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Abstract: A stochastic version of the deterministic model for meningitis epidemic by Yaga and Saporu
(2024) is developed. The stochastic mean system of equations for possible state of an individual in the
model and the extinction probabilities for carrier and infective are derived. Comparison of the system of
stochastic mean equations and its deterministic analogue of profiles for the various compartments and the
case-carrier trajectories show similar pattern with a time shift difference. This indicates that there must be
caution in using the deterministic analogue as an approximating system of the stochastic mean equations for
inferential purpose. Simulation studies of the comparison of the compartmental profiles for the general case;
model I, with the assumption that a proportion (𝜙 ≠ 0), of the infected susceptible can move directly to the
infective stage and that of the special case, model II, when 𝜙 = 0 is examined for various values of 𝜖(odds in
favour of a carrier transmitting infection)≤ 2. It is only when 𝜖 = 2 that model II can approximate model I
in all compartments except that of the carrier. Transmission rate, 𝛽, loss of carriership rate, 𝜎 and 𝜖 are
identified as the most sensitive parameters of the extinction probabilities. Threshold results derived for
carrier and infective extinction probabilities are distinct but bear some relation, transmission rate required
for carrier extinction is square of that for infective. It is concluded that carriership play a more prominent
role in the transmission of meningitis epidemic and efforts aimed at control should be targeted at reducing
the transmission rate and increasing the loss of carriership.

Keywords: Stochastic Mean Equation, Simulation, Extinction Probability, Sensitivity Analysis,Threshold
Conditions, Case-Carrier Trajectories

1 Introduction
Meningitis is an infection of the meninges, a thin lining surrounding the brain and the spinal cord (WHO,
2021). The disease can be caused by many pathogens (bacteria, fungi or viruses). Susceptible individuals
acquire pathogen after exposure through effective and prolonged contact with asymptomatic carriers or
infectious individuals (Meyer and Kristiansen, 2016). Meningococcal disease occurs worldwide as an endemic
devastating disease with seasonal fluctuations ( Stephen et al. 2007 and Caugant et al. 2012). The risk of
meningitis varies with age. So also the carrier prevalence is age-dependent (Campagne et al. 1999). This
disease poses a major public health threat.

Deterministic models have been developed to study the dynamics of meningitis for endemic situations
(Irving et al., 2012; Coen et al., 2000; Veren, 2008; Karachaliu et al., 2015; Asamao et al., 2018; Agier et al.,
2013). Yaga and Saporu (2024) extended the work of Irving et al. (2012) for an epidemic situation using a
compartmental deterministic model.

One of the assumptions of deterministic models is that the sizes of the compartments are large enough
to enable homogeneous mixing in the population (Bailey, 1975 and Darley and Gani, 1999). Such a
notion is not generally applicable when studying the dynamic behavior of biological populations such as
diseases, population growth, and human behavior, etc. Indeed human population is affected by demographic
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fluctuations, environment, climate, etc. Such variable factors induce stochasticity in the population structure
and pathogen characteristics. Consequently, stochastic models are useful in studying any disease transmission
dynamics.

In meningitis, contact of susceptible with either infectives or carriers is assumed to be random. This
provides the scope for incorporating a stochastic effect in the model for a better understanding of the
transmission process. The first stochastic model for meningitis is by Stollenwerk et al. (2004). The model
investigates the effect of multi-strain meningococcal pathogens on the outbreak of meningococcal meningitis.
Here a stochastic model is developed from the deterministic model of Yaga and Saporu (2024) with interest
in studying the salient features of the meningitis epidemic process. In particular, we are looking at;

a. comparing the profiles of the derived system of equations for the stochastic mean and its deterministic
analogue,

b. comparing the simulated stochastic model and its deterministic analogue for some important epidemio-
logical parameters that reflect the salient features of the transmission process and

c. deriving the extinction probability arising from the stochastic model and examining the parameters of
the model that are sensitive to the extinction phenomenon.

All these are new.

2 Stochastic Model
The salient features in the transmission of meningitis epidemic has been captured using a deterministic
model in Yaga and Saporu (2024). Here interest lies in its stochastic version. Consequently, for the ease of
the reader, the deterministic model formulation is presented below.

Only six(6) states are used to classify an individual so that the model is simple and mathematically
tractable. Consequently, an individual can be either susceptible (𝑆), asymptomatic carrier (𝐶), symptomatic
infectious or ill (𝐼), infectious with complication (𝐼1), recovered/immune (𝑅) or dead (𝐷) due only to
illness of the disease. Death can only occur if an individual passes through the complication stage without
recovery. A susceptible individual can be infected either by a carrier (𝐶) or an infectious individual (𝐼)
with transmission rate 𝛽. In order to reflect a differential transmission rate, a force of infection,

𝜆 = 𝛽 × (𝜖 × 𝐶 + 𝐼)
𝑁

, (1)

is assumed, where 𝑁 is the total population size and 𝜖 is the odds in favor of a carrier transmitting infection
to a susceptible. It is assumed that all infected individuals must pass through carriership before becoming
an infective in stage 𝐼 and infectives in stage 𝐼1 are out of circulation and, as such, do not contribute to the
spread of the disease.

Carriers can either develop invasive disease (𝐼) at the rate, 𝜑 or lose carriage at the rate, 𝜎 to become
susceptible again. An infective in state 𝐼 either progresses to state 𝐼1 at the rate, 𝜃 or recovers at the rate,
𝛾1. An infective in state 𝐼1 either dies at the rate, 𝛿 or recovers at the rate, 𝛾2. Recovered individuals lose
temporary immunity to become susceptible at the rate, 𝛼.

In order to generalize the model, a proportion 𝜙 of infectives is allowed to pass directly from 𝑆 to 𝐼.
This reflects some of the thinking of the model of transmission of infection between infected and susceptible
individuals. Finally, the model is assumed to be closed to birth, mortality and migration (in or out). For
clarity, the model is diagrammatically shown in Figure 10 below.
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Fig. 1: Shematic representation of the meningitis epidemic model.

A stochastic model is of interest. Let 𝑆(𝑡), 𝐶(𝑡), 𝐼(𝑡), 𝐼1(𝑡), 𝑅(𝑡) and 𝐷(𝑡) denote the number of
susceptible, carrier, stage one infective (with symptoms of invasive disease only), infective with stage one
complication, recovered and dead present at time 𝑡. The model implies that there are nine (9) possible
transitions in Δ𝑡 requiring corresponding transition probabilities. For example, if one susceptible becomes a
carrier in time Δ𝑡, then a transition of (𝑆, 𝐶, 𝐼, 𝐼1, 𝑅, 𝐷) → (𝑆 − 1, 𝐶 + 1, 𝐼, 𝐼1, 𝑅, 𝐷) has occurred with
transition probability given by (1 − 𝜙)𝛽 × (𝐼 + 𝜖 × 𝐶) × 𝑁−1(Δ𝑡). Here the transition rate is denoted by
𝑓−1,1 = (1 − 𝜙)𝛽 × (𝐼 + 𝜖 × 𝐶) × 𝑁−1. By similar reasoning, the table for the transition probabilities for
the stochastic model is provided in Table 1 below, where 𝑓𝑗,𝑘, 𝑗 and 𝑘 can take possible values −1, 0, 1. The
possible range of parameter values are provided in Table 2.

