. Conversely, preference for coffee intake was shown to elevate BMI (β 383 

= 0.09; OR, 1.09 per 1 SD; 95% CI, 1.06  to 1.13; P = 1.19 x 10-9). Additionally, MR-RAPS 384 
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suggested a negative link between alcohol intake and triglycerides (β = -0.11; OR, 0.90 per 1 SD; 385 

95% CI, 0.88 to 0.92; P = 7.51 x 10-28).  386 

Preference for STR was linked to slightly lower ASAT (β = -0.06; OR, 0.94 per 1 SD; 95% CI, 387 

0.93 to 0.96; P= 3.30 x 10-15). Preference for SAVCAL, which was shown to have increasing 388 

effect on VAT in the primary analysis, elevated liver fat content (Liverfat) (β = 0.07; OR, 1.07 389 

per 1 SD; 95% CI, 1.05 to 1.09; P = 7.11 x 10-17). Preference for highly palatable foods (PAL), 390 

whose sub-category is SAVCAL, increased liver fat content (β = 0.17; OR, 1.18 per 1 SD; 95% 391 

CI, 1.12 to 1.24; P = 5.91 x 10-11).  392 

We also explored MR-RAPS with spreads intake and HDL, TG and T2D, given only 5-6 genetic 393 

instruments were utilized in UVMR. With inclusion of weak instruments, the relationship 394 

between spreads intake and these traits did not reject the null hypothesis, and the strong causal 395 

effects, particularly on HDL and TG, estimated in UVMR were no longer observed 396 

(Supplementary Table 10). Given the high p-value, the extremely large effect of spreads intake 397 

on T2D was greatly reduced with additional instruments (β = -0.083; OR, 0.92 per 1 SD; 95% 398 

CI, 0.82 to 1.03; P = 0.15). 399 

Multivariable MR suggests that BMI is a common mediating risk factor for dietary exposure-400 

outcome relationships. 401 

To evaluate the 17 associations observed in the UVMR and better understand the underlying 402 

causal pathways on outcomes, we next conducted multivariable MR (MVMR) experiments. We 403 

employed 8 well-established non-dietary T2D risk factors as potential mediators (Methods), 404 

including BMI, WHR, Fasting insulin adjusted for BMI (FI), Educational attainment (EA), 405 
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Diastolic blood pressure (DBP), Systolic blood pressure (SBP), Physical activity (PHY) and 406 

Sedentary behavior at work (SED, Supplementary Table 2). We found that the causal effects 407 

observed for 15 exposure-outcome associations were either substantially or fully attenuated after 408 

including BMI in single-mediator MVMR (Figure 4, Supplementary Table 11), which assessed 409 

the effect of an exposure on an outcome after adjustment for a single mediating trait in a pairwise 410 

manner. For example, BMI appeared to be responsible for mediating the protective effect of 411 

cheese intake against T2D, as no other trait attenuated this association (Supplementary Table 412 

11). In addition, BMI completely attenuated the association between SAVCAL and VAT as well 413 

as the associations of corn flakes/frosties intake with ASAT, Liver iron content, and Pancreas 414 

volume. Furthermore, BMI yielded the largest attenuation in spreads intake to T2D and spreads 415 

intake to HDL associations. This observation shows that the preference of various spreads is 416 

closely linked with adiposity and therefore could contribute to cardiometabolic health.  417 

Since the 4 dietary associations with T2D were our primary interest, we also checked whether 418 

there were additional factors that attenuated any of those associations beyond BMI 419 

(Supplementary Table 11). The single-mediator MVMR suggested that DBP could be an 420 

additional driver for the observed effect of dried fruit intake on BMI, GGT, T2D and WHR and 421 

the observed effect of muesli intake on ASAT, T2D and VAT. However, the effect of DBP as a 422 

potential mediator on these associations were not clearly determinable (P > 0.05) and segregated 423 

relatively wide 95% confidence intervals. Surprisingly, there was residual direct effect of dried 424 

fruit intake on T2D even after accounting the mediating effect of BMI in the single-mediator 425 

