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Abstract

Mendelian randomization uses genetic variants as instrumental variables to estimate the causal effect of a
modifiable health exposure or drug target on a downstream outcome. A crucial assumption for accurate
estimation of the average causal effect in MR, termed Homogeneity, is that the causal effect does not
vary across levels of any instrument used in the analysis. In contrast, the science of pharmacogenetics
seeks to actively uncover and exploit genetically driven effect heterogeneity for precision medicine. In this
paper we consider a recently proposed method for performing pharmacogenetic analysis on observational
data (The Triangulation WIthin a STudy (TWIST) framework), and explore how it can be combined
with traditional MR approaches to properly characterise average and causal effects and genetically driven
effect heterogeneity. We propose two new methods which not only estimate the genetically driven effect
heterogeneity but also enable the estimation of a causal effect in the genetic group with and without the
risk allele separately. Both methods utilise homogeneity-respecting and homogeneity-violating genetic
variants and rely on a different set of assumptions. Using data from the ALSPAC study, we apply our
new method to estimate the causal effect of smoking before and during pregnancy on offspring birth
weight in mothers whose genetics mean they find it (relatively) easier or harder to quit.

1 Introduction

Confirming or refuting causal relationships is difficult in observational study settings as one can never be
sure if all confounders have been identified, appropriately measured and adjusted for. However, one can
take advantage of random genetic inheritance from parents to offspring in an observational analysis to help
uncover true causal mechanisms and estimate the causal effect of health interventions [1]. Mendelian random-
ization (MR) is the formal science of using genetic variants as instrumental variables (IV) for this purpose [2].
Rather than testing the direct association between an exposure and outcome, a genetically predicted exposure
is used instead. Under the assumption of random distribution of genetic variants from parents to offspring
at conception, an individual’s genetically predicted exposure should be far less susceptible to confounding
bias. MR requires three core assumptions to hold for a genetic variant, G, to be valid instrument to test for
a causal relationship between a modifiable exposure and health outcome [3]. These are termed the relevance
assumption, the independence assumption and the exclusion restriction. To go beyond testing for causality,
an additional assumption is required to estimate (or ‘point identify’) the causal effect. The most commonly
used fourth assumption is termed Homogeneity. It states that the causal effect an individual experiences is
not affected by the value of their genetic instrument. When this is satisfied, an IV analysis can in theory
estimate the average causal effect of intervention on the exposure for an entire population. However, for
continuous outcomes this assumption is often biologically implausible unless a suitable ‘typical’ range for the
exposure is defined [4]. In cases where the Homogeneity assumption is deemed implausible, an alternative
assumption termed Monotonicity can instead be applied to enable causal estimation [5]. In the context of
an MR study using a genetic variant G, Monotonicity means that there is no individual whose exposure
would be higher if they did not carry the exposure raising allele of G than if they did. Such individuals
are termed ‘Defiers’, and assuming that none exist allows the estimation of the causal effect in the genetic
‘Complier’ subset - defined as the group of individuals whose exposure level would always be greater with
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the exposure-raising allele of G than without.

Although Homogeneity is typically a baseline assumption for most MR studies, in pharmacogenetic investi-
gations genetic variants are explicitly sought to explain apparent heterogeneity in a treatment’s effectiveness.
For example, many pharmaceutical interventions are pro drugs, which require a specific metabolic process
to occur for the patient to experience the full treatment effect. If the patient has a genetic variant that
hinders the drug’s metabolism (e.g. a ‘Loss-of-function’ (LoF) mutation), the treatment effect may be less
pronounced in individuals who carry it. For example, Pilling et al. [6] showed that CYP2C19 LoF alleles
were associated with higher incidence of ischaemic events amongst those taking the commonly prescribed
anti-stroke drug, Clopidogrel. National Institute of Health and Care Excellence guidance now recommends
genotyping individuals on Clopidogrel who experience an ischaemic event to be genotyped, with a view to
altering their medication if the LoF variant is found [7].

Observational data can be used to quantify the extent of genetically driven treatment effect heterogene-
ity, but the analysis can be compromised by strong confounding by indication and off-target genetic effects
on the outcome of interest that are independent of any gene-drug interaction. A recently proposed method
of pharmacogenetic causal inference using observational data - Triangulation Within a Study (TWIST)[5] -
defined the assumptions required to estimate the difference in treatment effect estimates between those with
and without a pharmacogenetic variant, as a measure of genetically driven effect heterogeneity. A range
of different methods were proposed to estimate this quantity as well as a framework for combining them if
sufficiently similar. Although it is a useful tool for estimating this difference, in its most basic form it cannot
estimate the causal effect of treatment on the outcome in each genetic group, which is a limitation.

Instances of genetically driven effect heterogeneity do exist in main stream epidemiological investigations of
non-pharmaceutical interventions. For example, smoking in pregnancy has been shown to have measurable
consequences on offspring birth weight, which is an important marker of long-term health [8]. Specifically,
Freathy et al. [9] show that single-nucleotide polymorphism (SNP) rs1051730 on chromosome 15 is associ-
ated with smoking cessation during pregnancy as well as smoking quantity. However, the same SNP is not
associated with smoking initiation. Therefore, mothers with the rs1051730 risk allele are not more likely to
smoke than mothers without, but if they do smoke they tend to smoke more heavily than non-carriers and
find it harder to quit, meaning the effect of smoking on birth weight could easily be moderated by rs1051730.

In this paper we review the standard MR method, which utilises homogeneity-respecting genetic instruments,
and the TWIST method, which utilises homogeneity-violating instruments. We highlight the different con-
ceptual starting points for each approach, in terms of their modelling assumptions, and how estimates are
biased if these assumptions are violated. Subsequently, we explore the integration of both sets of instruments
into a unified analysis in order to properly characterise the average causal effects and genetically driven effect
heterogeneity. Using data from the ALSPAC study, we apply our new method to estimate the causal effect
of smoking on offspring birth weight in distinct genetic subgroups of pregnant mothers; the magnitude of the
effect heterogeneity; and the potential public health impact of genetically targeted treatment going forward.

2 Methods

Let S and G be binary variables capturing the exposure and genetic variant of interest. In our applied
example S reflects the smoking status of the mother. We allow for the effect of the exposure on the outcome,
Y, to be altered through an interaction with G, denoted as S∗ = G×S. To motivate the method, we assume
the following linear interaction model for the mean outcome Y given S,G, and additionally measured (Z)
and unmeasured (U) confounders of S and Y respectively:

E[Y |S,G,Z, U ] = γ0 + β1SG+ β0S(1−G) + γY GG+ γY ZZ + γY UU

= γ0 + β0S + (β1 − β0)S
∗ + γY GG+ γY ZZ + γY UU (1)

2

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.24306667doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.05.24306667
http://creativecommons.org/licenses/by/4.0/


S S∗ Y

G

UZ

(a) DAG as shown in
Equation (1)
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as shown in Equation (2)
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(c) DAG when IV3-IV4 hold as
shown in Equation (3)

S S∗ Y

G

UZ

(d) DAG when IV1-IV4
hold as shown in Equation (4)
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β

(e) Reduced DAG often shown in
MR studies with IV1-IV4 hold

Figure 1: Diagram reduces step wise with respect to IV1-IV4 assumptions.

