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ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising disease-modifying therapy for
LRRK2-associated Parkinson’s disease (L2PD) and idiopathic PD (iPD). Yet, pharmaco-dynamic
readouts and progression biomarkers for disease modification clinical trials are insufficient.
Employing phospho-/proteomic analyses we assessed the impact that LRRK2 activating
mutations had in peripheral blood mononuclear cells (PBMCs) from a LRRK2 clinical cohort
from Spain (n=174) encompassing G2019S L2PD patients (n=37), non-manifesting LRRK2
mutation carriers of G2019S, here, G2019S L2ZNMCs (n=27), R1441G L2PD patients (n=14),
R1441G L2NMCs (n=11), iPD (n=40), and controls (n=45). We identified 207 differential proteins
in G2019S L2PD compared to controls (39 up/ 168 down) and 67 in G2019S L2ZNMCs (10 up/ 57
down). G2019S down-regulated proteins affected the endolysosomal pathway, proteostasis
and mitochondria, e.g., ATIC, RAB9A, or LAMP1. At the phospho-proteome level, we observed
increases in endogenous phosphorylation levels of pSer106 RAB12 in G2019S carriers, which
were validated by immunoblotting after 1 year of follow-up (n=48). Freshly collected PBMCs
from 3 G2019S L2PD, 1 R1441G L2PD, 1iPD, and 5 controls (n=10) showed strong diminishment
of pSer106 RAB12 phosphorylation levels after in-vitro administration of the MLi-2 LRRK2
inhibitor. Using machine learning, we identified an 18-feature G2019S phospho-/protein
signature capable of discriminating G2019S L2PD, LZNMCs, and controls with 96% accuracy that
correlated with disease severity, i.e., UPDRS-IIl motor scoring. Our study identified pSer106
RAB12 as an endogenous biomarker in easily accessible PBMCs from G2019S carriers and
suggests that phospho-/proteomic findings in human PBMCs such as pSer106 RAB12 can be
deployed as a universal pharmaco-dynamic readout for L2PD, LZNMCs, and iPD. Future work
may determine whether pSer106 RAB12 could help with patient enrichment and monitoring

drug efficacy in LRRK2 clinical trials.
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ABBREVIATIONS

(Minimal abbreviations to be used in the text)
PBMCs = Peripheral blood mononuclear cells
CNS = Central nervous system

DIA = Data independent acquisition

MS = Mass-spectrometry

PD = Parkinson’s disease

LRRK2 = Leucine-rich repeat kinase 2

L2PD = LRRK2-associated PD patients
L2NMCs = Non-manifesting LRRK2 mutation carriers
iPD = Idiopathic PD patients

p = Phospho-

FC = Fold-change
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INTRODUCTION

Activating mutations in the leucine-rich repeat kinase 2 (LRRK2), e.g., G2019S or R1441G, increase
LRRK2 kinase activity™ causing autosomal-dominant LRRK2 Parkinson’s (L2PD).>® By converging
pathways, LRRK2 kinase activity appears to be also enhanced in patients with idiopathic PD
(iPD),”~° undistinguishable from L2PD at the clinical level.1%! Thus, ongoing clinical trials of small-
molecule type-I inhibitors targeting active LRRK2 protein conformation is a promising disease-
modifying strategy for a broad spectrum of patients.>!* Moreover, non-manifesting LRRK2
mutation carriers (L2NMCs) are at high risk of PD in an age-dependent progressive manner,*4-16
representing a candidate population for the continued clinical follow-up and disease course
modification by early neuroprotective interventions when needed.3

A subset of G-proteins from the Ras-related small GTPase superfamily!’ was reported as
phosphorylation substrates of the LRRK2 Ser/Thr kinase.>® Among these, pThr73 RAB10 was
validated as a LRRK2 substrate!® showing elevated phosphorylation levels in a large set of R1441G
carriers, symptomatic and asymptomatic, yet not in G2019S,'° and also a readout for LRRK2
pharmacological inhibition using Mli-2 or DNL201.2%2! Moreover, RAB29%%23 and more recently
RAB1224#?> and RAB32%® have been described as key upstream LRRK2 activators. Despite
significant progress, we still lack robust pharmaco-dynamic readouts and clinical progression
biomarkers useful in disease modification clinical trials.

Employing data-independent acquisition (DIA) mass-spectrometry (MS), we have
screened the phospho-/proteome of PBMCs from a LRRK2 clinical cohort (n=174) of G2019S L2PD
(n=37), G2019S L2NMCs (n=27), R1441G L2PD (n=14), R1441G L2NMCs (n=11), iPD (n=40), and
controls (n=45). We identified differential phospho-/proteins in G2019S and R1441G carriers,
symptomatic and asymptomatic. We found elevated levels of pSer106 RAB12 phosphorylation in
G2019S carriers. Our results suggest that pSer106 RAB12 comprises an endogenous biomarker in
G2019S PBMCs, as it is similarly elevated in both L2PD and L2ZNMCs. Consistent with RAB12 being
phosphorylated by LRRK2 we found that pSer106 RAB12 levels strongly diminished after Mli-2
LRRK2 inhibition in all subjects, regardless of their disease or mutation status. We propose that
pSer106 RAB12 could be exploited as a target engagement biomarker in LRRK2 clinical trials.3

We provide full open access to all data generated here through FAIR,?” and Curtain?®.
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METHODS

Subjects

Probands participated in the study after local ethics approval and signed informed consent. Study
subjects included LRRK2 mutation carriers, symptomatic and asymptomatic, iPD patients, and
healthy controls including healthy spouses and companions of Spanish descent. Patient inclusion
criteria were a clinical diagnosis of PD by a movement disorders specialist based on the MDS
clinical diagnostic criteria for Parkinson's.?® Exclusion criteria were chronic inflammatory and
autoimmune diseases, e.g., Crohn’s (CD), inflammatory bowel disease (IBD), rheumatoid arthritis,
systemic lupus erythematosus (SLE); chronic neurological diseases such as myasthenia gravis,
chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs) or corticosteroid anti-
inflammatory medication, and viral or bacterial infection during the week precedent to blood
sample donation. Subjects were recruited at three centres from Spain, Hospital Clinic de
Barcelona (n=76) (‘B’),3° Hospital Marqués de Valdecilla in Santander (n=55) (‘S’),3! and Hospital
de Donostia in San Sebastian (n=43) (‘D’)3? (Table 1). By cohort and subject type, the sample
included G2019S L2PD (n=37) (16 from B, 20 from S, and 1 from D), G2019S L2NMCs (n=27) (11
B, 15S, and 1 D), R1441G L2PD (n=14) (1 B, and 13 D), R1441G L2NMCs (n=11) (3 B, and 8 D), iPD
(n=40) (20 B, 10S, and 10 D), and controls (n=45) (25 B, 10 S, and 10 D). We also collected gender,
age at sampling, age-at-onset (AAO), LRRK2 mutation status, kinship to index cases, UPDRS-III,33
MoCA,** autoimmune and environmental structured questionnaires, COVID-19 history.
Specifically, PD patients had a mean age-at-sampling of 63.5 years for G2019S L2PD, 67.1 for
R1441G L2PD, and 67.3 for iPD. Asymptomatic blood relatives of L2PD patients, i.e., LZNMCs,
were younger than PD patients with a mean age of 56.7 years for G2019S L2NMCs and 61.1 for
R1441G L2NMCs. The AAO was similar for G2019S and R1441G L2PD with 55.1 and 55.8 years
respectively, whereas iPD had 62.1 years on average. Mean disease duration was 8.4 years for
G2019S L2PD, 12.3 for R1441G L2PD and 5.2 for iPD. Average disease severity, UPDRS-IIl motor
scoring, was similar (mild) in all three patient groups, i.e., 16.0 in G2019S L2PD, 19.8 R1441G
L2PD, and 19.7 for iPD. Mean MoCA scores were also mild and similar in all patients, 24.3 for
G2019S L2PD, 23.2 for R1441G L2PD, and 25.6 for iPD. As for medication, L-DOPA equivalent daily
dose (LEDD) was 635.8 mg for G2019S L2PD, 711.5 mg for R1441G L2PD, and 584.7 mg for iPD.
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Genotyping

We genotyped the most common LRRK2 mutations in our population using Tagman SNP assays-
on-demand for LRRK2 G2019S (Thermo Fisher Sci., #C-63498123-10) and a commercial TagMan
assay for LRRK2 R1441G>® on a Step One Plus Real-time PCR System (Life Tech. Inc.)