Tab. 1: Showing transition probabilities between epidemiological classes

Description of possible events Transition in time 𝑡 → 𝑡+Δ𝑡 Transition Probability (𝑓𝑗𝑘Δ𝑡)

1 S → 𝐶 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S-1,C+1,I,I1, 𝑅,𝐷) (1-𝜙)× 𝛽 × 𝑆 × (𝐼 + 𝜖× 𝐶)×
(︀

1
𝑁

)︀
Δ𝜏 + 𝑜(Δ𝜏)

2 S → 𝐼 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S-1,C,I+1,I1, 𝑅,𝐷) 𝜙× 𝛽 × 𝑆 × (𝐼 + 𝜖× 𝐶)×
(︀

1
𝑁

)︀
Δ𝜏 + 𝑜(Δ𝜏)

3 C → 𝑆 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S+1,C-1,I,I1, 𝑅,𝐷) 𝜎 × 𝐶Δ𝜏 + 𝑜(Δ𝜏)

4 C → 𝐼 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S,C-1,I+1,I1,R,D) 𝜑× 𝐶Δ𝜏 + 𝑜(Δ𝜏)

5 I → 𝐼1 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S,C,I-1,I1 + 1, 𝑅,𝐷) 𝜃 × 𝐼Δ𝜏 + 𝑜(Δ𝜏)

6 I → 𝑅 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S,C,I-1,I1, 𝑅+ 1, 𝐷) 𝛾1 × 𝐼Δ𝜏 + 𝑜(Δ𝜏)

7 I1 → 𝑅 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S,C,I,I1 − 1, 𝑅+ 1, 𝐷) 𝛾2×I1 Δ𝜏 + 𝑜(Δ𝜏)

8 I1 → 𝐷 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S,C,I,I1 − 1, 𝑅,𝐷 + 1) 𝛿×I1 Δ𝜏 + 𝑜(Δ𝜏)

9 R → 𝑆 (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S+1,C,I,I1, 𝑅− 1, 𝐷) 𝛼×𝑅Δ𝜏 + 𝑜(Δ𝜏)

10 No Change (𝑆,𝐶, 𝐼, 𝐼1, 𝑅,𝐷) →(S,C,I,I1, 𝑅,𝐷) (1-sum of all transition probabilities 1 to 9)
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Tab. 2: Description of parameter values used in the model and their possible range of values

S/No. Parameters Description (Values/Ranges) 𝑑𝑎𝑦−1 Source

1 𝛽 Transmission rate 0.13699− 1 Irving et al. (2012)
2 𝜖 Odds in favor of carrier infecting a susceptible over an infective 0.5− 10 Assumed
3 𝜙 Proportion of S moving to I 0− 1 Assumed
4 𝜎 Rate of loss to carriership 0.002739− 0.145 Irving et al. (2012)
5 𝜑 Rate at which carrier becomes stage one infective 0.002739− 0.145 Irving et al. (2012)
6 𝜃 Rate at which stage one infective develops complication 0.071428− 0.147 WHO (2018)
7 𝛾1 Rate of recovery of stage one infective 0.1− 0.14 Irving et al. (2012)
8 𝛾2 Rate of recovery of individuals with complication 0.08333− 0.1 Assumed
9 𝛼 Rate at which recovered individuals lose immunity 0.0333 Irving et al. (2012)
10 𝛿 Disease induced death 0.08333− 0.1 Sharew et al. (2020)

Let 𝑝𝑠𝑐𝑖𝑖1𝑟𝑑(𝑡) be the probability that at time 𝑡 there are still 𝑠 susceptibles remaining uninfected, 𝑐

carriers in circulation, 𝑖 infective in circulation, 𝑖1 infective with complication, 𝑟 recovered and 𝑑 death. By
following the usual arguments by Bailey 1964, the Kolmogorov system of forward differential equations can
be derived from the transition probabilities in Table 1 and are given by

𝑑𝑝𝑠𝑐𝑖𝑖1𝑟𝑑

𝑑𝑡
= −(𝛽 × 𝑠 × (𝑖 + 𝜖 × 𝑐) + 𝜑𝑐 + 𝜎𝑐 + 𝜃𝑖 + 𝛾1𝑖 + 𝛾2𝑖1 + 𝛼𝑟) × 𝑝𝑠𝑐𝑖𝑖1𝑟𝑑(𝑡)

+(1 − 𝜙)𝛽 × (𝑠 + 1) × 𝑁−1[𝜖 × (𝑐 − 1) + 𝑖] × 𝑝𝑠+1,𝑐−1(𝑡)
+𝜙𝛽 × (𝑠 + 1) × 𝑁−1[(𝑖 − 1) + 𝜖 × 𝑐] × 𝑝𝑠+1,𝑖−1(𝑡)

+𝜑 × (𝑐 + 1) × 𝑝𝑐+1,𝑖−1(𝑡) + 𝜎 × (𝑐 + 1) × 𝑝𝑠−1,𝑐+1(𝑡)
+𝜃 × (𝑖 + 1) × 𝑝𝑖+1,𝑖1−1(𝑡) + 𝛾1 × (𝑖 + 1) × 𝑝𝑖+1,𝑟−1(𝑡)

+𝛾2 × (𝑖1 + 1)𝑝𝑖1+1,𝑟−1(𝑡) + 𝛿 × (𝑖1 + 1) × 𝑝𝑖1,𝑑−1(𝑡)
+𝛼 × (𝑟 + 1) × 𝑝𝑠−1,𝑟+1(𝑡), (2)

with boundary conditions 𝑝𝑖𝑗𝑘𝑙𝑚𝑛(0) = 1 and initial values, 𝑆(0) = 𝑛 − 𝑎1 − 𝑎2, 𝐶(0) = 𝑎1,
𝐼(0) = 𝑎2, 𝐼1(0) = 0, 𝑅(0) = 0 and 𝐷(0) = 0.

2.1 Moment Generating Function

From Table 1, the partial differential equation for the joint moment generating function 𝑀(𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6; 𝑡)
can be immediately written down (following, for example, the method of Bailey, 1964, section 7.4) as

𝜕𝑀

𝜕𝑡
= (1 − 𝜙) × 𝛽 × 𝑁−1 × (𝑒𝑥𝑝(−𝜇1 + 𝜇2) − 1)

(︂
𝜕2𝑀

𝜕𝜇1𝜕𝜇3

)︂
+ 𝜎 × (𝑒𝑥𝑝(𝜇1 − 𝜇2) − 1)

(︂
𝜕𝑀

𝜕𝜇2

)︂
+𝜖 × (1 − 𝜙)𝛽 × 𝑁−1 × (𝑒𝑥𝑝(−𝜇1 + 𝜇2) − 1)

(︂
𝜕2𝑀

𝜕𝜇1𝜕𝜇2

)︂
+ 𝜑(𝑒𝑥𝑝(−𝜇2 + 𝜇3) − 1)

(︂
𝜕𝑀

𝜕𝜇2

)︂
+𝜙𝛽 × 𝑁−1 × (𝑒𝑥𝑝(−𝜇1 + 𝜇3) − 1)

(︂
𝜕2𝑀

𝜕𝜇1𝜕𝜇3

)︂
+ 𝜃(𝑒𝑥𝑝(−𝜇3 + 𝜇4) − 1)

(︂
𝜕𝑀

𝜕𝜇3

)︂
+𝜖 × 𝜙𝛽 × 𝑁−1 × (𝑒𝑥𝑝(−𝜇1 + 𝜇3) − 1)

(︂
𝜕2𝑀

𝜕𝜇1𝜕𝜇2

)︂
+ 𝛾1(𝑒𝑥𝑝(−𝜇3 + 𝜇5) − 1)

(︂
𝜕𝑀

𝜕𝜇3

)︂
+𝛾2 × (𝑒𝑥𝑝(−𝜇4 + 𝜇5) − 1)

(︂
𝜕𝑀

𝜕𝜇4

)︂
+ 𝛿 × (𝑒𝑥𝑝(−𝜇4 + 𝜇6) − 1)

(︂
𝜕𝑀

𝜕𝜇4

)︂
+𝛼 × (𝑒𝑥𝑝(𝜇1 − 𝜇5) − 1)

(︂
𝜕𝑀

𝜕𝜇5

)︂
, (3)

with initial condition,
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𝑀(𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6; 0) = 𝑒𝑥𝑝[(𝑛 − 𝑎1 − 𝑎2)𝜇1 + 𝑎1𝜇2 + 𝑎2𝜇3]. (4)