Figure 1 (a) depicts the directed acyclic graph consistent with the model described in equation (1) and
highlights various key assumptions using coloured arrows. We first consider the traditional set of assumptions
required in order to estimate the average causal effect (ACE) of the exposure on the outcome. We can express
the ACE as the expected contrast between the potential outcomes of all mothers if they smoked during
pregnancy and if they did not

ACE = E[Y (S = 1)− Y (S = 0)]

These assumptions are [10]

IV1 (relevance) : The genetic instrument G predicts the exposure S (a red arrow);

IV2 (independence) : The genetic instrument G is independent of any confounders U (no blue arrow);

IV3 (exclusion) : The genetic instrument G is independent of the outcome Y given the exposure
S and any confounders U (no orange arrow).

IV4 (homogeneity) : The effect of the exposure S on the outcome Y is independent of the genetic
instrument G (no grey arrow).

Assumptions IV1-4 enable us to extract the ACE via an IV analysis, by turning the general model and causal
diagram in Figure 1 (a) into the reduced model and causal diagram in Figure 1 (e), through the following
steps:

E[Y |S,G,Z, U ] = γ0 + β0S + (β1 − β0)S
∗ + γY GG+ γY ZZ + γY UU

(from IV3) = γ0 + β0S + (β1 − β0)S
∗ + γY ZZ + γY UU (2)

(from IV4) = γ0 + βS + γY ZZ + γY UU (3)

(from IV1 and IV2) = γ∗
0 + βŜ + γY ZZ + ϵY , (4)
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where Ŝ = E[S|G] and ϵY is a residual error term that is crucially independent of Ŝ. The reduced causal
diagram in Figure 1 (e) is often shown in MR studies.

2.1 What does an MR analysis estimate under violation of IV2-4?

We now consider what the MR estimator targets, assuming the data model described in equation (1), when
IV1 holds but initially, assumptions IV2-IV4 do not. Under our assumed model as described in equation (1),
the MR estimator is as follows:

Cov(G, Y )

Cov(G,S)
=

β1E[S|G = 1]− β0E[S|G = 0]

E[S|G = 1]− E[S|G = 0]
+

γY G + γY U (E[U |G = 1]− E[U |G = 0])

E[S|G = 1]− E[S|G = 0]

=
β1E[S|G = 1]− β0E[S|G = 0]

E[S|G = 1]− E[S|G = 0]
+ B (5)

IV1 guarantees that the denominator of (5) is non-zero and so the ratio terms are well defined. The second
term in (5), B, represents the bias due to violation of IV2 and IV3. If Homogeneity, but Monotonicity holds,
we show in Supplementary material that equation 5 equals the Complier Average Causal Effect (CACE) plus
any bias due to violation of IV2 and IV3. Compliers are defined as individuals that smoke if they have the
risk allele (G = 1) and do not smoke if they do not have it (G = 0).

2.2 Genetically moderated exposure effect (GMEE)

Genetic instruments that satisfy the Homogeneity assumption enable estimation of the ACE. However, in
studies into the consequences of smoking versus not smoking, this assumption will be demonstrably false if
attempting the analysis with a SNP like rs1051730, since the smoking patterns of people with and without
this variant are likely to be different. In this case, a more practical starting point would be to assume the
underlying DAG structure in Figure 1 (left) and aim to quantify the magnitude of Homogeneity violation as
the difference in smoking effects between the two genetic sub-groups. This ‘genetically moderated exposure
effect’ (GMEE) is represented by arrow between S∗ and the outcome Y . From equation (1) this is equal to
β1 − β0.

Bowden et al. [5] discuss various methods for estimating this quantity, which we refer to as the GMEE,
but which they referred to as the GMTE (T being for treatment). Each of the methods presented in Bowden
et al. [5] relies on a different set of assumptions. For example, when the genetic instrument G is indepen-
dent of the exposure (i.e. no red arrow in Figure 1 due to violation of IV1), independent any unmeasured
confounder (i.e. no blue arrow in Figure 1 , IV2 satisfied), and only affects the outcome through the moder-
ated exposure variable (i.e. no orange arrow in Figure 1, IV3 satisfied), the GMEE can be estimated in the
exposed population only. In our setting, this would be estimated by the difference in mean outcomes across
the genetic groups amongst the population of smokers only:

GMEE(1) = Ê[Y |S = 1, G = 1]− Ê[Y |S = 1, G = 0].

Here the ‘(1)’ notation reminds the analyst that only smoker’s data is used and G = 1/0 refers to the
presence/absence of at least one risk allele of SNP rs1051730. A more robust estimate of the GMEE is the

RGMEE = GMEE(1)−GMEE(0)

where
GMEE(0) = Ê[Y |S = 0, G = 1]− Ê[Y |S = 0, G = 0].

Here, the R prefix in RGMEE stands for ‘robust’, since it can estimate the GMEE without bias even if IV3
is violated (G affects the outcome directly as indicated by the orange arrow in Figure 1). Indeed it is this
bias term that is estimated by GMEE(0) before being subtracted out.

Bowden et al. [5] state that the RGMEE is unbiased even if the genetic instrument violates IV2, by being
associated with the outcome through the unmeasured confounder (blue arrow in Figure 1. Our investigations
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in this paper have shown this to be incorrect (See our erratum [11]). Nevertheless, this means we are now able
to straightforwardly verify if the assumptions for the RGEE (i.e. a desired violation of IV1 but no violation
of IV2 ) hold, since they imply that G and S are independent. Testing for an association between G and S
is therefore an important pre-requisite for its use.

3 Enhancing robustness through the integration of MR and GMEE
methods

The genetically moderated exposure effect introduced in the previous section proposes an array of methods
for estimating the difference β1 − β0 under different assumptions, but not the individual values β1 and
β0. To address this, we now formally extend the previous framework by incorporating a second variant,
G2, that is a ‘standard’ instrument for the exposure satisfying assumptions IV1-4. In our case, it therefore
influences smoking initiation directly, but does not moderate an individual’s smoking habits, thereby violating
Homogeneity. We now explore two scenarios that expand upon the standard TWIST approach, utilising novel
methods that leverage the two available genetic instruments. The DAGs for these two separate methods are
shown in Figure 2.

SG2 S∗ Y

G

UZ

SG2 S∗ Y

G

UZ

Figure 2: Left: DAG of linear interaction model from equation (1) highlighting in colour which assumptions
need to hold for an unbiased estimate of β1 and β0 when using Method 1. Right: DAG of linear interaction
model (1) highlighting in colour which assumptions need to hold for an unbiased estimate of β1 and β0 when
using Method 2.

3.1 Method 1: (G,G2) are jointly valid instruments for (S,S∗)

We first consider estimation of β1 and β0 using both genetic instruments G and G2 within a multivariable
model. This can be enacted in a two-step procedure by using G and G2 to predict S in stage 1, and then
plugging in the predicted values into the linear interaction model in stage 2:

1. Stage 1: Estimate Ŝ = Ê[S|G,G2] using either linear or logistic regression;

2. Stage 2: Y = γ0 + β1ŜG+ β0Ŝ(1−G), with Ŝ: fitted values from stage 1

This approach is robust to the case where the (assumed) effect modifying variant G violates IV1 but satisfies
IV2 and IV3 (Figure 2 , Left). In Supplementary material we show through simulation that the true values
of β1 and β0 can be recovered when these assumptions are satisfied, but violation of the assumptions lead
to bias. The standard error for β1 and β0 can be obtained directly from the linear model output. As both
parameters are estimated in the same model we can use the covariance matrix of β1 and β0 to derive the
variance of β1 − β0 and hence can estimate the standard error for β1 − β0.
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3.2 Method 2: Allowing for a pleiotropic effect of G on Y

We now propose a robust procedure that combines the general MR approach with the RGMEE given in
Bowden et al. [5]. We first apply the RGMEE method to consistently estimate the genetically moderated
effect β1 − β0. We then define a new variable Y (S∗ = 0) created by subtracting the genetically moderated
effect times the moderated exposure from the original outcome Y . More formally, Y (S∗ = 0) is a potential
outcome in which the treatment effect of S∗ on Y has been removed. It is equal to Y (and therefore observed)
for individuals with an S∗=0, but is unobserved for those with S∗=1. Finally, we perform an MR analysis
using the genetic instrument G2, the exposure S and Y (S∗ = 0). This enables estimation of β0, which can
then be used in combination with the RMGEE to estimate β1.