PBMC isolation

40 ml of peripheral blood were drawn early in the morning in fasting and PBMCs were isolated
by density gradient using Sodium-Citrate tubes (BD Vacutainer CPT, #£EAN30382903627821)
following manufacturer’s instructions. All samples used in the study were dry PBMC pellets flash-

frozen in liquid N; and stored at -80°C for a time period less than a year until use.

PBMC preparation

PBMC samples from the three cohorts were processed in parallel. Blind experimental groups to
the operator were balanced and randomized in runs to avoid manipulation bias. Briefly, PBMCs
were homogenized in lysis buffer (7 M urea, 2 M thiourea, 50 mM dithiothreitol) and
supplemented with cOmplete Mini protease (Roche, #11836153001) and PhosSTOP phosphatase
(Roche, #4906845001) inhibitors. Lysates were centrifuged at 20,000g, 1h, 15°C, and the resulting
supernatant was quantified by the Bradford assay (Bio-Rad, #5000201). To obtain
phosphorylated fractions, above 400 ug of protein were separated for protein digestion. Proteins
were reduced with DTT (final concentration of 20 mM; 30 min; room temperature), alkylated
with iodoacetamide (final concentration of 30 mM; 30 min in dark; room temperature), diluted
to 0.9 M with ABC, and digested with trypsin (Promega, #V5280) (1:20 w/w enzyme protein ratio,
18h, 37°C). Protein digestion was interrupted by acidification (acetic acid, pH<6), and the
resulting peptides were cleaned up using Pierce Peptide Desalting Spin Columns (Thermo Fisher
Sci., #89851). Phospho-peptide enrichment was performed using the High-Select TiO, Phospho-
peptide enrichment Kit (Thermo Fisher Sci., #A32993) according to the manufacturer's
instructions. Lastly, the enriched phospho-enriched fractions were cleaned up as described above
and dried-down in a Speed Vacuum system. Aliquots of 10 pg cleaned up peptides from protein

digestions were set aside for total protein analyses.
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Data independent acquisition (DIA) mass-spectrometry (MS)

Dried-down peptide samples were reconstituted with 2% ACN-0.1% FA (Acetonitrile-Formic acid),
spiked with internal retention time peptide standards (iRT, Biognosys), and quantified by
NanoDropTM spectrophometer (ThermoFisher Sci.) before LC-MS/MS in an EASY-1000 nanolLC
system coupled to an EZ-Exploris 480 mass spectrometer (Thermo Fisher Sci.). Peptides were
resolved using C18 Aurora column (75um x 25cm, 1.6 um particles; lonOpticks) at a flow rate of
300 nL/min using a 60-min gradient (50°C): 2% to 5% B in 1 min, 5% to 20% B in 48 min, 20% to
32% B in 12 min, and 32% t0 95% B in 1 min (A =FA, 0.1%; B = 100% ACN:0.1% FA). Peptides were
ionized using 1.6 kV spray voltage at a capillary temperature of 275 °C. We used data-
independent acquisition (DIA) with full MS scans (scan range: 400 to 900 m/z; resolution: 60,000;
maximum injection time: 22 ms; normalised AGC target: 300%) and 24 periodical MS/MS
segments applying 20 Th isolation windows (0.5 Th overlap: Resolution: 15000; maximum
injection time: 22 ms; normalised AGC target: 100%). Peptides were fragmented using a
normalized HCD collision energy of 30%. MS data files were analysed using Spectronaut
(Biognosys) by direct DIA analysis (dDIA). MS/MS spectra were searched against the Uniprot
proteome reference from the Homo sapiens database UP000005640 using standard settings. The
enzyme was set to trypsin in a specific mode. On the one hand, Carbamidomethyl (C) was set as
a fixed modification, and oxidation (M), acetyl (protein N-term), deamidation (N), and GIn to
pyroGlu as variable modifications for total protein analysis. On the other hand, Carbamidomethyl
(C) was set as a fixed modification, and oxidation (M), acetyl (protein N-term), and Phospho (STY)
as variable modifications for phospho-proteome analysis. Identifications were filtered by a 1% Q-
value. After MS, samples that did not pass QC were omitted from the study, resulting in a sample
of G2019S L2PD (n=32) (15 from B and 17 from S), G2019S L2NMCs (n=22) (9 Band 13 S), R1441G
L2PD (n=13) (1 B, and 12 D), R1441G L2NMCs (n=7) (2 B, and 5 D), iPD patients (n=39) (19 B, 10
S, and 10 D), and healthy controls (n=42) (23 B, 10 S, and 9 D). Lastly, to disambiguate peptide

IDs into gene names we used the Uniprot online database (https://uniprotparser.proteo.info/).
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Proteome differential analysis
Proteome MS output data was exported from .SNE files from Spectronaut in a pivot table text
format. For the differential analyses between groups, MS data was processed using QFeatures

(doi: 10.18129/B9.bioc.QFeatures) in R (QFeatures v1.13.1). We applied the following R

workflow: (i) Data was filtered to remove proteins identified by only 1 peptide sequence. (ii) Data
selection was done based on condition and sub-group labels, with overall analysis containing all
samples, G2019S analyses containing Barcelona and Santander samples labelled with prefix "B"
or "S", and R1441G analyses containing samples labelled with prefix "D" from Donostia-San
Sebastian and "B" from Barcelona if bearing R1441G. For each analysis, we provided a separate
Rscript file with a customized group selection (Suppl. Material). (iii) A protein ID column was
assigned as an identification column for the analysis with QFeatures. (iv) We filtered out any row
with 70% or more missing data. Here, with a 70% missing data cut-off, a meta-analysis would
have a total of 3,815 rows while a more common 30% missing data cut-off would result in 3,789
rows. Since there was only about a 0.71% difference between the cut-off threshold, we chose
the 70% cut-off so that we could keep entries potentially found in only one group without
affecting the statistical power of the entire analysis. (v) Imputation of missing data was done

using the kNN method (QFeatures v1.13.1). Subsequently, (vi) we performed a log2

transformation of the imputed data matrix, and (vii) designed a contrast matrix for differential
analysis using limma.3® (viii) For each contrast matrix, we performed a limma analysis with false
discovery rate (FDR) Benjamini & Hochberg (BH) multiple testing adjustment and collected the
outputs under the criteria for statistical significance of an FDR-BH adjusted P<0.05 (1.12 log10)
and a log; fold-change (FC) above |0.6] (|1.5] in lineal values). Scripts for proteome raw data
download and re-analysis are available online (Suppl. Material). For ANOVA analysis, we used
the normalized data from above as starting point. The data from each row was grouped
depending on the criteria used for grouping. Then for each comparison, we applied a Python
script using one-way ANOVA analysis on the grouped data within the comparison and returned
the P-value output as a new column.3” Then we perform the same FDR-BH correction from above
to obtain the multiple testing adjusted P-values using the Statsmodels Python package3® with