MVMR. We observed that EA was an additional factor that attenuated the associations of muesli 426 

intake with T2D, ASAT and VAT, to a degree that comparable to those by BMI (Figure 5). 427 
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Followed by single-mediator MVMR, we then conducted additional MVMR experiments to re-428 

estimate the effect of the exposures in joint with multiple mediators on the outcomes. We carried 429 

out 2 different multiple-mediator MVMR analyses: non-BMI mediators MVMR and all-inclusive 430 

MVMR, which includes all selected potential mediating traits. The purpose of multiple-mediator 431 

MVMR was to verify whether BMI is the primary mediators of the associations amongst the 432 

selected potential mediating traits. In non-BMI mediators MVMR, we checked whether non-433 

BMI mediators together as a group can yield greater attenuation in the absence of BMI. In all-434 

inclusive MVMR, we examined the direct effect of the exposures on the outcomes by accounting 435 

the summative effect of all mediators and compared with that of non-BMI mediators MVMR.  436 

Overall, the multiple-mediator MVMR showed that BMI was a major mediator for most of the 437 

associations observed (Supplementary Figure 4, Supplementary Table 12). For few 438 

associations, it was not immediately clear if BMI was the strongest mediator. The multiple-439 

mediator MVMR further supported that BMI was a definitive primary risk factor for mediating 440 

the protective effect of cheese intake against T2D. These analyses also indicated that summative 441 

effect of multiple mediators does not necessarily result in greater attenuation.  442 

BMI was a common mediator for the 3 dietary associations identified by MR-RAPS.  443 

For further assessment, we performed single-mediator MVMR on the seven additional 444 

associations detected in MR-RAPS (Supplementary Table 13). The same eight potential 445 

mediators were employed to determine whether same, non-dietary risk factors mediate these 446 

associations. Notably, none of the potential mediators attenuated the Cheese Intake-BMI and 447 

ALC-TG associations. This underscores our observation that BMI is the primary mediator for the 448 

effect of cheese intake on T2D. BMI was shown to attenuate PAL-Liver fat content, SAVCAL-449 
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Liver fat content and STR-ASAT association (Figure 6). EA was also a mediator for muesli 450 

intake-BMI, SAVCAL-Liver fat content, and STR-ASAT associations (Figure 7). These two 451 

findings were congruent with the observations in the MVMR on the dietary associations from 452 

UVMR. 453 

BMI was a major contributor to the dietary associations with T2D in the mediation analysis. 454 

In addition to MVMR, we took two-step MR approach (Methods) to conduct mediation analysis 455 

and estimate the indirect effects of cheese, dried fruit and muesli intake on T2D after accounting 456 

for BMI, DBP and EA individually as mediating traits (Supplementary Tables 19-20). Spreads 457 

intake-T2D association was excluded due to a small number of strong genetic instruments (n=5) 458 

used to test the association. Whereas MVMR estimates the direct effect of a primary exposure on 459 

outcome, mediation analysis quantifies the indirect effect mediated by a secondary exposure. We 460 

compared the results of mediation analysis to those of MVMR and evaluated those 3 mediating 461 

traits as potential mediators for the dietary associations with T2D. Figure 8 displays the 462 

proportion of the effect of each dietary preference on T2D explained by each mediator 463 

separately.  464 

Only BMI explained 44.97% (95% CI 24.85%, 65.09%) of the total effect of cheese intake on 465 

T2D, confirming the finding of MVMR that BMI is the only mediator for the protective effect of 466 

cheese intake on T2D. After adjustment for cheese intake, elevated BMI increased risk of T2D 467 

(IVW, β = 0.86; OR 2.36; 95% CI, 2.21 to 2.52; P = 1.20 x 10-144) but the associations of DBP 468 

and EA were not significant. The BMI-mediated effect constituted 35.77% (95% CI 22.76%, 469 