Equation (3) is intractable. However, we can obtain the system of equation for the joint moments by
equating coefficients on both sides of equation (3). Let 𝑀𝑖𝑗𝑘𝑙𝑚𝑛 be the (𝑖𝑗𝑘𝑙𝑚𝑛)𝑡ℎ ordered joint moment at
time 𝑡. Taking the procedure of equating coefficients of both sides of equation (3) as far as the second order
moment, we can obtain the following equations,

𝑀
′

100000 = −2𝛽(𝑀101000 + 𝜖𝑀110000)
(︂

1
𝑁

)︂
+ 𝜎𝑀010000 + 𝛼𝑀000010,

𝑀
′

010000 = 2(1 − 𝜙)𝛽(𝑀101000 + 𝜖𝑀110000)
(︂

1
𝑁

)︂
− (𝜎 + 𝜑)𝑀010000,

𝑀
′

001000 = 2𝜙𝛽(𝑀101000 + 𝜖𝑀110000)
(︂

1
𝑁

)︂
+ 𝜑𝑀010000 − (𝜃 + 𝛾1)𝑀001000,

𝑀
′

000100 = 𝜃𝑀001000 − (𝛿 + 𝛾2)𝑀000100,

𝑀
′

000010 = 𝛾1𝑀001000 + 𝛾2𝑀000100 − 𝛼𝑀000010,

𝑀
′

000001 = 𝛿𝑀000100,

𝑀
′

110000 = −4(1 − 𝜙)𝛽(𝑀101000 + 𝜖𝑀110000)
(︂

1
𝑁

)︂
− 2(𝜑 + 𝜎)𝑀110000 − 2𝜎𝑀010000 + 𝜎𝑀020000,

𝑀
′

101000 = −4(1 − 𝜙)𝛽(𝑀101000 + 𝜖𝑀110000)
(︂

1
𝑁

)︂
+ 2𝜑𝑀110000 − 2(𝜃 + 𝛾1)𝑀101000 + 2𝜎𝑀011000,

𝑀
′

011000 = −2𝜎𝑀101000 − 2𝜑𝑀010000 − 2𝜑𝑀011000 − 2𝜃𝑀011000,

𝑀
′

020000 = 4(1 − 𝜙)𝛽(𝑀101000 + 𝜖𝑀110000)
(︂

1
𝑁

)︂
+ 2(𝜑 + 𝜎)𝑀010000 − 2(𝜑 + 𝜎)𝑀020000,

(5)

with initial conditions when 𝑡 = 0,

𝑀100000 = 𝑛 − 𝑎 − 𝑏, 𝑀010000 = 𝑎, 𝑀001000 = 𝑏, 𝑀000100 = 0, 𝑀000010 = 0,

𝑀000001 = 0, 𝑀110000 = 0, 𝑀101000 = 0, 𝑀020000 = 0. (6)

The system of equation in (5) provides the stochastic mean. It is therefore interesting to see how they
compare with the deterministic system of equation given below.

𝑑𝑆

𝑑𝑡
= −𝛽𝑆(𝐼 + 𝜖𝐶)

(︂
1
𝑁

)︂
+ 𝛼𝑅 + 𝜎𝐶

𝑑𝐶

𝑑𝑡
= (1 − 𝜙)𝛽𝑆(𝐼 + 𝜖𝐶)

(︂
1
𝑁

)︂
− (𝜑 + 𝜎)𝐶

𝑑𝐼

𝑑𝑡
= 𝜙𝛽𝑆(𝐼 + 𝜖𝐶)

(︂
1
𝑁

)︂
+ 𝜑𝐶 − (𝜃 + 𝛾1)𝐼

𝑑𝐼1
𝑑𝑡

= 𝜃𝐼 − (𝛿 + 𝛾2)𝐼1

𝑑𝑅

𝑑𝑡
= 𝛾1𝐼1 + 𝛾2𝐼1 − 𝛼𝑅

𝑑𝐷

𝑑𝑡
= 𝛿𝐼1. (7)
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2.2 Comparison of the stochastic mean equations and the deterministic model
profiles for meningitis epidemic process

.
A deterministic model in a general sense is widely used in modeling the transmission dynamics of

infectious diseases and assessing the impact of various control strategies. The deterministic solution does
not give an exact behavior of the corresponding stochastic mean except if the covariance between the
variables is zero (Isham, 1993; Lloyd and Zhang, 2007; and Keeling and Rohani, 2008). The assumption of
the meningitis model does not allow the covariance between the variables (epidemiological classes) to be
zero.

Interest lies in comparing the stochastic mean and the deterministic curve in three instances to see
to what extent inference from the deterministic model is dented. This will provide the necessary caution
in assuming that the deterministic model adequately approximates the stochastic model for meningitis
epidemic process. The first comparison is between the stochastic means and the deterministic curves of
various epidemiological classes assumed for the meningitis epidemic process. The comparison is performed
for population sizes 𝑁 = 102, 104, 105 and 106 and shown in Figure 2 below. The stochastic mean equation
contains joint moments that cannot be assumed to be zero, these relationship makes the stochastic mean
equations slightly differ from the deterministic solution. This can explain the differences associated with the
stochastic and deterministic plots. However, the nature of the pattern exhibited by both the stochastic
means and the deterministic curves for all population sizes examined are the same. These provide evidence
for caution in using the deterministic model as a first approximation to the stochastic mean equations.
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Fig. 2: Comparison between stochastic means and deterministic model profiles for various population sizes 𝑁 =

102, 103, 104 and 106 and parameters 𝜖 = 2 and 𝜙 = 0.5.

The second set of plots shown in Figure 3 below are plots of the stochastic means and deterministic
profiles of carriers and infective over time for model I(𝜙 ̸= 0) and model II(𝜙 = 0) for various initial
conditions (𝐼(0) = 0 and 𝐶(0) = 1, 𝐼(0) = 1 and 𝐶(0) = 0 and 𝐼(0) = 1 and 𝐶(0) = 1). Here, we are
investigating how 𝜙 ( the proportion of infectives that pass directly from 𝑆 to 𝐼) affects these means. It is
clear from all the graphs that there is covariability between the numbers of carrier and infectives over time.
This gives credence to the observable differences in the stochastic means and the deterministic plots shown
in Figure 2. It is noticeable from Figure 3 that;

1. the peak values of the profiles for the deterministic model underestimate the corresponding values for
the stochastic mean and

2. the distinction between model I and II becomes clearer as 𝜙 moves further away from zero for both the
deterministic and stochastic mean profiles.

Consequently, model I can approximate model II only for values of 𝜙 very close to zero. In such a case, the
deterministic model can be used, to approximate the stochastic model bearing in mind we are contending
with underestimation.
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Fig. 3: Plots of the stochastic means and the deterministic profiles for carrier and infective for model I(𝜙 ̸= 0) and model
II (𝜙 = 0)

Lastly, we compared the case-carrier ratio trajectories for the stochastic means and the deterministic
model. It should be mentioned here that the case-carrier ratio is an ecological proxy for the risk of meningitis
giving colonization. The importance of case-carrier ratio trajectory is in providing visual evidence of
how meningitis incidence varies according to epidemiological context (endemicity, hyper-endemicity, and
epidemic) times. These are extensively discussed in Yaga and Saporu (2024). This informed the choice
for this comparison. We are again looking to see if the deterministic model equations can serve as a first
approximation to the stochastic mean equations for inference purposes.
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Fig. 4: Case-Carrier ratio trajectory for stochastic means and deterministic model for various initial conditions and 𝜌 =

0.5, 1 and 𝜌 = 2

Figure 4 shows the trajectories of case-carrier ratio for the stochastic means and deterministic model for
various initial values as indicated. It must be noted that the threshold line is provided in the graph because
it divides the graph into two epidemic regions (above the line is the non-epidemic region and below the line
is the epidemic region) for ease of interpretation by the reader. The plots for both the stochastic mean and
deterministic model show the same pattern for all the cases considered. However, plots for the deterministic
model are shifted in time a little bit to the right. This implies that there is a delay in the deterministic cases
in the times recorded for important epidemiological events. For examples, the times the epidemic starts,
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finishes, and settles in an endemic level before the next epidemic season are also shifted. Another noticeable
difference are the critical case-carrier ratio values( the lowest turning point in the epidemic region). These
are smaller than those of the corresponding values for the deterministic model. All these suggest that there
must be caution in assuming that the deterministic model approximates the stochastic mean equations.