Python scripts also available online (Suppl. Material).
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Phospho-proteome differential analysis
Phospho-proteome MS data was exported from .SNE files from Spectronaut in a long-form table
format using a Spectronaut param export file available online (Suppl. Material). Data was

imputed using a modified version of a collapsing R script (Perseus Plugin Peptide Collapse)3® with

phosphorylation as target modification at a confidence cut-off above 0.75. Modified collapsing.R
and Perseus parameter.xml files are available online (Suppl. Material). We applied the following
R workflow: (i) Columns with more than 70% blank cells were removed to meet the kNN
requirement of less than 80% blank columns. (ii) Data selection for QFeatures input was based
on condition and sub-group labels using all samples for overall analysis or specific group
combination for location-specific and mutation-specific group combination, with overall analysis
containing all samples, G2019S analyses containing Barcelona and Santander samples labelled
with prefix "B" or "S", and R1441G analyses containing samples labelled with prefix "D" from
Donostia-San Sebastian and "B" from Barcelona when carrying R1441G. For each phospho-
analysis group, we provide a separate Rscript file with customization to the selection group
(Suppl. Material). Subsequently, (iii) we performed imputation by removing any row with 30% or
more empty data similar to the proteome analysis using the kNN method, and (vi) performed
log2 transformation normalization of the data using the quantile normalization method. (v) The
statistical significance criteria were set at an FDR-BH adjusted P<0.05 (1.12 in logio) and a log>
fold-change (FC) above |0.6] (] 1.5| inlineal values). (vii) In each differential analysis, we matched
the protein and its original sequence using protein UniProt ID and performed the extraction of
PTM position in protein and peptide, the peptide sequence, and the sequence window for
visualization at the Curtain tool.?® Scripts for phospho-proteome data re-analysis are available
online (Suppl. Material). For phospho-proteome ANOVA analysis, we followed the same
methodology as for the proteome analysis but using the normalized phospho-proteome datasets
from above. Data belonging to each group was identified from their column name. One-way
ANOVA was applied on each row of cell groups from their respective comparison. The final
statistically significant output values were adjusted using the Statsmodels package under the
same FDR-BH multiple testing adjustment of P<0.05. Python scripts for ANOVA phospho-

proteome analyses are also available online (Suppl. Material).
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Data visualisation

Aligning to FAIR principles?’ of data findability, accessibility, interoperability, and reusability, we
used Curtain and Curtain PTM,?® as free open-source tools for MS phospho-/proteomics data
mining and exploitation by MS non-experts. Visualization of each of the differential analysis
results from limma was done in volcano plot representation using the default cut-off settings of
a fold-change (FC) above |1.5| (]0.6| log2) and a FDR-BH adj. P<0.05 (1.12 in logio). The Curtain
tools enable interactively perusing volcano plots, deconvoluting primary experimental data to
individual replicates that can be visualized in bar charts or violin plots allowing statistical analysis,

and export of plots in .SVG format (Curtain tutorials). For each analysis, we also provide web links

in the Figures and Figure legends. From each link, users can view the data associated with each
data point on the volcano plot in the form of bar charts and violin plots. The magnitude of the
data within these plots represents the relative intensity of the protein (total proteome) or
phospho-site (phospho-proteome) before normalization. Beyond simple visualization of the
numerical data, Curtain tools also aggregate data for different knowledgebases including

UniProt, AlphaFold, PhosphoSitePlus, ProteomicsDB, and StringDB.

Machine learning modelling of G2019S differential phospho-/proteins

The normalized and imputed datasets comprising differentially expressed peptides and phospho-
peptides were employed to train a multi-class classifier to distinguish between Controls, G2019S
L2PD and G2019S L2NMC. Three distinct candidate models were considered including Support
Vector Machine (SVM), Random Forest (RF), and Gradient Boosting (GB) classifiers as described
in other studies.*® Parameter optimization of the models through a grid search with a 5-fold cross-
validation. To mitigate potential performance degradation due to unbalanced group sizes, we
applied the Synthetic Minority Over-sampling Technique (SMOTE)*! to the training split. We used
the balanced accuracy score*? defined as the average recall across each class, as a metric to
evaluate models performances. Implementation of the models was done using the Scikit-learn*

v1.3.1 library within Python** programming language v3.9.18.
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Classifier selection by comparative performance of machine learning models

In the G2019S proteome dataset, we included a total of 32 G2019S L2PD, 22 G2019S L2NMCs,
and 42 controls that overpassed the QC criteria described above. Similarly, the phospho-
proteome dataset comprised 29 G2019S L2PD, 19 G2019S L2NMCs, and 35 controls. First, we
assessed comparative model performances for each dataset considering an initial number of
features 3,816 peptides and 10,180 phospho-peptides respectively (Suppl. Table 1). Notably, in
the proteome dataset, the SVM classifier demonstrated a substantial enhancement in balanced
accuracy score following redundant feature elimination, achieving 0.91. This outcome indicates
that the selective elimination of features contributed to obtaining a more discriminative model.
Contrarily, the RF classifier showed limited improvement, implying that feature elimination
methods were less effective for this specific model. Consistently, we obtained similar results for
the phospho-proteome dataset where, after feature elimination, SVM achieved a balanced
accuracy of 0.95, again highlighting the efficacy of feature selection in enhancing model
performance. Furthermore, GB demonstrate significant improvement with only 43 features. This
result indicates that the model performance can be enhanced with only a small subset of
features. After comparative evaluation and parameter optimization, we identified SVM as the
resulting most optimal model to derive informative LRKK2 signatures using the minimum subset

of relevant features that maximize the discrimination between classes.

Suppl. Table 1. Detail of the performance of each model across (phospho-)/proteome datasets.

Proteome

Model Initial ANOVA ANOVA + Feature
(3,816 features) (926 features) RFECV optimal Nr.

SVM 0.69 £ 0.09 0.85 + 0.08 0.91+0.07 510

RF 0.68 + 0.09 0.70+0.12 0.67 £0.08 536

GB 0.69 £ 0.08 0.82+0.13 0.67 £ 0.09 881

Phospho-proteome

Model Initial ANOVA ANOVA + Feature
(10,180 features) (979 features) RFECV optimal Nr.

SVM 0.39%0.11 0.790.03 0.95 +0.07 204

RF 0.41+0.10 0.53+0.03 0.61+0.10 91

GB 0.40 £ 0.08 0.47 £ 0.07 0.81+0.06 43

SVM = Support Vector Machine; RF = Random Forest; GB = Gradient Boosting
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Identification of a differential G2019S phospho-/protein signature

After SVM model selection, an initial set of relevant features was determined by incorporating
only statistically significant features (P<0.05) identified by ANOVA test. Subsequently, we applied
Recursive Feature Elimination with Cross-Validation (RFECV)* to iteratively reduce the number
of features while maximizing the balanced accuracy score. To obtain the LRKK2 signature, we
employed the Monte Carlo Tree Search (MCTS)*® method. The MCTS strategy involved selecting
the minimum combination of features that maximize the score in additive manner. Considering
that the combinatorial features scale rapidly, the depth of the tree was fixed to five to manage
computational complexity. The reward at each node of the tree was computed as the balanced
accuracy score obtained through model training with cross-validation, utilizing the selected
subset of features. At each iteration, the number of trees evaluated was set to 10 times the
number of features. Following the evaluation of all the trees, the MCTS identified the best feature
to add, maximizing the reward. A stop node was introduced to halt the algorithm when no further
improvement could be achieved. In summary, the procedure comprised: (i) selection of the first
feature, (ii) MTCS evaluation of all possible trees and reward calculation, (iii) selection of the best
feature to be added, (iv) iteration from the second step until the model stops, (v) repetition from
the first step until all features were screened. After the screening of all features, we selected the
combinations of features with a balanced accuracy score above 0.90. The most prominently
represented features were used as initial features for refinement by MCTS. Discriminant LRKK2
signatures were defined as the subset with the highest score after the refinement. Feature
selection and refinement were implemented in Python v3.9.18 using Scikit-learn v1.3.1 and MCTS

v2.0.4 libraries (https://pypi.org/project/monte-carlo-tree-search).