47.97%) and 58.13% (95% CI 27.99%, 88.27%) of the total effects of dried fruit and muesli 470 

intake, respectively, on T2D.  471 
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The mediation analysis also helped clarify that DBP does not mediate the associations of dried 472 

fruit and muesli intake with T2D, because the DBP-mediate effects of dried fruit (1.54%, 95% CI 473 

-0.02%, 3.25%) and muesli intake (4.52%, 95% CI 0.29%, 8.72%) on T2D were minimal. 474 

Consistent with MVMR, EA was another mediator for muesli intake-T2D association. Given that 475 

higher EA reduces the risk of T2D (IVW, β = -0.49; OR 0.61; 95% CI, 0.57 to 0.65; P = 1.20 x 476 

10-46), EA explained 54.9% (95% CI 36.6%, 73.2%) of the total effect of muesli intake on T2D. 477 

In agreement with MVMR, the mediation analysis demonstrated that BMI is a common factor 478 

that substantially mediates the associations of cheese, dried fruit and muesli intake with T2D. 479 

DISCUSSION 480 

Type 2 diabetes mellitus (T2D) is a chronic disease that requires pharmacologic and lifestyle 481 

interventions for effective disease management. In particular, diet plays an important role in 482 

modulating the risk of T2D and influencing disease progression and onset of complications. 483 

Though past observational studies have shown that certain diets can promote good metabolic 484 

health or confer impaired glucose homeostasis [55,56], they cannot directly test causality. 485 

Hence, we conducted Mendelian randomization (MR) study to examine genetic effects of various 486 

dietary preferences on T2D and 21 related cardiometabolic risk factors in order to determine 487 

which, if any, dietary exposures exerted causal effects on susceptibility to T2D or related traits. 488 

In univariable MR (UVMR), the most notable associations were between intake of cheese, dried 489 

fruits, muesli and spreads and T2D. These four inverse associations correspond to previously 490 

reported observational findings. Some prospective cohort studies found that total dairy 491 

consumption was associated with reduced T2D risk [57,58]. Cheese, a nutrient-dense dairy 492 

product with many bioactive compounds, has been observed to lower cardiovascular mortality 493 
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and incidence of T2D [59]. Furthermore, the association between cheese intake and T2D could 494 

be partly explained by the interaction between lactase LCT gene and milk in the susceptibility of 495 

T2D [60,61]. High intake of whole grains, not refined grains, was shown to lower T2D risk [62]. 496 

The dose-response meta-analysis provided weak-to-moderate evidence that increasing servings 497 

of fiber-rich fruits and vegetables can help reduce incidence of T2D and related mortality 498 

[63,64]. Dietary fat is a low-glycemic source of energy and bioactive fatty acids that affect 499 

pancreatic beta cell metabolism, which is critical for glucose homeostasis [65]. Though total 500 

dietary fat consumption was not associated with T2D, some dietary fats, particularly regular 501 

dairy fats, have been shown to have benefits of reducing risk of T2D [66].   502 

The follow-up multivariable MR experiments showed that socioeconomic and cardiometabolic 503 

risk factors play a mediating role in the observed associations. Importantly, body mass index 504 

(BMI) [67,68] was the factor that attenuated most of the dietary associations. These results 505 

reflect both the long-standing observation that obesity is a strong etiological risk factor for T2D, 506 

but also the close relationship between diet and adiposity. These results explain, in part, why 507 

some dietary preferences were shown to be associated with BMI including other adiposity 508 

related traits, such as WHR and MRI-based volumes of central, abdominal adipose tissues in 509 

UVMR. Surprisingly, none of the associations were affected by WHR, which is an alternative 510 

measure of adiposity. This observation might be due to difference in statistical power because 511 

GWAS data for BMI had a slightly larger sample size than for WHR. Alternatively, it might 512 

suggest that BMI and WHR are implicated in different pathways. In addition, we identified that 513 

EA was an additional mediating trait for muesli intake associations. 514 

In the two-step MR mediation analysis, we were able to further interpret our initial observations 515 

from MVMR. The analysis further supported the specific diet preferences, particularly cheese 516 
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intake, mediate susceptibility to T2D partly via BMI. It also concurred with MVMR that DBP 517 

was not a potential mediating factor in association between diet and T2D, aside from BMI and 518 