3 Simulation studies

3.1 Introduction

Generally, it is often difficult or mostly impossible to obtain an explicit expression that will help to explore
some of the properties of a stochastic model describing an epidemic process. This is more true for meningitis
epidemic process. However, to gain insight into the understanding of some of the salient features of stochastic
epidemic process that will be of epidemiological importance requires the use of stochastic simulation (Dietz
and Shenzle, 1985). Various attempts made for simulating stochastic epidemic process can be found in
for example Whittle (1955), Ludwig (1973), Bailey (1975) and Keeling and Rohani (2008).The stochastic
simulation allows one to numerically simulate the time evolution of a random system in a way that takes
account of the randomness that is intrinsic in it and thus avoid mathematical intractability. Trajectories
produced by simulation algorithms gives a more realistic representation of the system evolution than the
conventional deterministic models (Gillespie, 1977 and 2001). Here we are using the Gillespie Tau-Leap
simulation method. The foci are:

i. compare models I and II for various values of 𝜖 and
ii. see the effect of 𝜖 and 𝜙 on the carrier and infective incidences arising from models I and II.

3.2 Comparison of Models I and II for various values of 𝜖

Figures 5 and 6 show the plots of the compartmental profiles for models I and II for values of 𝜖 = 0.5, 1 and
2 for 𝑁 = 104 and 𝑁 = 5 × 104 respectively. It is clear from these plots that as 𝜖 decreases in value below
2, the difference in models I and II becomes more pronounced for both sample sizes considered. However,
when 𝜖 = 2, model II can approximate model I for all the compartmental profiles except that of the carrier.
Here it is noticeable that the model I carrier profile peak value is considerably larger than that of model II.
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Fig. 5: Plots of the compartmental profiles for models I and II for 𝜖 = 0.5, 1 and 2 for population size 𝑁 = 104

Fig. 6: Plots of the compartmental profiles for models I and II for 𝜖 = 0.5, 1 and 2 for population size 𝑁 = 5× 104
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3.3 Effect of 𝜖 and 𝜙 on Carrier and Infective Incidence from models I and II

An important statistical tool that is employed by epidemiologists to understand the behaviour of a pathogen
and its interaction with the host and its environment is the epidemic curve. The epidemic curve gives the
rate at which new cases occur (Giesecke, 2002). Here we want to study the effect of 𝜖 = 0.5, 1, 2; 𝜙 = 0, 0.5
and 𝑁 = 104 and 5 × 104 on the carrier and infective incidence curves for stochastic models I(𝜙 = 0.5 and
models II(𝜙 = 0). The simulation is performed with initial conditions 𝐶(0) = 1 and 𝐼(0) = 1 and the plots
are shown in Figs. 7-9. The corresponding deterministic curves are superimposed on these plots for the
purpose of comparison. Also, estimates of important epidemiological characteristics of the infective and
carrier incidences are shown in Tables 3-5 for ease of interpretation by the reader.

3.3.1 Infective Incidence Curve

Figures 7 and 8 show clearly that as the value of 𝜖 decreases so does that of the infective incidence,
irrespective of 𝜙 and sample size. The same is also true for the deterministic model plots. However, there
are noticeable differences in the stochastic and deterministic model plots that must be mentioned and are
listed below with a provision for their actual values shown in Tables 3 and 4.
1. The peak and stopping times of the infective incidence is earlier for the deterministic model.
2. The number of cases at the peak times is higher for the deterministic model.
3. It is only at the lowest value of 𝜖(= 0.5) that the stochastic and deterministic model plots are reasonably

close.

This indicates that in using the deterministic model as an approximating stochastic system, inferences
emanating from such an assumption must carry an underlying precautionary note. Figures 7 and 8 show
that as the value of 𝜖 becomes higher, plots for stochastic models show a trend of which model II(𝜙 = 0)
better approximate model I(𝜙 = 0.5).

As can be seen in Tables 3 and 4, as the value of 𝜖 decreases, so also does the value of the total
number ever infected for both the stochastic and the deterministic models. This identifies 𝜖 as an important
parameter that needs to be reduced for any meaningful attempt at controling the spread of meningitis.
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Fig. 7: Epidemic Curves showing the effect of 𝜖 and 𝜙 for models I and Model II on infective incidence for population size
𝑁 = 104

Fig. 8: Epidemic Curves showing the effect of 𝜖 and 𝜙 for models I and Model II on infective incidence for population size
𝑁 = 5× 104
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Epidemiological characteristics of the infective incidence of meningitis epidemic initiated by 𝐶(0) = 1
and 𝐼(0) = 1 for population size 𝑁 = 10, 000 and 𝑁 = 50, 000 are computed using the mean field of n=500
stochastic realization and the results shown in Table 3 below. The corresponding values for the deterministic
model are shown in Table 4.

Tab. 3: Some values of the epidemiological characteristics of the infective incidence of meningitis epidemic derived from a
stochastic model with initial conditions 𝐶(0) = 1, 𝐼(0) = 1 and population size 𝑁 = 10, 000 and 50, 000.

Stochastic

Population
size (𝑁)

𝜙 𝜖 Starting
time of
epidemic
(𝐼𝑇1)

End of
epidemic

time
(𝐼𝑇2)

Peak
time of
epidemic
(𝐼𝑇𝑚𝑎𝑥)

Number
of cases
at peak
𝐼(𝐼𝑇𝑚𝑎𝑥)

Duration
of

epidemic
(𝐼𝑇3)

Total
number

recovered
𝑅(𝐼𝑇2)

Total
Number
of Death
𝐷(𝐼𝑇2)

Total
number

ever
infected
𝑛𝐼(𝐼𝑇2)

10,000

0.0 0.5 26 90 68 181 74 1087 414 2555
0.0 1.0 08 62 46 333 54 857 344 3314
0.0 2.0 06 40 28 726 34 851 228 4113
0.5 0.5 06 62 48 416 56 1221 527 3993
0.5 1.0 10 52 40 509 48 986 340 4166
0.5 2.0 04 42 30 663 38 336 277 4380

50,000

0.0 0.5 14 102 86 940 88 6487 2987 13374
0.0 1.0 04 60 48 2584 56 4529 2676 20933
0.0 2.0 06 44 34 3905 38 2288 1207 22118
0.5 0.5 08 72 58 1909 64 6368 2734 18607
0.5 1.0 04 60 48 2584 56 6139 2666 20933
0.5 2.0 04 46 36 4019 52 5578 1574 24542

Tab. 4: Some values of the epidemiological characteristics of the infective incidence of meningitis epidemic derived from a
deterministic model with initial conditions 𝐶(0) = 1, 𝐼(0) = 1 and population size 𝑁 = 10, 000 and 50, 000.