Phospho-/protein gene ontology enrichment

Differential phospho-/proteins gene ontology (GO) was assessed using Metascape*’ cell
component term using default settings (min. overlap: 3, min. enrichment: |1.5|, P<0.05), and
false discovery rate (FDR) adjusted P<0.05. Specifically, for signature phospho-/proteins, we used
a combination of cell component and biological processes, and KEEGs, Reactome and wiki

pathways under the same statistical significance cut-off.
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pSer106 RAB12 immunoblotting of 1-year follow-up PBMCs

To assess the levels of pSer106 RAB12 and other markers over time we isolated PBMCs using 40
ml of blood from a subset of subjects from Clinic-Barcelona (n=48), collected >1-year after DIA-
MS, including G2019S L2PD (n=12), G2019S L2NMCs (n=6), iPD (n=15), and controls (n=15). Cell
lysates were mixed with the NUPAGE LDS Sample Buffer (Life Technologies) supplemented 5%
(v/v) 2-mercaptoethanol and heated to 90°C for 10 minutes. 10 pg of protein was loaded onto
NuPAGE 4-12% Bis-Tris Midi Gels (Thermo Fisher, #/NG1403BX10). Following the manufacturer’s
instructions, samples were electrophoresed in NUPAGE MOPs SDS running buffer (Thermo
Fisher). Protein transfer was performed onto nitrocellulose membranes (GE Healthcare,
Amersham Protran Supported 0.45 um NC) at 100 V for 90 min on ice in transfer buffer (48 mM
Tris—HCl and 39 mM glycine supplemented with 20% methanol) or through turbotransfer. MLi-2
treated protein extracts were electrophoresed in 4—15% Mini-PROTEAN® TGX™ Precast Protein
Gels (Bio-Rad, #4561084) and transfer onto trans-Blot Turbo Mini 0.2 um Nitrocellulose Transfer
(BIORAD, #1704158) through a Trans-Blot Turbo Transfer System (BIORAD) following the
manufacturer’s instructions. Following transfer, membranes were blocked using 5 (w/v) skim
milk dissolved in TBS-T (20 mM Tris—HCI, pH 7.5, 150 mM NaCl, and 0.1% (v/v) Tween 20) at RT,
for 30 minutes. Membranes were then washed once with TBS-T before they were incubated
overnight at 4°C with primary antibodies diluted in 5% BSA (Sigma) dissolved in TBS-T.
Membranes were washed 3x with TBS-T for 5 min each before incubation with secondary
antibodies diluted in TBS-T at RT for 1 hour. Following secondary incubation, the membranes
were then washed 3x with TBS-T for 10 min each. Acquisition of protein bands was performed
with near-infrared fluorescent detection using the Odyssey CLx imaging system and quantified
using the Image Studio software. The sheep monoclonal anti-total RAB12 antibody was purified
by MRC PPU Reagents and Services at the University of Dundee and was used at a final
concentration of 1 ug/ml. Mouse monoclonal anti-GAPDH (Santa Cruz Biotechnology, sc-32233)
was used at 1:10,000. In-house generated mouse monoclonal anti-total LRRK2, rabbit
monoclonal anti-pSer935 LRRK2 (Abcam, #ab133450), rabbit polyclonal anti-total RAB12 (Protein
Tech, #18843-1-AP), rabbit monoclonal anti-pSer106 RAB12 (Abcam, #ab256487), rabbit

monoclonal anti-RAB9A (Cell Signalling Technologies, #5118), rabbit monoclonal anti-LAMP1
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(Cell Signalling Technologies, #9091), and mouse monoclonal anti-Tubulin (Cell signalling
Technologies, #3873S) were used at a 1:1,000 dilution (Suppl. Table 2). Secondary antibodies,
anti-mouse (Licor, #926-68022), anti-rabbit (Licor, #926-32213), and anti-goat (Licor, #926-

68074), which has sheep cross-reactivity, were used at a 1:10,000 dilution.

Suppl. Table 2. Primary antibodies list.

Antibody Description Company Cat. Number Eg:ct:leon: r/ation
Mouse monoclonal GAPDH (6C5) Santa Cruz #sc-32233 1:10,000
Rabbit monoclonal LAMP1 (D2D11) Cell Signalling Tech. #9091 1:1,000
Mouse monoclonal Total LRRK2 In house generated - 1:1,000
Rabbit pSer935 LRRK2 [UDD2 10(12)] Abcam #ab133450 1:1,000
Rabbit monoclonal RAB9A (D52G8) Cell Signalling Tech. #5118 1:1,000
Mouse monoclonal RAB10 Merck #SAB5300028 1:1,000
mﬁ’g;;ﬁomb'”a”t PThr73 RAB10 Abcam #ab230261 1:1,000
MRC-PPU Reagents
Sheep polyclonal Total RAB12 and Services at the #SA227 1 pg/ml
University of Dundee
F&?E_';g’g;’ clonal pSer106 RAB12 Abcam #ab256487 1:1,000
Mouse monoclonal Tubulin (DM1A) Cell Signalling Tech #3873S 1:1,000

pSer106 RAB12 immunoblotting after MLi-2 LRRK2 inhibition in fresh PBMCs

To assess the response of pSer106 RAB12 to MLi-2 LRRK2 inhibition we additionally isolated
PBMCs from 40 ml of peripheral blood of an additional set of subjects (n=10), including G2019S
L2PD (n=3), R1441G L2PD (n=1), iPD (n=1), and healthy controls (n=5). These cells were collected
> 2 years after DIA-MS. Each 20 ml of freshly extracted PBMCs was aliquoted into two technical
replicates of two tubes of 5 ml each to perform MLi-2 pharmacological inhibition following the

Dundee PBMCs isolation protocol (doi: dx.doi.org/10.17504/protocols.io.bnhxmb7n) (from

whole blood). Briefly, each technical replicate was treated with either 200 nM MLi-2 LRRK2
inhibitor or an equivalent volume of DMSO (5 pl) for 30 min at room temperature. Next, treated

PBMCs were centrifuged at 355g for 5 min. Each pellet was resuspended in 1 ml of PBS containing
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2% FBS with or without 200 nM MLi-2, and transferred into an Eppendorf tube. After
centrifugation at 300 g for 3 min, treated PBMC pellets were lysed with 70 ul of ice-cold lysis
buffer (50 mM Tris—HCI, pH 7.5, 1% Triton X-100, 1 mM EGTA, 1 mM sodium orthovanadate, 50
mM NaF, 0.1% 2-mercaptoethanol, 10 mM 2-glycerophosphate, 5 mM sodium pyrophosphate,
0.1 pg/ml mycrocystin-LR, 270 mM sucrose, 0.5 mM DIFP and Complete EDTA-free protease
inhibitor cocktail) on ice for 10min. Then, treated PBMC cell lysates were centrifuged at 14,000
rpm 15 min at 4°C and supernatant was collected. Protein concentrations were assessed ata 1:15
dilution through the Bradford assay. Protein extracts were immediately used for immunoblotting
or snap-frozen and stored at -80°C. Subsequent immunoblot analysis was done as described
above, with some specificities: Brielfly, MLi-2 treated protein extracts were electrophoresed in
4-15% Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad, #4561084) and transferred onto
trans-Blot Turbo Mini 0.2 um Nitrocellulose Transfer (Bio-Rad, #1704158) through a Trans-Blot
Turbo Transfer System (Bio-Rad) following the manufacturer’s instructions. Acquisition of protein
bands for MLi-2 protein extracts was performed on LAS4000 system and processed through the

BandPeak plugin (doi: dx.doi.org/10.17504/protocols.io.7vghn3w) at the ImageJ software. For

this experiment, mouse monoclonal anti-RAB10 (Merck, #SAB5300028), rabbit recombinant anti-
pThr73 RAB10 (Abcam, #ab230261), rabbit polyclonal anti-RAB12 (Protein Tech, #18843-1-AP),
rabbit monoclonal anti-p106 RAB12 (Abcam, #ab256487) were used at a 1:1,000 dilution (Suppl.
Table 2). As secondary antibodies we used goat anti-rabbit (ThermoFisher, #31460) and goat anti-
mouse (Abcam, #ab205719).