EA. Such observations suggest that adiposity and education are factors that diet interacts with to 519 

play an essential role in cardiometabolic health. 520 

However, the study has limitations. Other than the three GWAS data sets for various dietary 521 

preference traits used for this study, there are no additional genetic data that are available in 522 

comparable sample size to replicate or further examine the findings. Also, the GWAS data for 523 

dietary preferences were specifically based on participants with European ancestry background 524 

that our results lack generalizability to other populations or ancestries. Because these dietary 525 

preferences are qualitatively measured via self-reported questionnaires from participants, they 526 

could be prone to bias. In the 2-step MR mediation analysis, the mediated (indirect) effect 527 

estimates should be taken with caution as the outcome of our interest was T2D, which is binary, 528 

that they were defined in noncollapsible odds ratio and therefore may not be accurate [69,70]. 529 

Lastly, because T2D is a multifactorial and heterogeneous disease, there could be unmeasured 530 

risk factors that were not tested in this study to further explain diet-T2D association.  531 

Collectively, our findings show that diet is not an independent risk factor for T2D but dependent 532 

of established T2D risk factors, particularly obesity and low education level, to causally 533 

influence liability to T2D. These imply that diet plays a role in the maintenance of healthy 534 

weight and making food choices could be affected by education status and therefore is important 535 

for reducing T2D risk. The study also highlights that genetic data associated with diet should be 536 

integrated in tailoring effective dietary interventions for individuals at risk for poor metabolic 537 

health. Though further investigation is needed to confirm these findings, the current study 538 
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provides positive genetic evidence that diet is one of the factors that contribute to susceptibility 539 

to T2D.   540 
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FIGURE LEGENDS 560 

Figure 1: Schematic workflow of the Mendelian Randomization study on diet and T2D.  561 

This figure describes how the MR study on diet and T2D was conducted in 4 steps to investigate 562 

their relationship and evaluate the causality. After selecting viable genetic variants that meet the 563 

given criteria, univariable MR analysis estimated the total effects of dietary preferences on T2D 564 

and 21 related cardiometabolic risk factors. Then, MR-RAPS, which is an alternative method to 565 

standard MR, included weak instruments to re-evaluate the nominally significant 566 

exposure:outcome associations and  detect additional associations. Finally, the significant 567 

associations from UVMR and MR-RAPS were further assessed by estimating the direct effects 568 

of dietary preferences on the outcomes after accounting for potential mediators in MVMR. 569 

Abbreviations – MR, Mendelian Randomization; MR-RAPS, Mendelian Randomization Robust 570 

Adjusted Profile Score; T2D, Type 2 diabetes mellitus; UVMR, Univariable Mendelian 571 

randomization. 572 

Figure 2: Forest plot for 17 associations from UVMR.  573 

This figure is a forest plot for 17 associations from UVMR-IVW and UVMR-WM in descending 574 

order of OR for each dietary preference trait. Given the Bonferroni-corrected p-value, these 575 

associations passed the significance threshold (P < 5.99 x 10-5) in MR using IVW and WM 576 

methods. Abbreviations – IVW, Inverse variance weighted; MR, Mendelian Randomization; OR, 577 

Odds ratio; UVMR, Univariable Mendelian randomization; WM, Weighted median. 578 

Figure 3: Forest plot for 7 associations from MR-RAPS. 579 

This figure is a forest plot for 7 associations identified via MR-RAPS. In comparison, the results 580 

from MR-RAPS analysis using only weak instruments and using both strong and weak 581 

instruments are consistent in direction with that of IVW method in UVMR. Abbreviations – 582 
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IVW, Inverse variance weighted; MR-RAPS, Mendelian Randomization Robust Adjusted Profile 583 

Score; UVMR, Univariable Mendelian Randomization. 584 

Figure 4: Forest plot for single-mediator MVMR using BMI vs. UVMR-IVW.                       585 