Deterministic

Population
size (𝑁)

𝜙 𝜖 Starting
time of
epidemic
(𝐼𝑇1)

End of
epidemic

time
(𝐼𝑇2)

Peak
time of
epidemic
(𝐼𝑇𝑚𝑎𝑥)

Number
of cases
at peak
𝐼(𝐼𝑇𝑚𝑎𝑥)

Duration
of

epidemic
(𝐼𝑇3)

Total
number

recovered
𝑅(𝐼𝑇2)

Total
Number
of Death
𝐷(𝐼𝑇2)

Total
number

ever
infected
𝑛𝐼(𝐼𝑇2)

10,000

0.0 0.5 24 82 62 210 58 1072 645 2676
0.0 1.0 08 54 40 387 46 967 433 3314
0.0 2.0 06 32 20 791 26 870 285 4115
0.5 0.5 08 54 42 457 34 929 376 3821
0.5 1.0 08 44 34 591 26 951 353 4133
0.5 2.0 04 32 24 899 28 861 259 4678

50,000

0.0 0.5 16 94 76 1052 78 5320 3190 13383
0.0 1.0 10 62 46 1931 52 5074 2341 16559
0.0 2.0 06 36 24 4019 30 3884 1570 20549
0.5 0.5 06 62 50 2283 56 5310 2315 19108
0.5 1.0 06 52 40 2978 46 4161 2119 20704
0.5 2.0 04 38 28 4558 34 2501 1651 23425
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3.3.2 Carrier Incidence

There are striking similarities and dissimilarities in the effect of 𝜙 and 𝜖 on the infective and carrier incidence
as seen in Figures 7-10 and Tables 3-5. We shall be highlighting only differences here in order to avoid
repetition. As seen in Figures 8 and 9, 𝜙 and 𝜖 both have influence on the carrier incidence. The effect
of 𝜖 depends on 𝜙 particularly at high level of 𝜖(= 2). This is true for both deterministic and stochastic
plots. This is one of the major characteristic difference. It is also observable that as the value of 𝜖 decreases
drastically:
i. influence of 𝜖 on the carrier plots drastically decreases irrespective of the value of 𝜙 and
ii. difference in the plots for the stochastic and deterministic models thin out and so also is the plots for

model I (𝜙 = 0.5) and model II (𝜙 = 0).

These observations are also supported by corresponding values in Table 5. By implication
a. the reduction of 𝜖 should be a target for meaningful control strategy for meningitis eradication as noted

earlier for the infective case and
b. when 𝜖 < 1 the deterministic model can provide a first approximation to the stochastic model and

model II (𝜙 = 0) can be used as an approximating system of model I (𝜙 = 0.5) in both the deterministic
and stochastic situations.

Fig. 9: Epidemic Curves showing the effect of 𝜖 and 𝜙 for models I and Model II on Carrier incidence for population size
𝑁 = 104

Epidemiological characteristics of the carrier incidence of meningitis epidemic initiated by 𝐶(0) = 1 and
𝐼(0) = 1, for population size 𝑁 = 10, 000 and 50, 000 are computed using the mean field of n=500 stochastic
realizations and the results shown in Table 5 below. The corresponding values for deterministic model are
also shown on the same table.
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Again as in the infective case, Table 5 provide evidence that underlying caution should be borne in
mind in making inferential statements emanating from the use of deterministic model in approximating its
stochastic analog.

Fig. 10: Epidemic Curves showing the effect of 𝜖 and 𝜙 for models I and Model II on Carrier incidence for population size
𝑁 = 5× 104

Tab. 5: Some values of epidemiological characteristics of Carrier incidence of meningitis epidemic derived from stochastic
model with initial conditions 𝐶(0) = 1 and 𝐼(0) = 1 and population size 𝑁 = 10, 000 and 50, 000

Stochastic Deterministic
Population size (𝑁) 𝜙 𝜖 Starting

time of
epidemic
(𝑐𝑇1)

End of
epidemic

time
(𝑐𝑇2)

Peak
time of
epidemic
(𝑐𝑇𝑚𝑎𝑥)

Number
of cases
at peak
𝐶(𝑐𝑇𝑚𝑎𝑥)

Starting
time of
epidemic
(𝑐𝑇1)

End of
epidemic

time
(𝑐𝑇2)

Peak
time of
epidemic
(𝑐𝑇𝑚𝑎𝑥)

Number
of cases
at peak
𝐶(𝑐𝑇𝑚𝑎𝑥)

0.0 0.5 16 77 58 117 16 73 56 150

0.0 1.0 08 50 38 254 12 45 30 179

104 0.0 2.0 02 28 24 854 02 22 18 1130

0.5 0.5 10 56 42 105 12 48 38 128

0.5 1.0 08 43 36 142 17 39 30 179

0.5 2.0 04 34 26 224 06 28 22 334

0.0 0.5 16 90 74 607 12 80 68 749

0.0 1.0 12 53 44 714 10 50 42 1761

5× 104 0.0 2.0 04 36 30 4505 04 26 20 5608

0.5 0.5 14 62 54 483 10 55 46 640

0.5 1.0 08 53 44 714 10 45 38 903

0.5 2.0 08 36 34 1384 04 33 26 1693
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4 Stochastic Extinction of Meningitis epidemic

4.1 Introduction

Branching process is used as an approximate method for determining the probability of disease extinction
or persistence, using the infectious classes with initial number of susceptible assumed to be at disease-free
equilibrium points (Allen, 2012; Allen, Lahodny et al., 2015). The problems associated with approximating
extinction probabilities are discussed in Britton et al. (2014). Here, the idea of Keeling and Rohani (2008)
is used to derive the probability of disease extinction for meningitis epidemic.
Interest lies in studying the extinction probabilities of meningitis epidemic initiated by an infective and/or
a carrier. In particular, we are using model II(𝜙 = 0), previously mentioned to allow for mathematical
tractability.

4.1.1 Extinction of meningitis epidemics

Case1. Epidemic solely initiated by a carrier: 𝐶(0) = 1 and 𝐼(0) = 0
When a carrier is introduced in a population of susceptible with no infective in the population, the following
are possible at the beginning of the process:
i. A carrier (C) can lose carriership with probability (𝜎 + 𝜑 + 𝜖𝛽)−1𝜎 and go to extinction with probability

one
ii. A carrier can convert to an infective with probability (𝜎 + 𝜑 + 𝜖𝛽)−1𝜑 and go into extinction with

probability 𝑖𝑝
𝑐
𝑒𝑥𝑡.

iii. A carrier can infect a susceptible to produce a carrier with probability (𝜎 + 𝜑 + 𝜖𝛽)−1𝜖𝛽 which results
in two carriers. The two carriers go into extinction with probability 𝑐𝑝2

𝑒𝑥𝑡.

The extinction probability for this epidemic process is obtained by summing all conditional probabilities in
(i)-(iii) using the idea of Keeling and Rohani (2008), this is given by

𝑐𝑝𝑒𝑥𝑡 = 𝜎

(𝜎 + 𝜑 + 𝜖𝛽) + 𝜑

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑖 𝑝𝑐
𝑒𝑥𝑡 + 𝜖𝛽

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑐 𝑝2
𝑒𝑥𝑡. (8)

Equation (8) cannot be solved analytically due to the presence of 𝑖𝑝
𝑐
𝑒𝑥𝑡. The notation 𝑖𝑝

𝑐
𝑒𝑥𝑡 is adopted

because it provides a leverage for anchoring some of the assumptions needed for mathematical tractability.

Case2. Epidemic solely initiated by an infective: 𝐶(0) = 0 and 𝐼(0) = 1
When an infective is assumed to be introduced in a population of susceptible, the following are possible at
the beginning of the process:
i. The infective (I) can recover with probability (𝛽 + 𝜃 + 𝛾1)−1𝛾1 and go into extinction with probability

one.
ii. The infective can progress to stage one complication with probability (𝛽 + 𝜃 + 𝛾1)−1𝜃 and then go into

extinction with probability one, for reason of being out of circulation.
iii. The infective can infect a susceptible with probability (𝛽 + 𝜃 + 𝛾1)−1𝛽 to produce one carrier; resulting

in one carrier and one infective. The carrier goes into extinction with probability𝑐𝑝𝑒𝑥𝑡 and the infective
goes to extinction with probability 𝑖𝑝𝑒𝑥𝑡.