Clinical correlation of LRRK2 differential phospho-/proteins and disease severity

We performed a Spearman’s association analysis between the differential proteins and phospho-
proteins across different comparisons (log2FC>|0.6|, adj. P<0.05) and UPDRS-IIl motor scores
from PD patients and healthy controls. To this end, we used the “cor.test” function from R (stats
v4.3.1) to calculate Rho coefficients and the EnhancedVolcano package (v1.20.0) to represent
correlation outputs. Statistical significance was set a Spearman’s correlation coefficient

Rho>|0.5| and an FDR multiple-testing adjusted P<0.05.
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RESULTS
We succeeded in quantifying the levels of 3,798 unique proteins using DIA-MS from a LRRK2
clinical cohort (n=174) (Fig. 1). Pairwise analysis, under a cut-off of >2 peptide mapping, <0.30
imputation, log,FC>|0.60|, and adj. P<0.05, revealed that G2019S L2PD was the most distinct
group displaying a set of 207 proteins whose levels differed vs controls, with 85% down-regulated
proteins (168 down/ 39 up) (Fig. 2). We found that in G2019S L2PD a number of proteins
expression was reduced namely, ATIC, which can repress LRRK2 and rescue neurodegeneration*®
(log2FC=-0.97, adj. P=1.92x107%3); RAB9A, involved in phagocytic vesicle trafficking and lysosomal
function (log2FC=-1.17, adj. P=3.97x10%%); or LAMP1, a lysosome biogenesis and autophagy
regulator (log,FC=-1.32, adj. P=1.63x107?). G2019S L2NMCs vs controls showed 67 differential
hits, involving mostly down-regulated proteins (57 down/ 10 up), common and with the same FC
direction as L2PD (42 of 67), e.g., ATIC or LAMP1 (Suppl. Fig. 1). G2019S L2PD vs L2NMCs differed
only in 2 proteins down-regulated in G2019S L2PD, RAB9A (log,FC=0.77, adj. P=0.038) and SCLY,
a Selenocysteine lyase involved in peptide elongation (log,FC=1.58, adj. P=0.038). These results
indicate proteome changes common to all G2019S carriers and associated with G2019S.
Regarding the R1441G proteome, R1441G L2PD vs controls revealed 80 hits (45 down/ 35
up) (Suppl. Fig. 2). Of these, 33 proteins (30 down/ 3 up) (44%) overlapped with G2019S L2PD
and had the same FC direction, including down-regulation of NDUFB8, a mitochondrial Complex
| subunit; PDCD6, a calcium sensor involved vesicle trafficking and apoptosis; RPL11, a component
of the 60S ribosomal subunit; and hits such as ATIC, RAB9A, LAMP1, and SLCY. R1441G L2NMCs
vs controls showed 5 down-regulated proteins, all common to R1441G L2PD, including NDUFB8
and PDCD6. Between R1441G L2PD and L2NMCs, 2 proteins were up-regulated in R1441G L2PD;
ATG3, an E2 ubiquitin-like conjugating enzyme; and MAGT2, which is essential for Golgi protein
N-glycosylation. iPD vs controls, despite their larger sample, had only 3 differential hits, all down-
regulated and common to L2PD, i.e., SRSF1, an RNA splicing factor; UQCRB, a mitochondrial
Complex Il subunit; and LAMP1 (Suppl. Fig. 1 and 4). Such findings might be related to the clinical
heterogeneity of iPD due to diverse genetic and environmental factors. Functionally, proteome
changes in G2019S and R1441G L2PD, eveniPD, revealed a shared biological enrichment affecting

endolysosomal trafficking, proteostasis, and mitochondrial function (Suppl. Fig. 3).
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Regarding the G2019S phospho-proteome, we found 10,288 phospho-sites mapping to
2,657 proteins in PBMCs. Using the same stringent cut-off from above, G2019S L2PD vs controls
displayed a single differential phospho-site, pSer106 RAB12, hyper-phosphorylated in G2019S
L2PD (log2FC=0.97; adj. P=0.036) and L2NMCs (log2FC=0.92; adj. P=0.057) (Fig. 3). Remarkably,
pSerl06 RAB12 was shown as a key physiological LRRK2 substrate of higher expression than other
RABs in brain from PD models, including pThr73 RAB10.%%°° G2019S carriers as a whole showed
elevated levels of pSer106 RAB12 (log2FC=0.95; adj. P=0.003) and pTyr334 SKAP2 (log,FC=1.05;
adj. P=0.003), a protein involved in immune response at peripheral tissues which regulates neural
functions at the CNS,>! including a-synuclein phosphorylation.>> G2019S L2NMCs vs L2PD showed
increased pSer205 MON2 (log,FC=1.25; adj. P=0.05), a regulator of endosome to Golgi trafficking.
Lastly, we found no differential hit of G2019S LZNMCs compared to controls. Collectively, these
results identify enhanced pSer106 RAB12 levels in a large cohort of G2019S carriers, pinpointing
for the first time pSer106 RAB12 as an endogenous biomarker in G2019S PBMCs.

By phospho-proteome analysis of R1441G carriers, R1441G L2PD vs controls showed no
hit overpassing the multiple-test adjustment. In addition, R1441G L2ZNMCs vs controls had 25
differential phospho-sites (20 down/ 5 up), but none included pSer106 RAB12 (Suppl. Fig. 2).
These findings indicate that enhancement of pSer106 RAB12 phosphorylation is a specific effect
in G2019S PBMCs, and suggest distinct phospho-signalling preferences occurring for different
pathogenic LRRK2 mutations in G2019S and R1441G patients. Regarding iPD, at the phospho-
proteome level, we found no phospho-site change compared to controls (Suppl. Fig. 4). However,
iPD revealed large phospho-site differences to G2019S L2PD (84 down/ 9 up), including pSer106
RAB12, whose levels were elevated in G2019S L2PD, and also to R1441G L2PD (409 down/ 225
up). Altogether these findings indicate that phospho-protein changes are more prominent in
L2PD due to phospho-signalling dysfunction by LRRK2 activating mutations than in iPD, being
pSer106 RAB12 a preferred LRRK2 substrate in G2019S PBMCs rather than R1441G or iPD.

By immunoblot we assessed pSer106 RAB12 levels as pSer106 RAB12 / Total RAB12 ratios
using >1-year follow-up PBMCs of the G2019S cohort from Clinic-Barcelona (n=48),
encompassing G2019S L2PD (n=12), G2019S L2NMCs (n=6), iPD (n=15), and controls (n=15)

(Table 2). Consistent with DIA-MS data, we found phosphorylation differences across groups
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(Kruskal-Wallis P=0.01), with borderline increased pSerl06 RAB12 phosphorylation levels in
G2019S L2PD (Dunn’s adj. P=0.069) and LZNMCs (Dunn’s adj. P=0.118) vs controls, and in G2019S
carriers as a whole vs controls (Kruskal-Wallis P=0.003; Dunn’s adj. P=0.027), but not in iPD (Fig.
4, Suppl. Fig. 5). By immunoblot>3 we did not observe down-regulation of proteome hits such as
RAB9A / GAPDH in G2019S L2PD or iPD (Kruskal-Wallis P=0.08) nor LAMP1 / GAPDH except in iPD
(Kruskal-Wallis P=0.03) (Dunn’s adj. P=0.046). Lastly, we assessed pSer106 RAB12 response to
LRRK2 pharmacological inhibition by Mli-2 in technical replicates from freshly collected PBMCs
of an additional set (n=10) of 3 G2019S L2PD, 1 R1441G L2PD, 1 iPD, and 5 controls, treated with
Mli-2 (200 nM; 30 min) or DMSO (Suppl. Fig. 6). In all subjects, we observed a strong
diminishment of pSer106 RAB12 phosphorylation levels after MLi-2 treatment, confirming
pSerl06 RAB12 as a pharmaco-dynamic readout of LRRK2 inhibition using human PBMCs.