1. Estimate the RGMEE ̂(β1 − β0) using G;

2. Estimate Ŝ = Ê[S|G2] using either linear or logistic regression;

3. Estimate β0 from model E[Y (S∗ = 0)|Ŝ] = γ0 + β0Ŝ, where Y (S∗ = 0) = Y − ̂(β1 − β0)S
∗

Method 2 delivers unbiased estimates if the RGMEE estimate can be consistently estimated using G and β0

can be consistently determined using G2 once the GMEE effect has been removed. Compared to Method
1, it allows a direct pleioptropic effect of G on Y (IV3 violation) but requires G to be independent of S
(IV1 violated, but IV2 satisfied). When these assumptions are not met, our simulations show that it leads
to bias (see Supplementary Material). The standard error for β0 and β1 − β0 can be directly taken from

the respective model output. We make the assumption that β̂1 − β0 is independent of β̂0, so that SE(β1)

≈
√
V ar(β̂1 − β0) + V ar(β̂0). In simulations we show that it leads only to confidence intervals (CI) with a

small over-coverage.

3.3 What does the standard MR estimate using G2 as the IV target?

When including a homogeneity respecting instrument as shown in Figure 2 a standard MR analysis with G2

as the IV is possible. Using the two-stage regression approach means:

1. Stage 1: Estimate Ŝ = Ê[S|G2] using a linear or logistic regression;

2. Stage 2: Y = α0 + α1Ŝ + α2Z + ϵY .

Here, α1 is the average causal effect on the outcome Y if all mothers where exposed to if all mothers were
not exposed: E[Y (S = 1)]− E[Y (S = 0)]. It can be shown that under the model described in Figure 2 and
equation (1):

α1 = β0 + (β1 − β0)E[G|S = 1]. (6)

4 Simulation results

4.1 Data generation

We simulated data consistent with Figure 2 in the following manner:

G ∼ B(0.55),
G2 ∼ B(0.4),
U = γUGG+N (0, 1),

η = −2 + γSGG+ γSG2
G2 + γSUU +N (0, 0.5),

pS =
exp(η)

1 + exp(η)
, S ∼ B(pS),

Y = 3500 + β1SG+ β0S(1−G) + γY GG+ γY UU +N (0, 470). (7)
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The outcome model 7 was chosen so that simulated data closely matched real birth weight data (in grams)
for mothers with a history of smoking in the Avon Longitudinal Study of Parents and Children (ALSPAC)
[12, 13, 14] which we will subsequently use in our applied analysis. By choosing zero and non-zero values
for the parameters γUG, γSG and γY G, we were able to explore the performance of Method 1 and Method
2 in estimating the causal effect parameters β1 and β0. We choose to set β1 = −200 and β0 = −100, which
assumes a genetically moderated effect of β1 − β0 = −100 grams. For all simulations we made sure that
the assumptions of method 1 and 2 held. Each simulation was repeated 20,000 times (N = 20, 000), which
enabled the calculation of bias, coverage and statistical power. For further details, Table 3 Supplementary
Material provides a summary of the simulated data under all of the explored scenarios.

4.2 Estimation accuracy with increasing sample size

We investigated the sample size needed to unbiasedly estimate β1 and β0 using each approach when their
respective assumptions were satisfied. Data sets were generated with sample sizes between 100 and 80,000
individuals. Figure 3 shows the mean values of β1, β0 and β1 − β0 using method 1 and method 2 across
20,000 simulations. Shaded areas reflect, for each mean parameter estimate obtained from a given sample
size, a 95% confidence interval which was calculated as ±1.96 × SD(.) around the mean, SD(.) being the
standard deviation of the 20,000 estimates [15]. Note that for each estimate we display three sub-figures (per
column) with a different range on the y-axis: one for small sample sizes, one for medium size sample sizes
and one for large sample sizes. Details on the parameter values used for each simulation are described in
Supplementary Material. Estimation of β1 and β0 become more precise with shrinking confidence intervals
as the sample size increases. Both, method 1 and 2 lead to similar results. However, for small sample sizes
(below 2000), confidence intervals for method 1 estimates are wider. The third column of Figure 3 shows the
mean estimates for β1−β0 using method 1 and method 2. Here we can see a distinction in the performance of
the methods across all sample sizes. Method 2, which uses the RGMEE method, yields narrower confidence

intervals for β̂1 − β0 even for small sample sizes.

4.3 Power and the coverage

We estimated the power to reject the null hypothesis that β1, β0 and β1−β0 were statistically different from
zero at the 5% significance level, using method 1 and 2. For each simulation we also calculated confidence
intervals for the parameter estimates based on estimated standard errors, and report the coverage of 95%
confidence intervals across the 20,000 simulations. The results for power and coverage are shown in Figure
4 and 5 respectively, along with their Monte-Carlo standard errors [15]. Our results show that method 2
results in a higher power when estimating β0 and β1 − β0 than method 1 for a given sample size. However,
when considering estimation of β1, this is reversed. The power to detect β0 is lower than the power to detect
β1 due to its lower effect size of -100 (compared to β1 = −200). Figure 5 reveals a near nominal coverage for

both methods close to 95%. Crucially, our assumption that β̂1 − β0 and β̂0 are independent leads only to a
small over-coverage when estimating a confidence intervals for β1 with method 2.
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5 Applied example

5.1 Biological example for genetically driven exposure effects

Research into the adverse consequences of smoking has been ongoing since the 1950’s, up until the present
day [16, 17]. In the specific context of maternal health, it is well established that smoking during pregnancy
is associated with lower offspring birth weight, which is itself an important predictor of infant mortality and
many later life health outcomes, such as cardiovascular disease, high blood pressure, coronary heart disease
and type 2 diabetes [18, 19, 20]. Attributing the correct proportion of these estimated associations that are
due to the causal consequences of smoking is not straightforward, due to strong confounding between smok-
ing and later life outcomes by socio-economic factors which are very hard to completely control for. Despite
this, smoking is viewed as a key modifiable risk factor, and reducing the its prevalence during pregnancy
remains an important public health target [21, 17]. Unfortunately, NHS digital service statistics indicate
that approximately 8.6 % of UK mothers were known smokers at the time of delivery in the first half of 2023
[22]. Identifying which individuals are at a higher risk of not giving up smoking and therefore might face
more severe pregnancy outcomes can be crucial when targeting smoking cessation programmes, in order to
provide support as well as closer monitoring during pregnancy.