Summing all the conditional probabilities in Case2 (i)-(iii) the extinction probability for this epidemic
process is given by

𝑖𝑝𝑒𝑥𝑡 = 𝜃 + 𝛾1
(𝛽 + 𝜃 + 𝛾1) + 𝛽

(𝛽 + 𝜃 + 𝛾1) ×𝑖 𝑝𝑒𝑥𝑡 ×𝑐 𝑝𝑒𝑥𝑡. (9)
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Equation (9) cannot be solved analytically. We make simplifying assumptions to make it tractable.
We assume that the infected carrier will either convert to an infective with probability (𝜑 + 𝜎)−1𝜑 and
go into extinction with probability 𝑖𝑝𝑒𝑥𝑡 resulting in two infectives going into extinction with probability
𝑖𝑝

2
𝑒𝑥𝑡 or an infected carrier can lose carriership with probability (𝜑 + 𝜎)−1𝜎 and go into extinction with

probability one. This now results into only one infective going into extinction with probability 𝑖𝑝𝑒𝑥𝑡. It must
be mentioned that by allowing the converted carrier infective to go into extinction with probability 𝑖𝑝𝑒𝑥𝑡 we
have approximated 𝑖𝑝

𝑐
𝑒𝑥𝑡 in case 1 by 𝑖𝑝𝑒𝑥𝑡 for mathematical convenience. This is reasonable. Hence the

extinction probability is now given by the equation

𝑖𝑝𝑒𝑥𝑡 = 𝜃 + 𝛾1
(𝛽 + 𝜃 + 𝛾1) + 𝛽𝜎

(𝛽 + 𝜃 + 𝛾1)(𝜑 + 𝜎) ×𝑖 𝑝𝑒𝑥𝑡 + 𝛽𝜑

(𝛽 + 𝜃 + 𝛾1)(𝜑 + 𝜎) ×𝑖 𝑝2
𝑒𝑥𝑡. (10)

The solution for the probability of extinction for this equation is given by

𝑖𝑝𝑒𝑥𝑡 =

(︁
1 − 𝛽𝜑

(𝛽+𝜃+𝛾1)(𝜑+𝜎)

)︁
+

√︂(︁
𝛽𝜎

(𝛽+𝜃+𝛾1)(𝜑+𝜎) − 1
)︁2

− 4𝛽𝜑(𝜃+𝛾1)
(𝜑+𝜎)(𝛽+𝜃+𝛾1)2

2 × 𝛽𝜑
(𝜑+𝜎)(𝛽+𝜃+𝛾1

, (11)

with condition for the real solution given by(︂
𝛽𝜑

(𝛽 + 𝜃 + 𝛾1)(𝜑 + 𝜎) − 1
)︂2

>
4𝛽𝜑(𝜃 + 𝛾1)

(𝜑 + 𝜎)(𝛽 + 𝜃 + 𝛾1)2 . (12)

It is clear that not much can be deduced from this complex equation.
Case3(a). Epidemic initiated by one carrier and one infective: 𝐶(0) = 1 and 𝐼(0) = 1

Carrier Lineage
i. The carrier (C) can lose carriership with probability (𝜎 + 𝜑 + 𝜖𝛽)−1𝜎 and go into extinction with

probability one.
ii. The carrier can convert to an infective with probability (𝜎 + 𝜑 + 𝜖𝛽)−1𝜑 and then go into extinction

with probability 𝑖𝑝
𝑐
𝑒𝑥𝑡.

iii. The carrier can infect a susceptible to produce a carrier with probability (𝜎 + 𝜑 + 𝜖𝛽)−1𝜖𝛽 which
resulting in two carriers. The two carriers go to extinction with probability 𝑐𝑝2

𝑒𝑥𝑡.

Infective Lineage

i. The infective (I) can recover with probability (𝛽 + 𝜃 + 𝛾1)−1𝛾1 and go into extinction with probability
one.

ii. The infective can progress to stage one complication with probability (𝛽 + 𝜃 + 𝛾1)−1𝜃 and then go into
extinction with probability one( due to being out of circulation).

iii. The infective can infect a susceptible with probability (𝛽 + 𝜃 + 𝛾1)−1𝛽 resulting in one carrier and one
infective. The carrier go to extinction with probability𝑐𝑝𝑒𝑥𝑡 and the infective goes to extinction with
probability 𝑖𝑝𝑒𝑥𝑡.

From the two formulations above,

𝑐𝑝𝑒𝑥𝑡 = 𝜎

(𝜎 + 𝜑 + 𝜖𝛽) + 𝜑

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑖 𝑝𝑐
𝑒𝑥𝑡 + 𝜖𝛽

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑐 𝑝2
𝑒𝑥𝑡

𝑖𝑝𝑒𝑥𝑡 = 𝜃 + 𝛾1
(𝛽 + 𝜃 + 𝛾1) + 𝛽

(𝛽 + 𝜃 + 𝛾1) ×𝑖 𝑝𝑒𝑥𝑡 ×𝑐 𝑝𝑒𝑥𝑡. (13)

The system of equations (13) is nonlinear and hence non-tractable. Here as explained earlier we assumed
that 𝑖𝑝

𝑐
𝑒𝑥𝑡, is approximated by 𝑖𝑝𝑒𝑥𝑡 and equation (13) then becomes

𝑐𝑝𝑒𝑥𝑡 = 𝜎

(𝜎 + 𝜑 + 𝜖𝛽) + 𝜑

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑖 𝑝𝑒𝑥𝑡 + 𝜖𝛽

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑐 𝑝2
𝑒𝑥𝑡

𝑖𝑝𝑒𝑥𝑡 = 𝜃 + 𝛾1
(𝛽 + 𝜃 + 𝛾1) + 𝛽

(𝛽 + 𝜃 + 𝛾1) ×𝑖 𝑝𝑒𝑥𝑡 ×𝑐 𝑝𝑒𝑥𝑡. (14)
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Eliminating 𝑖𝑝𝑒𝑥𝑡 in (14), 𝑐𝑝𝑒𝑥𝑡 becomes

𝑐𝑝3
𝑒𝑥𝑡 − 1

𝜖𝛽2 [𝜖𝛽(𝛽 + 𝜃 + 𝛾1) + 𝛽(𝜎 + 𝜑 + 𝜖𝛽)]𝑐𝑝2
𝑒𝑥𝑡 + 1

𝜖𝛽2 [𝜎𝛽(𝜎 + 𝜑 + 𝜖𝛽)(𝛽 + 𝜃 + 𝛾1)]𝑐𝑝𝑒𝑥𝑡

− 1
𝜖𝛽2 [𝜎(𝛽 + 𝜃 + 𝛾1) + 𝜑(𝜃 + 𝛾1)] = 0. (15)

Equation (15) is a cubic equation. Using the Maple computer program (v.18) we obtained solutions with
two complex and one real root. The real solutions for 𝑐𝑝𝑒𝑥𝑡 and 𝑖𝑝𝑒𝑥𝑡 are given by