Next, we interrogated phospho-/protein subsets able to classify G2019S carriers and
controls. We applied a supported vector machine (SVM) classifier, adjusting for unbalanced
group sizes, with 5-fold cross-validation as overfitting control. After recursive feature elimination,
we found 510 peptides and 204 phospho-sites subjected as multi-class informative items. By
Montecarlo Tree Search (MCTS), we refined combinations of minimal numbers of features
yielding maximal balanced accuracy. We found an 18-feature G2019S signature of 15 proteins
and 3 phospho-sites (Fig. 5), including pSer106 RAB12 among others, e.g., ATIC, RAB9A, LAMP1,
NDUFBS, SCLY, or pSer205 MON?2, that provided a balanced accuracy to discriminate groups of
0.96 and an area under the curve (AUC) of 1.00 for G2019S L2PD vs controls, and of 0.99 for
G2019S L2NMCs. Despite being developed upon G2019S data, the classifier also discriminated
R1441G carriers from controls, but not iPD, indicating some common features to R1441G. The
top gene ontology term of the 18 features was vesicle transport. We also found a 17-feature
G2019S signature involving only proteins (Suppl. Fig. 7). These results indicate biological
plausibility and 96% disease-prediction ability of the 18-feature phospho-/protein signature to
classify G2019S carriers by both mutation and disease status.

Lastly, we interrogated whether deregulated phospho-/proteins were related to disease
severity, as assessed by UPDRS-IIl motor scores. Under a Spearman’s Rho>|0.5| and a P<0.05,

we found 34 differential proteins (16%) of the 207 hits in G2019S L2PD vs controls with inverse
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association with UPDRS-IIl whereas pSer106 RAB12 and pSer205 MON2 had a direct correlation
with motor scoring. Moreover, 10 markers (55%) from the 18-feature G2019S phospho-/protein
correlated inversely with UPDRS-III (ATIC, PDCD6, RAB9A, PSMC5, LAMP1, HSD13B10,
ARHGAP45, NDUFBS8, and SCLY), meanwhile pSer106 RAB12 correlated positively (Rho = 0.49,
adj. P = 1.60x10%) (Fig. 6). PDCD6, the top common correlating protein (Rho=-0.75, P=5.51x10"
10), participates in vesicle trafficking, mediates mitochondrial cytochrome c release and
apoptosis,”* and has been linked to PD.>> We also found 65 out of the 80 hits (81%) in R1441G
L2PD vs controls correlating with UPDRS-III, both inverse (59%) and positively (41%), several of
which were present at the 18-feature G2019S signature (PDCD6, ARHGAP45, NDUFB8, RAB9A,
ATIC, SCLY, and LAMP1) whereas others were exclusive for R1441G, e.g., the mitochondrial
protein UBQLN4 (Rho=-0.89, P=1.64x10°) or the cytoskeletal protein PLEC (Rho=0.84, P=3.50x10
®). Although correlation does not mean causality, these results indicate that some phospho-
/proteins at the 18-feature G2019S classifier can be related to disease severity therefore holding

potential clinical relevance.
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DISCUSSION
Following FAIR principles,?” we employed an interactive tool called Curtain?® in which the raw
and differential analysis data is saved with weblinks which, can be readily explored by non-MS
experts. The G2019S L2PD proteome, showed the highest number of changes, approx., 200
proteins, most of which were down-regulated (80%). The G2019S L2NMCs displayed fewer
protein differences, around 70, which were also downregulated (85%). There was a strong
overlap between proteins that changed in both groups (60%). Comparing G2019S L2PD and
G2019S L2NMCs revealed two proteins (RAB9A and SCLY) enhanced in the asymptomatic carriers.
Our findings indicate prominent protein deficits mostly associated with LRRK2 mutations such as
G2019S, which can begin at G2019S LZNMCs premotor stages>® and progress in G2019S L2PD.

Metascape gene ontology analysis annotated the protein changes in the G2019S carriers
as participating in the endolysosomal biology cycle, involving vesicle trafficking and
mitochondrial function. For example, G2019S L2PD showed down-regulation of RAB9A, which
controls phagocytosis and lysosomal biology.>”*® In G2019S carriers we also observed down-
regulated levels of LAMP1, a canonical lysosomal marker involved in lysosome biogenesis which
supports enhanced LRRK2 activity.”® A previous study also noted that LAMP1 levels were
reduced in CSF of L2PD.>° Our findings are consistent with the current understanding of the LRRK2
pathway indicating that it plays a key role in controlling the endosomal lysosomal pathway.>%°

Beyond endolysosomal changes, we also observed changes in proteins involved in
ribosomal function, protein homeostasis, and alternative splicing related to G2019S.5* Thus, ATIC,
the top protein down-regulated in G2019S carriers, catalyses the last two steps of mitochondria
purine biosynthesis®>3 and was also linked previously to LRRK2 toxicity.*® Other deficits included
KARS1, a tRNA synthetase; PSMC5, the proteasomal 26S subunit; or SCLY, seleno-cysteine lyase,
an enzyme involved in peptide elongation that is also involved in neurodegeneration.®* Our
findings in LRRK2 PMBCs align with studies reporting transcriptional repression of proteostasis
regulators in G2019S L2PD,%® and proteostasis defects in PD substantia nigra.®®

R1441G L2PD showed 80 differential proteins with 40% shared with G2019S L2PD.
Enrichment analysis showed that the functions of the proteins deregulated in the R1441G carriers
were similar to G2019S. The R1441G L2PD top protein deficit, NDUFBS, is a subunit of the

mitochondrial Complex | (NADH to Ubiquinone oxidoreductase), whose activity is deficient in
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PD.%” R1441G L2PD and L2NMCs displayed few protein differences, notably ATG3, involved in
autophagy, and MGAT?2, a Golgi glycosyl transferase. Overall the proteomic effects of the G2019S
and R1441G LRRK2 mutations in our clinical cohort were quite similar.6%6°

The iPD proteome, despite being the largest group, displayed only 3 differential hits that
were commonly decreased in G2019S and R1441G L2PD. These were LAMP1, which further
supports endolysosomal dysfunction occurring in iPD,;%%7° SRSF1, a Serine/Arginine-rich splicing
factor; and UQCRB, a mitochondrial Complex Ill subunit (Ubiquinol-cytochrome ¢
oxidoreductase). Beyond the etiopathological heterogeneity of iPD,”*’? the relatively fewer
protein changes in iPD than G2019S or R1441G L2PD suggest more specific effects of the LRRK2
mutations in dysregulating signal transduction pathways in LRRK2 mutants than in iPD.

Regarding the phospho-proteome, a single hit, pSerl106 RAB12, was found to be
specifically elevated in the G2019S but not R1441G carriers. Excitingly this phospho-site
comprises a key physiological substrate of LRRK2.2 Overall the roles that RAB12 plays and its
phosphorylation by LRRK2 are poorly understood. Phosphorylation of RAB12 is prominent in the
brain and observed higher than other RAB substrates such as RAB10 in this organ.*>° Other
studies showed that RAB12 is located in phagosomes, late endosomes, and lysosomes where it
may regulate endosome to trans-Golgi trafficking and exocytosis.”>”* To our knowledge, this is
the first report of hyper-phosphorylated RAB12 in PBMCs from a large cohort of G2019S carriers.