Recently, genome-wide association studies (GWAS) have identified genetic variants that are associated with
smoking initiation, smoking cessation, the age of starting smoking and smoking quantity [23]. Freathy et al.
[9] show that rs1051730 on chromosome 15 is associated with smoking cessation during pregnancy as well as
smoking quantity. A strong biological rationale for this exists as rs1051730 is in the nicotine acetylcholine
receptor gene cluster CHRNA5-CHRNA3-CHRNB4. Rare variant burden associations have implicated all
three of these genes as important in influencing smoking quantity [24]. However, it has also been shown that
rs1051730 is not associated with smoking initiation [9]. The methods we have introduced thus far appear
well suited to estimating the causal effect of smoking on birth weight using traditional genetic instruments
for smoking initiation, whilst at the same time, quantifying the genetically moderated smoking effect via
rs1051730.

5.2 The effect of smoking on birth weight in the ALSPAC study

The Avon Longitudinal Study of Parents and Children (ALSPAC)[12, 13, 14] invited pregnant women resident
in Avon, UK with expected dates of delivery between 1st April 1991 and 31st December 1992, to take part
in the study. 20,248 pregnancies have been identified as being eligible and the initial number of pregnancies
enrolled was 14,541. Of the initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062
live births and 13,988 children who were alive at 1 year. We restricted our analysis to unrelated mothers
with available genetic information. Additionally, we excluded multiple births and preterm births (pregnancy
duration ≤ 37 weeks) [25]. The analysis data set had a sample size of 7752 individual mothers. For the
traditional genetic instrument ‘G2’ we created a weighted genetic risk score (GRS) amongst the smoking
initiation SNPs identified by the latest GWAS [23]. The effect sizes from the same GWAS were used as
weights. We used rs1051730 as genetic effect-modifying instrument ‘G’, coded as 0 and 1 corresponding to
no and at least one risk allele respectively. Various different smoking definitions were used for the exposure
outlined in the following sections. The ALSPAC study website contains details of all the data that is available
through a fully searchable data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/
researchers/our-data/).

5.2.1 Exposure S= Smoking before pregnancy

Each mother was asked at 16-18 weeks of gestation whether she smoked before pregnancy. We coded mothers
that reported ‘yes’ as S = 1 and mothers who reported ‘no’ as S = 0. Figure 6 (i) displays the assumed
DAG for our analysis. We aimed to apply method 1 and 2 to estimate the causal effect of pre-pregnancy
smoking on birth weight in the G = 1 group, β1, the G=0 group, β0, and also the genetically moderated
exposure effect β1 − β0. We would expect this latter quantity to be non-zero if the pre-pregnancy smoking
effect persisted differently throughout pregnancy across the two genetic groups. For the first stage of method
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1, we perform a logistic regression of S on the GRS of smoking initiation (G2) and rs1051730 (G). The
results are shown in Table 1. Variant rs1051730 was not associated with smoking before pregnancy, which
helpfully means that method 2 is not ruled out as an analysis option. The GRS is also associated with
smoking before pregnancy and we assume it acts as a true IV for this exposure. Two crucial assumptions are
that the GRS of smoking initiation has no pleiotropic effect on birth weight and it does not modify the the
causal effect between smoking and birth weight in the exposed and the unexposed. In order to apply method
1, rs1051730 cannot have a pleiotropic effect on birth weight either but, for method 2, this assumption is
relaxed. The results from applying both methods are shown in Figure 7. To increase the precision of the
estimates we adjust our regression models for different sets of covariates. The model for the genetic prediction
of smoking is adjusted for whether the partner of the mother smoked, the mothers age and the first 10 genetic
principal components. The model predicting birth weight is adjusted for offspring sex, mothers age, mothers
height, parity, mothers pre-pregnancy weight and the first 10 genetic principal components. We viewed these
variables are confounders for either smoking before pregnancy or birth weight or both. For mothers who have
at least one G risk allele, the average causal effect of smoking before pregnancy, β1, was estimated to be a
168 g and 169 g reduction in birth weight using method 1 and method 2 respectively. On the other hand, the
corresponding causal effect (β0) in mothers without a rs1051730 risk allele is a 159 g and 161 g birth weight
reduction for method 1 and 2 respectively compared to non-smoking mothers without the risk allele.

5.2.2 Exposure S= Smoking in the first three month of pregnancy

Mothers were asked at 16-18 weeks of gestation whether they smoked in the first three months of pregnancy.
We coded those that reported ‘yes’ as S = 1 and mothers who reported ‘no’ as S = 0 and proceeded to
estimate the causal effect of this exposure at the two levels (no and at least one risk allele) of rs1051730 and
the genetically moderated exposure effect. In this analysis, no information about smoking before pregnancy
was taken into account and therefore the mothers reporting to be non-smokers either gave up smoking when
getting pregnant or did not smoke before pregnancy. Figure 6 (ii) displays the assumed DAG for our analysis.
Method 1 and 2 were applied to derive estimates for β1, β0 and β1 − β0 in Table 1 and Figure 7. For these
analyses, the logistic model for S given G and G2 was adjusted for whether the partner of the mother smokes,
the mothers age, parity and the first 10 genetic principal components. The model predicting birth weight
was adjusted for offspring sex, mothers age, mothers height, parity, mothers pre-pregnancy weight and the
first 10 genetic principal components. We viewed these variables as confounders for either smoking before
pregnancy or birth weight or both. For this analysis, a stronger association was observed between rs1051730
and S, meaning that we were cautious with the interpretation of method 2 results, given its crucial role in the
in estimation of the genetically moderated exposure effect. The causal effect of smoking during pregnancy
on birth weight in those with a rs1051730 risk allele, β1, was estimated to be -212g and -222g using method
1 and 2 respectively, whereas the effect of smoking in the individuals without the genetic variant on birth
weight is -220g and -205g for method 1 and 2 respectively.
For both smoking exposures, we were unable to identify a difference between the two genetic groups. This
could be because the effect of pre-pregnancy smoking and smoking in the first three months does not truly
differ in people with or without variant rs1051730. However, a simulation investigation showed that large
numbers of individuals would be required to identify a genetically driven effect of smoking with the magni-
tudes we observed in our analysis. Specifically, we simulated data with sample sizes from 7,000 to 500,000
and a true difference between the genetic groups of β1 − β0 between -20g and -5g. To reach 80% power
in estimating β1 − β0 = −15 a sample size of 500,000 individuals is required in our simulation when using
method 1. The RGMEE (method 2), which is more robust to pleiotropy compared to method 1, is able to
estimate β1−β0 = −15 with a power of over 80% with 200,000 individuals. More details on the results of this
are shown in the Supplementary Material. This provides important guidance on the much larger sample size,
way beyond the 7752 mothers in the ALSPAC study, that would be required to detect a difference between
the genetic groups in the region of what we observe here.

Despite not being able to detect a meaningful genetically moderated exposure effect, overall our results
suggest that smoking before pregnancy or smoking in the first three months of pregnancy results in a lower
birth weight compared to not smoking. This is in line with previous publications [26, 19, 8].

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.24306667doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.05.24306667
http://creativecommons.org/licenses/by/4.0/


S = Est. Std. Error P-value Fstat

Smoking before rs1051730 (G) α̂1=0.02 0.06 0.73 0.12

pregnancy GRS smoking initiation (G2) α̂2=1.46 0.16 4.85e-20 84

Smoking in the rs1051730 (G) α̂1 =0.13 0.07 0.06 3.55

first three months GRS smoking initiation (G2) α̂2=1.39 0.18 2.58e-15 62.6

Table 1: Logistic regression model results for logit(Pr(S = 1)) = α0 + α1G+ α2G2 + δTZ as the first stage
of method 1 using pre-pregnancy smoking as the outcome variable S. G2= smoking initiation GRS, G =
rs1051730 and Z is a vector of covariates.