This figure is a forest plot that displays the results of both single-mediator MVMR using BMI as 586 

a potential mediator and UVMR-IVW on 15 associations. Compared to the results of univariable 587 

MR using IVW, the strengths of 15 associations were either partially or completely attenuated by 588 

BMI. Abbreviations – BMI, Body mass index; IVW, Inverse variance weighted; MVMR, 589 

Multivariable Mendelian Randomization; UVMR, Univariable Mendelian Randomization. 590 

Figure 5: Forest plot for single-mediator MVMR using BMI and EA on Muesli intake 591 

associations. This figure is a forest plot for Muesli-ASAT, T2D and VAT associations in UVMR 592 

and single-mediator MVMR. Aside from BMI, EA was an additional factor that attenuated the 593 

muesli intake associations, to a degree that comparable to those by BMI. Abbreviations – ASAT, 594 

Abdominal subcutaneous adipose tissue; BMI, Body mass index; EA, Educational attainment; 595 

MVMR, Multivariable Mendelian Randomization; T2D; UVMR, Univariable Mendelian 596 

Randomization; VAT, Visceral adipose tissue. 597 

Figures 6: Forest plot for single-mediator MVMR using BMI on the associations from MR-598 

RAPS. This figure is a forest plot for single-mediator MVMR using BMI on the following 599 

associations detected in MR-RAPS: PAL-Liver fat content, SAVCAL-Liver fat content and 600 

STR-ASAT associations. As observed in single-mediator MVMR on the associations in UVMR, 601 

BMI was a common mediating trait that attenuated the effects of these 3 dietary preferences on 602 

Liver fat content and ASAT. Abbreviations – ASAT, Abdominal subcutaneous adipose tissue; 603 

BMI, Body mass index; MR-RAPS, Mendelian Randomization Robust Adjusted Profile Score; 604 
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MVMR, Multivariable Mendelian Randomization; PAL, Highly palatable; SAVCAL, Savory/ 605 

caloric; STR, Strong flavored; UVMR, Univariable Mendelian Randomization. 606 

Figures 7: Forest plot for single-mediator using EA on the associations from MR-RAPS. This 607 

figure is a forest plot for single-mediator MVMR using EA on the following associations 608 

detected in MR-RAPS: SAVCAL-Liver fat content, STR-ASAT and muesli intake-BMI 609 

associations. Forest plot for single-mediator MVMR on 3 associations in MR-RAPS. Consistent 610 

with the observations in MVMR on the associations, particularly with muesli intake, in UVMR,  611 

EA was another mediating factor for dietary associations with cardiometabolic risk factors. 612 

Abbreviations – ASAT, Abdominal subcutaneous adipose tissue; BMI, Body mass index; EA, 613 

Educational attainment ; MR-RAPS, Mendelian Randomization Robust Adjusted Profile Score; 614 

MVMR, Multivariable Mendelian Randomization; SAVCAL, Savory/ caloric; STR, Strong 615 

flavored. 616 

Figure 8: Forest plot for two-step MR mediation analysis. This figure is a forest plot for two-step 617 

MR mediation analysis that includes 95% confidence interval for estimated indirect effect and 618 

proportion mediated. It displays the indirect effects of 3 dietary preferences on T2D mediated 619 

individually by BMI, DBP and EA via RMediation package. Delta method (“asymptotic 620 

distribution”) was used to estimate the mediated effects by these 3 factors and calculate 95% 621 

confidence intervals. Consistent with MVMR, BMI was a major mediator for the 3 dietary 622 

associations with T2D and EA was additional mediator exclusively for the effect of muesli intake 623 

on T2D. Abbreviations – BMI, Body mass index; DBP, Diastolic blood pressure; EA, 624 

Educational attainment; MR, Mendelian Randomization; MVMR, Multivariable Mendelian 625 

Randomization; T2D, Type 2 diabetes mellitus. 626 

SUPPLEMENTARY FIGURE AND TABLE LEGENDS   627 
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Supplementary Table 1: GWAS data for dietary preferences used in MR. 628 