𝑐𝑝𝑒𝑥𝑡 = 1
6

(︂
−36𝜂1𝜂2 + 108𝜂3 + 8𝜂3

1 + 12
√︁

12𝜂3
1𝜂3 − 3𝜂2

1𝜂2
2 − 54𝜂1𝜂2𝜂3 + 12𝜂3

2 + 81𝜂2
3

)︂ 1
3

−
6

(︀ 1
3 𝜂2 − 1

9 𝜂2
1
)︀(︁

−36𝜂1𝜂2 + 108𝜂3 + 8𝜂3
1 + 12

√︀
12𝜂3

1𝜂3 − 3𝜂2
1𝜂2

2 − 54𝜂1𝜂2𝜂3 + 12𝜂3
2 + 81𝜂2

3

)︁ 1
3

+ 1
3𝜂1, (16)

and

𝑖𝑝𝑒𝑥𝑡 = 𝜂4

𝜂5 − (𝜂5 + 𝜂46
(︁

−36𝜂1𝜂2 + 108𝜂3 + 8𝜂3
1 + 12

√︀
12𝜂3

1𝜂3 − 3𝜂2
1𝜂2

2 − 54𝜂1𝜂2𝜂3 + 12𝜂3
2 + 81𝜂2

3

)︁ 1
3

−
6

(︀ 1
3 𝜂2 − 1

9 𝜂2
1
)︀(︁

−36𝜂1𝜂2 + 108𝜂3 + 8𝜂3
1 + 12

√︀
12𝜂3

1𝜂3 − 3𝜂2
1𝜂2

2 − 54𝜂1𝜂2𝜂3 + 12𝜂3
2 + 81𝜂2

3

)︁ 1
3

+ 1
3𝜂1, (17)

where

𝜂1 = (𝜖𝛽2)−1[𝜖𝛽(𝛽 + 𝜃 + 𝛾1) + 𝛽(𝜎 + 𝜑 + 𝜖𝛽)], 𝜂2 = (𝜖𝛽2)−1[𝜎𝛽(𝜎 + 𝜑 + 𝜖𝛽)(𝛽 + 𝜃 + 𝛾1)]
𝜂3 = (𝜖𝛽2)−1(𝜎(𝛽 + 𝜃 + 𝛾1) + 𝜑(𝜃 + 𝛾1)), 𝜂4 = (𝜃 + 𝛾1), 𝜂5 = (𝛽 + 𝜂4).

Equations (16) and (17) are cumbersome, and can hardly be used in throwing more light about the complex
nature of extinction probabilities.

Case3(b). Epidemic initiated by one carrier and one infective: 𝐶(0) = 1 and 𝐼(0) = 1
In equation (7) we assume that the carrier converted infective goes into extinction to a first approximation
with probability 𝑐𝑝𝑒𝑥𝑡. That is (𝑖𝑝

𝑐
𝑒𝑥𝑡 ≈𝑐 𝑝𝑒𝑥𝑡). This is not far-fetched because (𝑖𝑝

𝑐
𝑒𝑥𝑡 and 𝑐𝑝𝑒𝑥𝑡) are all

fractions and are likely not to be substantially different from one another, even at the first decimal place.
This simplicity in assumption will make equation (18) amenable to mathematical exposition that can
provide insight into the extinction probabilities of meningitis epidemic, which may be of importance for
control intervention considerations.

Equation (7) then becomes

𝑐𝑝𝑒𝑥𝑡 = 𝜎

(𝜎 + 𝜑 + 𝜖𝛽) + 𝜑

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑐 𝑝𝑒𝑥𝑡 + 𝜖𝛽

(𝜎 + 𝜑 + 𝜖𝛽) ×𝑐 𝑝2
𝑒𝑥𝑡

𝑖𝑝𝑒𝑥𝑡 = 𝜃 + 𝛾1
(𝛽 + 𝜃 + 𝛾1) + 𝛽

(𝛽 + 𝜃 + 𝛾1) ×𝑖 𝑝𝑒𝑥𝑡 ×𝑐 𝑝𝑒𝑥𝑡 (18)

The solution to equation (18) is given by

𝑐𝑝𝑒𝑥𝑡 = 𝜎

𝜖 × 𝛽
, (19)

𝑖𝑝𝑒𝑥𝑡 = 𝛾1 + 𝜃

(𝛽 + 𝜃 + 𝛾1) − ( 𝜎
𝜖×𝛽 ) . (20)

It must be mentioned that with these assumptions, the solution of equation (18) for 𝑐𝑝𝑒𝑥𝑡 is now the same
as for equation (8). Consequently deductions about 𝑐𝑝𝑒𝑥𝑡 is also tenable for the initial condition 𝐶(0) = 1
and 𝐼(0) = 0.
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From equation the solution given by equations (19) and (20), it is clear that the relationship between
𝑖𝑝𝑒𝑥𝑡 and 𝑐𝑝𝑒𝑥𝑡 is given by

𝑖𝑝𝑒𝑥𝑡 = 𝛾1 + 𝜃

(𝛽 + 𝜃 + 𝛾1) −𝑐 𝑝𝑒𝑥𝑡
. (21)

A graph of this for some parameter values is shown in Fig 11. This relationship is not our focus of discussion.

Fig. 11: Relationship between 𝑖𝑝𝑒𝑥𝑡 and 𝑐𝑝𝑒𝑥𝑡 for some parameter values

A condition on equation (19) is that 0 ≤ 𝑐𝑝𝑒𝑥𝑡 ≤ 1, that is 0 ≤ 𝜎
𝜖𝛽 ≤ 1. 𝑐𝑝𝑒𝑥𝑡 = 0 only if 𝜎 = 0, that

is, without loss of carriership 𝑐𝑝𝑒𝑥𝑡 will be zero and hence there will be a spread of carriers. 𝑐𝑝𝑒𝑥𝑡 = 1 if
𝜎 = 𝜖𝛽, implies that 𝜖𝛽/𝜎 = 1. This can be interpreted by saying that the extinction of carriers is certain
if the number of susceptibles infected by a carrier during the period of loss of carriership is one. If this
number is greater than one, the carrier extinction is not certain. This is reasonable. Another interpretation
can be obtained from

𝜖𝛽 ≥ 𝜎. (22)

This implies that the carrier transmission rate (𝜖𝛽) has a threshold value 𝜎, which is the carrier recovery
rate for which the extinction of carrier is certain. It must be noted that the conditions are also true for
epidemic initiated by 𝐶(0) = 1 and 𝐼(0) = 0 as explained earlier.

From equation (20), 0 ≤𝑖 𝑝𝑒𝑥𝑡 ≤ 1, that is,

0 ≤ 𝛾1 + 𝜃

(𝛽 + 𝜃 + 𝛾1) − ( 𝜎
𝜖×𝛽 ) ≤ 1.

Hence, if 𝛽 =
√︀

𝜎/𝜖, then 𝑖𝑝𝑒𝑥𝑡 = 1 and then the extinction of infectives is certain. But if 𝛽 >
√︀

𝜎/𝜖,
𝑖𝑝𝑒𝑥𝑡 < 1, then the extinction of infectives is not certain. Here

𝛽 ≥
√︂

𝜎

𝜖
. (23)

is a threshold equation which is quite different but related to that of the carrier. This means that if the
infective transmission rate (𝛽) equals a value

√︀
𝜎/𝜖 then the meningitis epidemic becomes extinct and if

greater it persists.
It is worthy to note that 𝛽, 𝜎 and 𝜖 are the important epidemiological parameters that influence both

the extinction of carriers and infectives.
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4.2 Sensitivity Analysis

We are interested in computing the sensitivity indices of 𝑐𝑝𝑒𝑥𝑡 and 𝑖𝑝𝑒𝑥𝑡 to changes in the parameters of
extinction probabilities. These indices give the relative contribution of the parameters and the nature of
their influences on the extinction probability of meningitis epidemic. Consequently, they serve as a crucial
information for any control strategies. The normalized forward sensitivity index of a variable to a parameter
as defined in Yaga and Saporu (2024), and stated below is used for this computation. The sensitivity of the
extinction probability, for example for 𝑐𝑝𝑒𝑥𝑡 denoted by 𝑆𝑐𝑝𝑒𝑥𝑡 , is derived from

𝑆𝑐𝑝𝑒𝑥𝑡 = 𝜕𝑐𝑝𝑒𝑥𝑡

𝜕𝛽
×

(︂
𝛽

𝑐𝑝𝑒𝑥𝑡

)︂
. (24)

These indices are computed for 𝑐𝑝𝑒𝑥𝑡 and 𝑖𝑝𝑒𝑥𝑡 at specified parameter values from equations (11), (19)
and (20) and are shown in Tables 6 to 8 respectively.