Smoking
before

pregnancy
(yes/no)

S∗ Birth weight

rs1051730

PCs, mothers age

partner smoking
offspring sex, mothers
height, parity, mothers
pre-pregnancy weight

GRS
smoking
initiation

(a) Exposure S = Smoking before pregnancy.

Smoking
in the 1st
3 month of
pregnancy
(yes/no)

S∗ Birth weight

rs1051730

PCs, mothers age, parity

partner smoking offspring sex, mothers
height, mothers pre-
pregnancy weight

GRS
smoking
initiation

?

(b) Exposure S = Smoking in the first three months of
pregnancy.

Figure 6: DAG showing the relationships between the genetic instrument, the exposure, the outcome and how
those are affected by different confounders.

5.3 Observational analysis and ‘standard’ MR

In addition to applying the new proposed methods to the ALSPAC data set, we also looked at the observa-
tional association between smoking and birth weight. A linear regression of S (using both smoking definitions)
on birth weight adjusted for partner smoking, mothers age, mothers height, mothers pre-pregnancy weight,
parity and offspring sex yielded negative associational estimates. Although the observational analysis likely
suffers from residual confounding, and cannot be interpreted as a causal effect, the direction of effect remains
the same compared to estimating β1 and β0 (Figure 7), albeit of a smaller magnitude.
As indicated in Table 1, rs1051730 (G) is not associated with smoking before pregnancy. Therefore, we
are unable to perform a standard MR analysis using G as the genetic instrument for S = smoking before
pregnancy. However, we did perform a standard MR analysis using individual level data and the two-stage
least squares approach with S = smoking in the first three months of pregnancy. We explain in Section 2.1
that the standard MR with a homogeneity violating instrument like rs1051730 estimates the CACE (while
the monotonicity assumption holds). The CACE of smoking in the first the months of pregnancy on birth
weight is -210 grams (95% CI:(-293,-128)). Note that these result potentially suffer from weak instrument bias.

Additionally, and as a confirmatory test of our previous genetic analyses we calculated a standard MR
estimate using the genetic risk score for smoking initiation to instrument smoking before and smoking in
the first three months of pregnancy. For these analyses rs1051730 is not considered. The methodology is
described in Section 3.3. Using equation 6 the estimated β-values obtained from applying method 1 and 2 to
the ALSPAC data we derive an average causal effect of -165g for smoking before pregnancy. This compares
to the average causal effect of -164g (Figure 7) estimated with standard MR approach. Similarly, for smoking
in the first three months of pregnancy we obtain an estimate of -213 g using the β-values from method 1 or
method 2 outputs and the formula provided above.
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Figure 7: β1 − β0, β1 and β0 estimates from applying method 1 and method 2 to the ALSPAC data set.
Bars indicate the 95% confidence interval. Observational analysis results arise from a linear regression of
the smoking variable on birth weight adjusted for partner smoking, mothers age, mothers height, mothers
pre-pregnancy weight, parity, and offspring sex. Dark green are the results from the individual level data MR
analysis using the two-stage least squares method using G or G2 as the instrument, S as the exposure and
birth weight is the outcome. G has no association with S = smoking before pregnancy, hence we did not
perform an MR analysis. The results for applying method 1 and method 2 to estimate β1 − β0, β1 and β0 is
shown in red and blue respectively.
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6 Discussion

In this paper we propose a general framework for MR that allows the inclusion of traditional genetic in-
struments, as well as those that violate the key homogeneity assumption. This enables an analysis that
goes beyond estimation of the average causal effect to consider estimation within specific genetic sub-groups,
with a view to quantifying genetically driven effect heterogeneity. Our approach builds on ideas from the
pharmacogenetic TWIST framework proposed by Bowden et al. [5] to a more mainstream epidemiological
setting, as well as incorporating the technique of multivariable MR [27]. Specifically, method 1 offers a new
approach to estimate the genetically moderated exposure effect, which could be triangulated with existing
methods. Furthermore, method 1 allows for a direct effect between the homogeneity-violating instrument and
the exposure. In the presence of unmeasured confounding, the methods proposed in the paper by Bowden
et al. [5] require the instrument to be independent of the exposure. To allow for a direct pleiotropic effect
between the homogeneity-violating instrument and the outcome we proposed method 2. Simulation studies
revealed the necessary sample sizes to detect an effect with sufficient power under method 1 and 2, consider-
ing plausible genetically moderated exposure effect sizes. To motivate the methods, we applied them to data
from the ALSPAC cohort to investigate the effect of smoking before and in pregnancy on birth weight using
a traditional genetic risk score for smoking and a rs1051730 as an effect modifier .

Our work could be further extended by considering the incorporation of additional methods to allow for
the relaxation of further key assumptions. For example, allowing a genetic variant with a pleiotropic effect
that acts through an unmeasured confounder (i.e. correlated pleiotropy). We assumed that the underlying
data structure follows a linear interaction model. Future work could explore different data structures and
non-linear effects. For simplicity, and to naturally follow on from the approach proposed in Bowden et al.
[5] we assumed a binary effect modifying instrument through the dichotomization of the genetic instrument
rather than using the number of risk alleles. Future work could relax this assumption.

Despite not being able to show a difference between the two genetic groups in our applied example due
to a limitation in sample size, our investigation clarifies how large future cohort study samples need to
be to estimate effects of the magnitude we observed. We believe our framework is a useful methodolog-
ical extension to investigate genetically driven heterogeneity. Our methods could for example be applied
in other setting where larger sample sizes are available, or by meta-analysing results with additional co-
horts. Settings outside of pregnancy research are also possible and would not require mother and child
pair information. For example, investigating the genetically driven effect of continuing smoking on lung
cancer. Other examples could be using genetic variants associated with reducing alcohol consumption
and the effects on various health outcomes. Data sets like the UK Biobank with genetic information
available for 500,000 individuals could be used. Software for implementing the methods can be found at
https://github.com/AJaitner/paper_heterogeneity_MR[to-be-added] as well as code to implement the
simulation studies and applied analysis.

15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.24306667doi: medRxiv preprint 

https://github.com/AJaitner/paper_heterogeneity_MR
https://doi.org/10.1101/2024.05.05.24306667
http://creativecommons.org/licenses/by/4.0/


References

[1] Smith, George D. and Ebrahim, Shah. “‘Mendelian randomization’: can genetic epidemiology contribute
to understanding environmental determinants of disease?” In: International Journal of Epidemiology
32.1 (2003), pp. 1–22. issn: 0300-5771. doi: 10.1093/IJE/DYG070.

[2] Bowden, Jack and Holmes, Michael V. “Meta-analysis and Mendelian randomization: A review”. In:
Research Synthesis Methods 10.4 (2019), pp. 486–496. issn: 17592887. doi: 10.1002/jrsm.1346.

[3] Lawlor, Debbie A. et al. “Mendelian randomization: Using genes as instruments for making causal
inferences in epidemiology”. In: Statistics in Medicine 27.8 (2008). issn: 02776715. doi: 10.1002/sim.
3034.

[4] Hernán, Miguel A. and Robins, James M. “Instruments for causal inference: An epidemiologist’s
dream?” In: Epidemiology 17.4 (2006), pp. 360–372. issn: 10443983. doi: 10.1097/01.EDE.0000222409.
00878.37.

[5] Bowden, Jack et al. “The Triangulation WIthin a STudy (TWIST) framework for causal inference
within pharmacogenetic research”. In: PLoS Genetics 17.9 (2021). issn: 15537404. doi: 10.1371/
JOURNAL.PGEN.1009783.