We analysed n=48 follow-up PBMC samples after 1 year by immunoblotting. Despite the
lower sample, we found an increase of pSer106 RAB12 in G2019S L2PD and L2NMCs. Previous
studies in neutrophils probing for RAB10 but not RAB12 phosphorylation revealed elevated
pThr73 RAB10 in R1441G but not G2019S carriers.'® We also found no RAB10 phosphorylation
increase in G2019S and R1441G PBMCs by DIA-MS. Such results in G2019S PBMCs suggest that
either RAB12 is a preferred substrate for LRRK2 - indeed, distinct mutation effects cannot be
ruled out,” and/or that pThr73 RAB10 phosphatases, e.g., PPM1H,’® dephosphorylate RAB10
more efficient than RAB12. Mechanistic studies on how G2019S and other LRRK2 variants
preferentially phosphorylate different RABs in various cell types, using larger cohorts, are
warranted. Our study identifies pSer106 RAB12 as an endogenous biomarker in easily accessible

PBMCs from carriers of the most prevalent G2019S mutation, either L2PD or LZNMCs.
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Upstream of LRRK2, PD cell models showed LRRK2 activation by VPS35/ RAB29 (RAB7L1)
binding to a region on the Armadillo (ARM) domain termed ‘Site-1’.2%223 More recently, RAB12
was shown as a key LRRK2 activator that binds to a distinct site at the ARM domain termed ‘Site-
3’2425 One study showed that RAB12 played a role in recruiting LRRK2 to damaged or stressed
lysosomes.?> These studies suggested that ARM domain Site-1 or Site-3 inhibitors that block RAB
binding could serve as novel therapeutic target for allosteric inhibitors of LRRK2 kinase activity.?*
The biological effect of pSer106 RAB12 phosphorylation on LRRK2 regulation has not been well
characterised and our results emphasize that additional work is warranted to investigate this.

Downstream of LRRK2, MLi-2 phospho-proteomics identified RAB3A, RAB8A, RAB10,
RAB12, RAB29, and RAB43 as LRRK2 substrates.>32%77 In the clinical setting, only pThr73 RAB10
has been validated as an LRRK2 substrate®® and exploited as a readout of LRRK2 activity in
previous studies,*® including in LRRK2 inhibitor clinical trials.'>2* As mentioned above, there has
not been a specific way of assessing elevated LRRK2 activity in G2019S carriers due to the lack of
effect in pThr73 RAB10 phosphorylation. Monitoring pSer106 RAB12 phosphorylation levels
could be especially useful for assessing G2019S selective inhibitors that have been newly

7881 35 these would be expected to preferentially reduce pSer106

developed in clinical studies,
RAB12 phosphorylation in patients with heterozygous G2019S mutations.

For G2019S carriers we also identified a signature of 15 proteins and 3 phospho-sites
including pSer106 RAB12 that was found to provide a 96% accuracy to discriminate G2019S L2PD,
L2NMCs, and controls. Although correlation does not imply causality, signature features such as
ATIC, PDCD6, RAB9A, PSMC5, LAMP1, HSD13B10, ARHGAP45, NDUFBS, SCLY, pSer2015 MON2,
and pSer106 RAB12 correlated with PD motor severity (UPDRS-III) suggesting that the phospho-
signature may be related to PD progression, but further work with larger number of cohorts
would be required to assess this clinically.>® This is the first signature in G2019S PBMCs based on
DIA-MS data and complements previous G2019S signatures in blood®? and urine.8384

Despite the exciting findings, our study has limitations. Inherent variation in humans
markedly affects differential protein expression and phosphorylation. Slightly different
procedures in PBMCs preparation and storage at different centres can also affect results. To

minimise this variation, we undertook MS analysis and data analysis at the same time with blind

groups. Third, differential enrichment of phospho-peptides on titanium dioxide beads can result
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in further variety. Indeed, we discarded one of the phospho-peptide batches due to not passing
quality control. Due to the phospho-peptide enrichment approach used, the detection of
phospho-Tyrosines was under-represented. We used a stringent significance cut-off filtering in
only hits mapped by at least 2 peptides, and we cannot rule out that other important proteins
could have been excluded. Lastly, the number of R1441G carriers, especially L2ZNMCs, was
significantly smaller than G2019S and it was insufficient to assess signatures by machine learning.

In summary, aligning with urine,® in PBMCs we found elevated pSer106 RAB12 levels as
an endogenous biomarker for G2019S carriers. Given that RAB12 was shown as a key LRRK2
activator in PD models able to increase pThr73 RAB10 levels,?#%> future studies ought to
investigate the effect of pSer106 RAB12 phosphorylation on LRRK2 activation. In line with PD
models,”%® in human LRRK2 PBMCs we found pSer106 RAB12 as a pharmaco-dynamic readout
of MLi-2 LRRK2 inhibition. We also found an 18-feature signature including pSer106 RAB12 with
high accuracy in discriminating symptomatic, asymptomatic G2019S carriers, and controls.
Future studies need to assess pSer106 RAB12 in other G2019S clinical cohorts, blood cells and
CSF, using precise quantitative methods such as reaction monitoring (RM) and ELISA-like assays,

to hopefully translate our findings for clinical trials of novel LRRK2 inhibitors.”8-8!
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PUBLICLY AVAILABLE DATA

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE®® partner repository with the dataset identifiers PXD050865 for the
proteome and PXD050944 phospho-proteome analyses. Following FAIR principles,?” we through
the interactive tool called Curtain,?® raw and differential analysis data is also provided as weblinks
which to be readily explored by non-MS experts. Beyond that, programming scripts for data

analyses (Suppl. Material) (to be provided).
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FIGURE LEGENDS

Fig. 1. Experimental workflow using PBMCs from a Spanish LRRK2 clinical cohort

(a) Peripheral blood mononuclear cells (PBMCs) processing for different applications. 40 ml of
blood were drawn from subjects of a LRRK2 clinical cohort from Spain (n=174) encompassing
G2019S L2PD patients (n=37), G2019S L2NMCs (n=27), R1441G L2PD patients (n=14), R1441G
L2NMCs (n=11), iPD (n=40), and controls (n=45). (b) After PBMCs isolation, homogenization, and
protein digestion, a total of 3,815 proteins were identified by DIA-MS on an EZ-Exploris 480 mass-
spectrometer (Thermo), and 10,288 phospho-sites after phospho-enrichment. For the group
differential analysis, we only considered proteins and phospho-sites mapped by >2 different
peptides (Spetronaut), and with <30% imputation, with a significance cut-off of log,FC>|0.6| and
a multiple testing adjusted P<0.05. Data deconvolution and interactive representation of findings
were done using the Curtain / Curtain PTM Tool, and gene ontology was assessed by Metascape.
Using machine learning, we identified an 18-feature G2019S phospho-/protein signature able to
discriminate G2019S L2PD, G2019S L2NMCs, and controls. By immunoblot, we assessed pSer106
RAB12 / total RAB12 levels in PBMCs from a subject of subjects (n=48) after 1 year of follow-up,
including G2019S L2PD (n=12), G2019S L2NMCs (n=6), iPD (n=15) and controls (n=15). Lastly, in
freshly isolated PBMCs from a second subset of subjects (n=10) encompassing G2019S L2PD
(n=3), R1441G L2PD (n=1), iPD (n=1) and healthy controls (n=5), treated with DMSO or the MLi-2
LRRK2 inhibitor, we performed an LRRK2 kinase assay measuring pSer106 RAB12 / total RAB12

levels.

Fig. 2. Proteome overview and differential analyses in G2019S carriers

(a) Barplots showing the numbers of differential proteins in different pairwise comparisons
involving G2019S carriers, R1441G carriers, iPD, and controls, with up-regulated proteins in dark
grey, and down-regulated in light grey. All cohorts were run in parallel, with balanced study
groups per run, blind to the operator, and using 1 quantile normalisation (Limma). The
significance cut-off was set at a log,FC>|0.6| and a multiple testing adjusted P<0.05. (b) Volcano
plot of the proteome differential analysis in G2019S L2PD vs healthy controls, with Curtain

weblinks to access raw and differential analysis data, showing proteins up-regulated in G2019S
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L2PD as red dots on the right, and proteins up-regulated in controls (i.e., down-regulated in
G2019S L2PD) as red dots on the left (Curtain). A legend colour code applying to all panels is
shown at the bottom of the figure, depicting statistically significant hits as red dots. (c) Volcano
plot of the proteome differential analysis in G2019S carriers as a whole, i.e., L2PD and L2ZNMCs,
vs healthy controls (Curtain). (d) Volcano plot showing the proteome differential analysis
between G2019S L2NMCs and healthy controls (Curtain). (e) Volcano plot representing the
proteome comparison between G2019S L2NMCs and G2019S L2PD. A Venn diagram at the
bottom of the figure shows the overlap of differential hits in PD-manifesting and non-manifesting

G2019S carriers (Curtain).