The sensitivity indices are computed for scenarios where the extinction probability functions can be
explicitly determined. Due to the complexity of some of the probability functions, the Maple computer
program (Version 18) is used for these computation.

Discussion
From these tables, it is clear that the highest index values are obtained for parameters 𝛽, 𝜖 and 𝜎, in almost
all the cases considered. Values for 𝜎 are positive indicating that an increase in the value of 𝜎 will bring
about a corresponding increase in the extinction probability under consideration. For 𝜖 and 𝛽, the values
are negative, indicating that an increase in any of these parameter estimates will bring about a decrease
in the extinction probability under consideration. This is as expected. Again this gives credence to the
overriding influence of these parameters on extinction probabilities of meningitis epidemic

Tab. 6: Sensitivity analysis for parameters of extinction probability (𝑖𝑝𝑒𝑥𝑡) for epidemic
initiated by 𝐶(0) = 0 and 𝐼(0) = 1

Sensitivity
Case 2 𝛽

Parameter 𝛽 𝜖 𝜎 𝜃 𝛾1

Value 0.34247 0.5 1 2 0.14247 0.1 0.01666

𝑖𝑝𝑒𝑥𝑡 −0.8828 −1.9660 −1.0814 −0.8828 1.6357 0.2830 0.0471

Tab. 7: Sensitivity analysis for parameters of extinction
probability (𝑐𝑝𝑒𝑥𝑡) for epidemic initiated by
𝐶(0) = 1 and 𝐼(0) = 1

Sensitivity
Case 3b 𝛽

Parameter 𝛽 𝜖 𝜎

Value 0.34247 0.5 1 2 0.14247

𝑐𝑝𝑒𝑥𝑡 −1 −1 −1 −1 1
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Tab. 8: Sensitivity analysis for parameters of extinction
probability (𝑖𝑝𝑒𝑥𝑡) for epidemic initiated by
𝐶(0) = 1 and 𝐼(0) = 1

Sensitivity
Case 3b
Parameter 𝛽 𝜎 𝜃 𝛾1

Value 0.34247 0.14247 0.1 0.01666

𝑖𝑝𝑒𝑥𝑡 −0.5129 0.0040 0.1015 0.0338

4.2.1 Computing 𝑐𝑝𝑒𝑥𝑡 and 𝑖𝑝𝑒𝑥𝑡 for various parameters

Table 9 is computed using the analytic solutions obtained for case 3𝑏 (equations (19) and (20)) for various
values of 𝛽(for 𝜖 = 2, 1, 0.5). It is clearly shown in Table 9 that an increase in the transmission rate of
meningitis reduces the probability of disease extinction for 𝑐𝑝𝑒𝑥𝑡 and 𝑖𝑝𝑒𝑥𝑡.

Table 10 shows the comparison of 𝑐𝑝𝑒𝑥𝑡 and 𝑖𝑝𝑒𝑥𝑡 for various values of 𝜎 again using equation (19).
These results show that an increase in the rate of loss of carriage can increase the probability of extinction of
meningitis epidemic for both 𝑐𝑝𝑒𝑥𝑡 and 𝑖𝑝𝑒𝑥𝑡. From these results, it can be concluded any control measures
aimed at reducing the transmission rate and increasing the loss of carriership rate will bring meningitis
epidemic to an end.

Tab. 9: Extinction probabilities of carrier (𝑐𝑝𝑒𝑥𝑡) and infective (𝑖𝑝𝑒𝑥𝑡) for
varying values of 𝛽, for 𝜖 = 0.5, 1, 2, 𝐶(0) = 1 and 𝐼(0) = 1

Extinction Probability
𝑐𝑝𝑒𝑥𝑡 𝐼𝑝𝑒𝑥𝑡

Parameter 𝜖 𝜖

𝛽 2 1 0.5 2 1 0.5

0.07120 1.00000 - - 1.00000 -
0.07915 0.90000 - - 0.93640 - -
0.08904 0.80000 - 0.86757 - -
0.10176 0.70000 - - 0.79259 - -
0.11873 0.60000 - - 0.71235 - -
0.14247 0.50000 - - 0.62088 - -
0.17809 0.40000 0.80000 - 0.52194 0.76610 -
0.23745 0.30000 0.60000 - 0.41241 0.55122 -
0.35618 0.20000 0.40000 0.80000 0.29049 0.35312 0.62087

0.71235 0.10000 0.20000 0.40000 0.15395 0.16992 0.21442

0.80000 0.08904 0.17809 0.35618 0.13799 0.15069 0.18467

0.90000 0.07915 0.15830 0.31660 0.12339 0.13344 0.15943

0.99999 0.07124 0.14247 0.28494 0.11159 0.11975 0.14026
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Tab. 10: The Extinction probabilities
of carrier (𝑐𝑝𝑒𝑥𝑡) and infective (𝑖𝑝𝑒𝑥𝑡)
for varying values of 𝜎, for 𝜖 = 2,
𝐶(0) = 1 and 𝐼(0) = 1

Parameter Extinction Probability
𝜎 𝑐𝑝𝑒𝑥𝑡 𝑖𝑝𝑒𝑥𝑡

0.06849 0.10000 0.27457

0.13699 0.20000 0.29864

0.20548 0.30000 0.32734

0.27398 0.40000 0.36214

0.34247 0.50000 0.40522

0.41096 0.60000 0.45993

0.47946 0.70000 0.53172

0.54795 0.80000 0.63007

0.61645 0.90000 0.77309

0.68494 1.00000 1.00000

5 Conclusion
A stochastic version of the deterministic model for meningitis epidemic developed by Yaga and Saporu
(2024) is studied. Its Kolmogorov forward system of differential equations is derived. So also are its moment
generating function, stochastic mean system of equations and extinction probabilities. All these are new.

A comparison of the system of stochastic mean equations and its deterministic analogue of profiles
for the various compartments and the case-carrier trajectories show similar pattern with notable time
shift difference. This suggest that there must be an underlying caution in using a deterministic model as
an approximating system of its stochastic mean equations. This conclusion is again re-emphasized in the
simulation studies of the effect of 𝜖 and 𝜙 on the carrier and infective incidence curves.

Simulation studies of the compartmental profiles for stochastic models I (𝜙 ̸= 0) and model II (𝜙 = 0)
for various values of 𝜖(≤ 2) indicates that only at 𝜖 = 2 can model II approximate model I for all profiles
except that of the carrier; carrier profiles show noticeable difference in peak values.

The extinction probability studies suggest the following:

1. 𝜖, 𝛽 and 𝜎 are the most sensitive parameters for the carrier and infective extinction probabilities of
meningitis; increase in 𝜎(rate of loss of carriership) brings about corresponding increase in the extinction
probability while increase in each of 𝜖 and 𝛽 brings about corresponding decrease in extinction probability.

2. There are different thresholds conditions resulting from the carrier and infective extinction probabilities.
Carrier extinction is certain if the number of susceptible infected by a carrier during the loss of carriership
is one. If greater than one carriage persists. The extinction of infections is certain if the transmission
rate, 𝛽 =

√︀
𝜎/𝜖. If 𝛽 >

√︀
𝜎/𝜖, then the transmission of infection persists. Although these threshold

conditions are distinct, they appear to be related. From equation (22), the transmission rate, 𝛽, required
for carrier extinction is square that required for infective extinction. This lend credence to the thought
that carriership play a more prominent role in the transmission process of meningitis epidemic (Borrow
et al.2017; Irving et al.2012).

3. Control measures targeted at reducing the transmission rate and increasing the loss of carriership rate
will erradicate meningitis epidemic. It should be noted here that similar conclusion was obtained from
the deterministic model studies in Yaga and Saporu (2024).
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