[6] Pilling, Luke C. et al. “Analysis of CYP2C19 genetic variants with ischaemic events in UK patients
prescribed clopidogrel in primary care: A retrospective cohort study”. In: BMJ Open 11.12 (2021).
issn: 20446055. doi: 10.1136/bmjopen-2021-053905.

[7] Advisory committee of NICE. NICE Recommendations: Clopidogrel genotype testing after ischaemic
stroke or transient ischaemic attack. url: https://www.nice.org.uk/consultations/1710/2/
recommendations.

[8] Pereira, Rita Dias, Rietveld, Cornelius A, and Kippersluis, Hans van. “The Interplay between Maternal
Smoking and Genes in Offspring Birth Weight.” In: Journal of Human Resources (2022), pp. 1020–
11266. doi: 10.3368/jhr.1020-11266R2.

[9] Freathy, Rachel M. et al. “A common genetic variant in the 15q24 nicotinic acetylcholine receptor gene
cluster (CHRNA5-CHRNA3-CHRNB4) is associated with a reduced ability of women to quit smoking
in pregnancy”. In: Human Molecular Genetics 18.15 (2009). issn: 09646906. doi: 10.1093/hmg/ddp216.

[10] Hernán, MA and Robins, JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC, 2020.

[11] Jaitner, Annika and Bowden, Jack. “Letter to the editor concerning the Triangulation Within a Single
Study (TWIST) framework”. In: Plos Genetics under review (2024).

[12] Boyd, Andy et al. “Cohort Profile: The ‘Children of the 90s’—the index offspring of the Avon Longi-
tudinal Study of Parents and Children”. In: International Journal of Epidemiology 42.1 (2013), p. 111.
issn: 03005771. doi: 10.1093/IJE/DYS064.

[13] Fraser, Abigail et al. “Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC
mothers cohort”. In: International Journal of Epidemiology 42.1 (2013), pp. 97–110. issn: 0300-5771.
doi: 10.1093/IJE/DYS066.

[14] Northstone, Kate et al. “The Avon Longitudinal Study of Parents and children ALSPAC G0 Partners:
A cohort profile”. In: Wellcome Open Research 8 (2023). doi: 10.12688/wellcomeopenres.18782.2.

[15] Morris, Tim P., White, Ian R., and Crowther, Michael J. “Using simulation studies to evaluate statistical
methods”. In: Statistics in Medicine 38.11 (2019), pp. 2074–2102. issn: 1097-0258. doi: 10.1002/SIM.
8086.

[16] Doll, R. and Hill, A. B. “Smoking and Carcinoma of the Lung”. In: BMJ 2.4682 (1950). issn: 0959-8138.
doi: 10.1136/bmj.2.4682.739.

[17] National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and
Health. “Reproductive Outcomes”. In: The Health Consequences of Smoking—50 Years of Progress: A
Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US), 2014.
Chap. 9. url: https://www.ncbi.nlm.nih.gov/books/NBK294307/#.

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.24306667doi: medRxiv preprint 

https://doi.org/10.1093/IJE/DYG070
https://doi.org/10.1002/jrsm.1346
https://doi.org/10.1002/sim.3034
https://doi.org/10.1002/sim.3034
https://doi.org/10.1097/01.EDE.0000222409.00878.37
https://doi.org/10.1097/01.EDE.0000222409.00878.37
https://doi.org/10.1371/JOURNAL.PGEN.1009783
https://doi.org/10.1371/JOURNAL.PGEN.1009783
https://doi.org/10.1136/bmjopen-2021-053905
https://www.nice.org.uk/consultations/1710/2/recommendations
https://www.nice.org.uk/consultations/1710/2/recommendations
https://doi.org/10.3368/jhr.1020-11266R2
https://doi.org/10.1093/hmg/ddp216
https://doi.org/10.1093/IJE/DYS064
https://doi.org/10.1093/IJE/DYS066
https://doi.org/10.12688/wellcomeopenres.18782.2
https://doi.org/10.1002/SIM.8086
https://doi.org/10.1002/SIM.8086
https://doi.org/10.1136/bmj.2.4682.739
https://www.ncbi.nlm.nih.gov/books/NBK294307/#
https://doi.org/10.1101/2024.05.05.24306667
http://creativecommons.org/licenses/by/4.0/


[18] Moen, Gunn Helen et al. “Mendelian randomization study of maternal influences on birthweight and
future cardiometabolic risk in the HUNT cohort”. In: Nature Communications 11.1 (2020). issn:
20411723. doi: 10.1038/s41467-020-19257-z.

[19] Tyrrell, Jessica et al. “Genetic variation in the 15q25 nicotinic acetylcholine receptor gene cluster
(CHRNA5- CHRNA3-CHRNB4) interacts with maternal selfreported smoking status during pregnancy
to influence birth weight”. In: Human Molecular Genetics 21.24 (2012). issn: 09646906. doi: 10.1093/
hmg/dds372.

[20] Warrington, Nicole M. et al. “Maternal and fetal genetic effects on birth weight and their relevance to
cardio-metabolic risk factors”. In: Nature Genetics 51.5 (2019). issn: 15461718. doi: 10.1038/s41588-
019-0403-1.

[21] Cnattingius, Sven. “The epidemiology of smoking during pregnancy: Smoking prevalence, maternal
characteristics, and pregnancy outcomes”. In: Nicotine and Tobacco Research 6.SUPPL. 2 (2004). issn:
14622203. doi: 10.1080/14622200410001669187.

[22] Population Health, Clinical Audit, Team., Specialist Care, and Lead Analyst: Walt Treloar. Statistics
on Women’s Smoking Status at Time of Delivery: England, Quarter 3, 2022-23. 2023. url: https:
//digital.nhs.uk/data-and-information/publications/statistical/statistics-on-women-

s-smoking-status-at-time-of-delivery-england/statistics-on-womens-smoking-status-

at-time-of-delivery-england-quarter-3-2022-23.

[23] Liu, Mengzhen et al. “Association studies of up to 1.2 million individuals yield new insights into the
genetic etiology of tobacco and alcohol use”. In: Nature Genetics 51.2 (2019). issn: 15461718. doi:
10.1038/s41588-018-0307-5.

[24] Rajagopal, Veera M. et al. “Rare coding variants in CHRNB2 reduce the likelihood of smoking”. In:
Nature Genetics 55.7 (2023), pp. 1138–1148. issn: 1061-4036. doi: 10.1038/s41588-023-01417-8.

[25] Jaitner, Annika et al. “Smoking during pregnancy and its effect on placental weight: a Mendelian
randomization study”. In: BMC Pregnancy and Childbirth 24.1 (2024), p. 238. issn: 1471-2393.

[26] Larsen, Sandra et al. “Placental weight and birthweight: The relations with number of daily cigarettes
and smoking cessation in pregnancy. A population study”. In: International Journal of Epidemiology
47.4 (2018). issn: 14643685. doi: 10.1093/ije/dyy110.

[27] Sanderson, Eleanor et al. “An examination of multivariable Mendelian randomization in the single-
sample and two-sample summary data settings”. In: International Journal of Epidemiology 48.3 (2019).
issn: 14643685. doi: 10.1093/ije/dyy262.

[28] Angrist, Joshua D., Imbens, Guido W., and Rubin, Donald B. “Identification of Causal Effects Us-
ing Instrumental Variables”. In: Journal of the American Statistical Association 91.434 (1996). issn:
1537274X. doi: 10.1080/01621459.1996.10476902.