 Supplementary Table 2: GWAS data for T2D and 21 cardiometabolic risk factors used in MR.  629 

Supplementary Table 3:  Number of genetic instruments selected for each exposure. 630 

Supplementary Table 4: F-statistics of the genetic instruments for exposures. 631 

Supplementary Table 5: 17 significant associations (P < 5.99 x 10-5) in UVMR. 632 

Supplementary Table 6: MR-Steiger test for the directions of the 17 associations in UVMR. 633 

Supplementary Table 7: 17 Nominally significant (P < 1 x 10-3) associations in UVMR. 634 

Supplementary Table 8: 7 significant associations (P < 2.94 x 10-3) in MR-RAPS. 635 

Supplementary Table 9: MR-Steiger test for the directions of the 17 nominally significant 636 

associations in UVMR. 637 

Supplementary Table 10: Re-assessment of spreads intake associations in MR-RAPS. 638 

Supplementary Table 11: Single-mediator MVMR using 8 potential mediators. 639 

Supplementary Table 12: Multiple-mediator MVMR (all-inclusive vs. non-BMI). 640 

Supplementary Table 13: Single-mediator MVMR on 7 significant associations in MR-RAPS. 641 

Supplementary Table 14: A table of genetic instruments for exposures, outcomes and potential 642 

mediators for UVMR and MVMR. 643 

Supplementary Table 15: A table of genetic instruments for exposures, outcomes and potential 644 

mediators for MR-RAPS. 645 

Supplementary Table 16: A summary table of UVMR on 835 exposure-outcome associations. 646 

Supplementary Table 17: A table of genetic correlations between potential mediators and 647 

exposures. 648 

Supplementary Table 18: A table of genetic correlations between potential mediators and 649 

outcomes. 650 
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Supplementary Table 19: 2-step MR mediation analysis on 3 dietary associations with T2D. 651 

Supplementary Table 20: Indirect effect, proportion mediated and 95% confidence intervals via 652 

RMediation package. 653 

Supplementary Table 21: Estimates of bias and Type 1 error rates due to sample overlap for the 654 

associations in UVMR and MR-RAPS. 655 

Supplementary Figure 1: Framework of MR  656 

Mendelian randomization employs genetic variants (e.g., SNPs)  associated with an exposure as 657 

instrumental variables (IVs). Given that the selected IVs meet the 3 assumptions for IVs, the 658 

effect of an exposure on an outcome of interest is estimated. 659 

Supplementary Figure 2: Genetic instrument selection via PLINK  660 

The genetic instrument process was taken in 3 steps. First, variants that are rare (MAF < 0.01) or 661 

have low imputation quality (INFO < 0.5) were eliminated. Also, the datasets were screened for 662 

duplicate variants, if any. Second, a tool PLINK was used to perform clumping procedure and 663 

select genome-wide significant variants with low linkage disequilibrium. Last, only non-664 

palindromic variants were taken into estimation of instrument strength using F-statistics formula 665 

to determine whether they are strong instruments that can be used in MR to test exposure-666 

outcome associations. 667 

Supplementary Figure 3: Framework of Multivariable MR (MVMR) 668 

Multivariable MR (MVMR) assumes that genetic instruments selected are pleiotropic and 669 

therefore also associated with other traits (e.g., secondary exposure). The secondary exposure 670 

can be a mediator or confounder. It assesses the exposure-outcome association with inclusion of 671 

the secondary exposure. Whereas, univariable MR estimates the total effect of the exposure on 672 
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the outcome, MVMR estimates the direct effect of exposure on outcome after adjusting for the 673 

effect of a potential confounder. 674 

Supplementary Figure 4: Forest plot for multiple-mediator MVMR 675 

Forest plot for multiple-mediator multivariable MR for comparison. The plot compares the 676 

summative effects of all mediators on the associations to that of all non-BMI mediators to 677 

determine whether BMI is the main driver for the causal effects of the dietary traits on T2D and 678 

cardiometabolic risk factors. 679 
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