[29] Bowden, Jack et al. “Connecting Instrumental Variable methods for causal inference to the Estimand
Framework”. In: Statistics in Medicine 40.25 (2021), pp. 5605–5627. issn: 10970258. doi: 10.1002/
SIM.9143.

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.24306667doi: medRxiv preprint 

https://doi.org/10.1038/s41467-020-19257-z
https://doi.org/10.1093/hmg/dds372
https://doi.org/10.1093/hmg/dds372
https://doi.org/10.1038/s41588-019-0403-1
https://doi.org/10.1038/s41588-019-0403-1
https://doi.org/10.1080/14622200410001669187
https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-women-s-smoking-status-at-time-of-delivery-england/statistics-on-womens-smoking-status-at-time-of-delivery-england-quarter-3-2022-23
https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-women-s-smoking-status-at-time-of-delivery-england/statistics-on-womens-smoking-status-at-time-of-delivery-england-quarter-3-2022-23
https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-women-s-smoking-status-at-time-of-delivery-england/statistics-on-womens-smoking-status-at-time-of-delivery-england-quarter-3-2022-23
https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-women-s-smoking-status-at-time-of-delivery-england/statistics-on-womens-smoking-status-at-time-of-delivery-england-quarter-3-2022-23
https://doi.org/10.1038/s41588-018-0307-5
https://doi.org/10.1038/s41588-023-01417-8
https://doi.org/10.1093/ije/dyy110
https://doi.org/10.1093/ije/dyy262
https://doi.org/10.1080/01621459.1996.10476902
https://doi.org/10.1002/SIM.9143
https://doi.org/10.1002/SIM.9143
https://doi.org/10.1101/2024.05.05.24306667
http://creativecommons.org/licenses/by/4.0/


7 Declarations

7.1 Ethics approval

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics
was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee
at the time.

7.2 Data Availability

The data in ALSPAC is fully available, via managed systems, to any researchers. The managed system is a
requirement of the study funders, but access is not restricted on the basis of overlap with other applications
to use the data or on the basis of peer review of the proposed science. The ALSPAC data management plan
describes in detail the policy regarding data sharing, which is through a system of managed open access. The
following steps highlight how to apply for access to the data included in this paper and all other ALSPAC
data. (1) Please read the ALSPAC access policy, which describes the process of accessing the data and samples
in detail and outlines the costs associated with doing so. (2) You may also find it useful to browse the fully
searchable ALSPAC research proposals database, which lists all research projects that have been approved
since April 2011. (3) Please submit your research proposal for consideration by the ALSPAC Executive
Committee. You will receive a response within 10 working days to advise you whether your proposal has
been approved. If you have any questions about accessing data, please email alspac-data@bristol.ac.uk.

7.3 Competing interests

The authors report no conflict of interest. J.B. is a part time employee of Novo Nordisk, however this work
is unrelated to his role at the company.

7.4 Funding

The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol
provide core support for ALSPAC. This publication is the work of the authors and A.J. and J.B. will serve
as guarantors for the contents of this paper.
Genotyping of the ALSPAC maternal samples were funded by the Wellcome Trust (WT088806). Specific
funds for recent detailed data collection on the mothers were obtained from the US National Institutes of
Health (R01 DK077659) and Wellcome Trust (WT087997MA) for completion of selected items of obstetric
data extraction, including placental weights. A comprehensive list of grants funding is available on the
ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf).
A.J. received funding for her PhD studentship from the Faculty of Health and Life Sciences at the University
of Exeter.
J.B. is funded by research grant MR/X011372/1.
K.T.A. gratefully acknowledges the financial support of the EPSRC via grant EP/T017856/1.
R.F. is supported by a Wellcome Senior Research Fellowship (WT220390).
This project utilised high-performance computing funded by the UK Medical Research Council (MRC) Clin-
ical Research Infrastructure Initiative (award number MR/M008924/1). This study was supported by the
National Institute for Health and Care Research Exeter Biomedical Research Centre. The views expressed
are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.
This research was funded in part, by the Wellcome Trust (Grant number: WT220390). For the purpose of
Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission.

7.5 Acknowledgements

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruit-
ing them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians,

18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.24306667doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.05.24306667
http://creativecommons.org/licenses/by/4.0/


clerical workers, research scientists, volunteers, managers, receptionists and nurses.
The authors would like to acknowledge the use of the University of Exeter High-Performance Computing
(HPC) facility in carrying out this work.

19

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.24306667doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.05.24306667
http://creativecommons.org/licenses/by/4.0/


8 Appendix: MR estimate equals the Complier Average Causal
Effect if Homogeneity is violated but Monotonicity holds

To better understand the bias term of (5) from Section 2.1 in the main paper in the presence of IV4 violation,
we first introduce the Principle Stratum framework described in Angrist, Imbens, and Rubin [28]. In our
context, we imagine the existence of four compliance classes:

• Compliers: Individuals that smoke if they have the risk allele (G = 1) and do not smoke if they do not
have it (G = 0).

• Always Smokers: Individuals that always smoke regardless of their genotype.

• Never Smokers: Individuals that never smoke regardless of their genotype.

• Defiers: Individuals that go against their genotype, this means they smoke if they do not have the risk
allele and do not smoke if they do have the risk allele.

Formally this can be written as in Table 2 which relates compliance classes (and their proportion in the
population) to the joint values of two potential smoking variables, S(G = 1) and S(G = 0) [29]:

S(G = 1) S(G = 0) Proportion

Compliers (c) 1 0 πc

Always Smokers (as) 1 1 πas

Never Smokers (ns) 0 0 πns

Defiers (d) 0 1 πd

Table 2: Relating compliance classes (and their proportion in the population) to the joint values of two
potential smoking variables.

If we assume IV4 is violated but an alternative assumption, that there are no Defiers (πd = 0, also termed
‘Monotonicity’), then from Table 2, we can equate:

E[S = 1|G = 1] = πas + πc

E[S = 1|G = 0] = πas

Furthermore, β1 in equation (5) reflects the average causal effect of smoking amongst those who smoke, which
is the union of the compliers and always smokers and β0 reflects the effect of smoking in the always smokers
only (due to the assumptions of no defiers). We can express β1 itself as a weighted average of the causal
effect of smoking in compliers (βc) and always smokers (β0):

β1 =
βcπc + β0πas

πc + πas

Through re-arrangement of the above expression, equation (5) can then be written as:

β1E[S|G = 1]− β0E[S|G = 0]

E[S|G = 1]− E[S|G = 0]
+ B

=
β1(πas + πc)− β0πas

πc
+B

= βc +B

Therefore, if Homogeneity is violated, but Monotonicity holds, MR targets the average causal effect of smoking
among Compliers (the complier average causal effect(CACE)) plus any bias due to violation of IV2 and IV3.
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9 Appendix: Mean and standard derivation across simulated and
ALSPAC data sets

In Table 3 the mean and standard derivation for each variable are shown for the ALSPAC data set (n =
7752) and the different simulation data sets. Depending on the definition of smoking the results are slightly
different. Therefore, we show the mean and variance for ALSPAC defining S as smoking before pregnancy
(yes/no) and for smoking in the first three month of pregnancy (yes/no). As described in the main body of the
paper, we simulate data sets with different sample sizes and applied all methods to them. For each method we
assume that the required assumptions for the respective method hold. This means that the data generating
model is slightly different for each method and this also reflects in the mean and standard derivation for
each variable. As an example we show the mean and variance for each variables for the different methods
for a data set with 50,000 individuals. Note that each simulation is repeated 20,000 times and therefore for
each method 20,000 data sets are generated. Hence, the mean value of the 20,000 mean values is displayed
(similarly for the standard derivation).

Data set Ȳ (σ(Y )) S̄ (σ(S)) Ḡ (σ(G))

ALSPAC, S = pre-pergnnacy smoking 3474.21 (476.87) 0.31 (0.46) 0.55 (0.50)

ALSPAC, S = smoking in the 1st 3 month 3474.21 (476.8741) 0.23 (0.42) 0.55 (0.50)

Method 1 simulation n= 50,000 3459.17 (476.86) 0.26 (0.44) 0.55 (0.50)

Method 2 simulation n= 50,000 3506.07 (477.35) 0.24 (0.43) 0.55 (0.50)

Table 3: Mean and standard derivation of the outcome, smoking variable and rs1051730 in ALSPAC (n =
7752) and in simulated data sets with 50,000 individuals.

10 Appendix: Simulation parameter values for each method

In order for the assumptions for each method to be satisfied, the data generating model needs to be slightly
different. Here we show the parameter values used for the data generation for each method.

Method γUG γSG γSG2 γSU γY G γY U β1 β0

1 0 0.2 0.8 1.6 0 80 -200 -100

2 0 0 0.8 1.6 80 80 -200 -100

Table 4: Simulation parameter values to generate simulated data for method 1 and method 2.

11 Appendix: Simulations to show which assumptions need to
hold for each method

We simulated data following the data generation process described in section 4.1. We aimed to match the
parameters of the data generating model as close to the ALSPAC data set as possible. We choose to set
β1 = −200 and β0 = −100, which assumes a genetically moderated effect of β1 − β0 = −100 and a twice
as large effect in the G = 1 group compared to the G = 0 group. We chose scenarios where some of the
assumptions hold and others do not hold. For all simulations we choose a sample size of n = 20, 000 and
repeated each simulation 20,000 times.

11.1 Simulation for method 1

We investigated 9 different scenarios and show the density plots for the estimation of β1 and β0. We expect
unbiased estimations for scenario 1-6 and verify that method 1 is robust to whether there is a direct effect
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between G and S. Scenario 7-8 are biased due to direct and/or indirect pleiotropy of the genetic instrument
G. The density plots over the 20,000 simulation runs for each scenario are shown in Figure 8. As expected,
strength of the instrument influences the precision of the estimation and therefore we see in Figure 8 that
the density peak is higher for scenario 3 and scenario 6 compared to the other scenarios. It is also clearly
visible that the scenarios with pleiotropy of the gentic instrument G (scenario 7-9) lead to biased results.

Description γSG γSG2
γY G γUG F-Stat G F-Stat G2

1 Direct effect between G and S 0.2 0.4 0 0 71 19

2 Direct effect between G and S 0.8 0.8 0 0 309 302

3 Direct effect between G and S 2 2 0 0 1765 1818

4 No direct effect between G and S 0 0.4 0 0 69 1

5 No direct effect between G and S 0 0.8 0 0 286 1

6 No direct effect between G and S 0 2 0 0 1850 1

7 Indirect pleiotropy 0.8 0.8 0 0.8 310 2013

8 Direct pleiotropy 0.8 0.8 80 0 309 302

9 Indirect and direct pleiotropy 0.8 0.8 80 0.8 310 2014

Table 5: Parameter values for the difference scenarios to verify the assumptions for method 1. Increasing
strength of the instrument G and G2 for scenario 1-3 and increasing strength of the instrument for G for
scenario 4-6. The confounder parameters are set to γY U = 80, γSU = 1.6.
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Figure 8: Density plots for the estimation of β0 and β1 using method 1 over 20,000 simulation runs for 9
different scenarios.

11.2 Simulation for method 2

We investigated 8 different scenarios and show the density plots for the estimation of β0 and β1 − β0. We
expect only scenario 1 and 2 to be unbiased. The direct effect between S and G bias the estimation of β1−β0

and as this estimation is crucial for the following steps of estimating β0. However, as the biased estimation is
not a visible in Figure 9 we also provide the mean and standard derivation for the estimates for each scenario
in Table 7. An effect between the genetic instrument G and the unmeasured confounder U and hence the
indirect pleiotropy results in biased estimates for scenario 3-8. However, a direct pleiotropic effect of G is no
problem (scenario 2 is unbiased)

Description γSG γSG2
γY G γUG

1 No direct effect between G and S, no pleiotropy 0 0.8 0 0

2 No direct effect between G and S , direct pleiotropy 0 0.8 80 0

3 No direct effect between G and S, indirect pleiotropy 0 0.8 0 0.8

4 No direct effect between G and S , indirect and direct pleiotropy 0 0.8 80 0.8

5 Direct effect between G and S, no pleiotropy 0.8 0.8 0 0

6 Direct effect between G and S, direct pleiotropy 0.8 0.8 80 0

7 Direct effect between G and S, indirect pleiotropy 0.8 0.8 0 0.8

8 Direct effect between G and S, indirect and direct pleiotropy 0.8 0.8 80 0.8

Table 6: Parameter values for the difference scenarios to verify the assumptions for method 2. The confounder
parameters are set to γY U = 80, γSU = 1.6.
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Figure 9: Density plots for the estimation of β0 and β1 − β0 using method 2 over 20,000 simulation runs for
8 different scenarios.

β0 (95% CI) β1 − β0 (95% CI) F-Stat G2

1 -100.69 (-101.59, -99.78) -99.78 (-100.00,-99.56) 285

2 -100.21 (-101.12, -99.30) -100.08 (-100.30, -99.86) 286

3 -98.01 (-98.80,-97.21) -103.84 (-104.05, -103.64) 303

4 -97.22 (-98.02,-96.42) -104.21 (-104.41, -104.00) 303

5 -98.08 (-98.90, -97.26) -102.84 (-103.05, -102.63) 304

6 -98.33 (-99.15, -97.51) -103.07 (-103.27, -102.86) 305

7 -97.64 (-98.45, -96.84) -104.18 (-104.39, -103.98) 278

8 -97.47 (-98.28, -96.66) -104.13 (-104.34, -103.93) 279

Table 7: Mean values and 95% confidence intervals for the estimation of β0 and β1 − β0 using method 2 for
different scenarios. Estimates for scenario 1 and 2 are highlighted in bold because the true value (-100) lies
within the 95 % confidence interval.

12 Appendix: Simulation of power for small differences between
genetic groups

To investigate at which sample size the two methods are able to estimate a small β1−β0 with sufficient power,
we simulated different data sets. The data generation follows the same procedure as described in the main
body of this paper. The parameter values γ are kept the same as in previous simulations. We investigated
4 different scenarios as shown in Table 8. Each scenario was simulated with sample sizes varying from 7,000
to 500,000. Each simulation was repeated 5,000 times (N = 5, 000). We estimate the power to reject the
null hypothesis that β1−β0 were statistically different from zero at the 5% significance level across the 5,000
simulations. The results for both methods are shown in Figure 10.
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Scenario β1 β0 β1 − β0

1 -220 -200 -20

2 -200 -185 -15

3 -180 -170 -10

4 -168 -163 -5

Table 8: Four different scenarios with small values for β1 − β0, for data simulations with different large
sample sizes.

Figure 10: Power to estimate β1−β0 for different samples sizes (on the x-axis) applying method 1 and method
2 (see different shapes). The different colours refer to the different simulated data sets with changing β1 −β0

values.
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