Fig. 3. Phospho-proteome differential analyses of G2019S carriers

(a) Volcano plot of the phospho-proteome differential analysis of G2019S L2PD vs controls, and
Curtain weblinks to raw and differential analysis data, showing hyper-phosphorylated proteins in
G2019S L2PD as red dots on the right, where a single hit, elevated pSer106 RAB12 levels in
G2019S L2PD, emerged (Curtain PTM). A legend colour code shows hits categorisation by
statistical significance and applies to all the panels. (b) Volcano plot showing phospho-protein
hits in G2019S carriers as a whole, PD-manifesting and non-manifesting, compared to controls
(Curtain PTM). (c) Phospho-proteome differences in G2019S L2NMCs vs controls (Curtain PTM).
(d) Volcano showing phospho-proteome differences in G2019S L2NMCs vs G2019S L2PD (Curtain
PTM). (e) QC crude non-imputed (lower bar plot), non-normalised (upper violin plot) mass-
spectrometry data from pSer106 RAB12 levels across all study groups showing higher pSer106
phosphorylation levels in G2019S L2PD and G2019S L2NMCs respect to the rest of the groups.
The adj. P-values and FC on top of the violin plot correspond to those from the differential
analysis. (f) A similar analysis to the previous panel with G2019S L2PD and G2019S L2NMCs

grouped into a single group of G2019S carriers.
Fig. 4. One-year follow-up of pSer106 RAB12 by immunoblot and MLi-2 response

Immunoblot assessment of pSerl06 RAB12 phosphorylation levels in >1-year follow-up PBMC

samples from part of the LRRK2 subcohort from Clinic-Barcelona (n=48), including G2019S L2PD
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(n=12), G2019S L2NMCs (n=6), iPD (n=15), and controls (n=15). (a) Schematic workflow of
immunoblot assessment and representative blot from 5 different blots shown in the Supplement.
(*) Denotes intergel control. (b) dot plots comparing pSer106 RAB12 / Total RAB12 levels
obtained by DIA-MS at the entire LRRK2 clinical cohort (n=174) on the left, and by immunoblot
of part of the Clinic-Barcelona cohort after 1-year of follow-up (n=48) in G2019S carriers on the
right. In each plot, overall intergroup differences were assessed using the Kruskal-Wallis test
followed by post-hoc Dunn’s test to assess for pSer106 RAB12 / Total RAB12 differences in
G2019S carriers. (c) Representative immunoblot analysis of pSer106 RAB12 / Total RAB12 and
pThr73 RAB10 / Total RAB10 using technical replicates from additional freshly collected PBMCs
from one R1441G L2PD, one G2019S L2PD, one iPD and 3 controls (expanded to a total n=10
subjects in the Supplement), treated with DMSO or the MLi-2 LRRK2 inhibitor (200 nM, 30 min),
showing a diminishment of pSer106 RAB12 phosphorylation levels after LRRK2 inhibition by MLi-

2 treatment.

Fig. 5. Identification of an 18-feature phospho-/protein classifier for G2019S carriers

After comparing the performance of several models, we applied supported vector machine (SVM)
learning, adjusted by unbalanced groups using the Synthetic Minority Over-sampling Technique
(SMOTE), corrected from overfitting with 5-fold cross-validation, identified cross-group
differential proteins and phospho-proteins by ANOVA and Recursive Feature Elimination with
Cross-Validation (RFECV), and refined informative combinations to the minimal numbers of
features yielding the maximal balanced accuracy by the Montecarlo Tree Search (MCTS) method.
(a) 18-feature G2019S phospho-/protein best classifier identified in G2019S carriers, both PD-
manifesting and non-manifesting subjects, and healthy controls. Red dots indicate individual
features correlating with disease severity (UPDRS-III) (See next Figure). (b) Relative contribution
of the different proteins (n=15) and phospho-sites (n=3), including pSer106 RAB12, from the 18-
feature G2019S classifier on the upper bar plot; Metascape gene ontology enrichment analysis
of the 18-features G2019S signature lower bar plot. (c) Receiver Operating Curve (ROC) analysis
of the 18-feature G2019S phospho-/protein signature showing an overall balanced accuracy of

0.957 to discriminate G2019S L2PD, G2019S L2NMCs and controls, specifically with an area under
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the curve (AUC) of 1.00 between G2019S L2PD and controls, and 0.99 between G2019S L2NMCs
and controls. (d) Principal component analysis (PCA) based on the 18-feature G2019S phospho-
/protein classifier in G2019S carriers and healthy controls showing distinct group profiles based
on LRRK2 mutation and disease status, with G2019S L2ZNMCs in between G2019S L2PD and

controls, consistent with their disease status.

Fig. 6. Association between differential LRRK2 phospho-/proteins and disease severity
Correlation analysis of differential proteins and phospho-proteins (log2FC>|0.6|, adj. P<0.05)
and UPDRS-IIl motor scores from L2PD patients and healthy controls with statistical significance
set at a Spearman’s correlation coefficient Rho>|0.5| and an FDR multiple-testing adj. P<0.05.
(a) Correlation plots between differential proteins in G2019S L2PD vs controls on the left, and
R1441G L2PD vs controls on the right, showing differential hits correlating with UPDRS-IIl in red.
(b) Scatter plot of 10 hits from the 18-feature G2019S phospho-/protein signature correlating
with UPDRS-IIl in G2019S L2PD patients represented as orange dots and healthy controls as blue
dots, including PDCD6, ARHGAP45, ATIC, SCLY, PSMC5, NDUFBS8, LAMP1, HSD17B10, RAB9A, and
pSer106 RAB12.
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SUPPLEMENTARY FIGURE LEGENDS

Suppl. Fig. 1 Comparison of proteome hits identified across different groups

Venn diagrams depicting common and specific hits in various groups as compared to healthy
controls. (a) Differential hits found at various G2019S carrier groups, PD manifesting and non-
manifesting, compared to controls. (b) Hits from various R1441G carrier groups, symptomatic
and asymptomatic, vs controls. (c) Common and specific hits were observed in the different PD
patient groups, i.e., G2019S L2PD, R1441G L2PD, and iPD. (d) Differential hits among L2PD
patients carrying either the G2019S or the R1441G mutations, stratified by up and down-
regulated hits. (e) Differential hits among L2ZNMCs carrying either the G2019S or the R1441G

mutations, as analysed segregated by up and down-regulated hits.

Suppl. Fig. 2. Proteome and phospho-proteome differential analysis of R1441G carriers
Consistently across the study, the significance cut-off for R1441G proteome and phospho-
proteome analyses was also set at a log,FC>|0.6| and a multiple testing adj. P<0.05. A legend
colour code applying to all panels is shown at the bottom of the figure, depicting statistically
significant hits as red dots. (a) Volcano plot of the proteome differential analysis in R1441G L2PD
vs healthy controls, with Curtain weblinks to access raw and differential analysis data, showing
proteins up-regulated in R1441G L2PD as red dots on the right, and proteins up-regulated in
controls (i.e., down-regulated in R1441G L2PD) as red dots on the left (Curtain). (b) Volcano plot
of the proteome differential analysis in R1441G carriers as a whole, i.e., L2PD and L2ZNMCs, vs
healthy controls (Curtain). (c) Volcano plot showing the proteome differential analysis between
R1441G L2NMCs and healthy controls (Curtain). (d) Volcano plot representing the proteome
comparison between R1441G L2NMCs and R1441G L2PD (Curtain). (e) Volcano plot of the
phospho-proteome differential analysis between R1441G L2PD vs controls (Curtain PTM). (f)
Volcano plot of the phospho-proteome comparison of R1441G L2NMCs and controls (Curtain
PTM).

Suppl. Fig. 3. Proteome functional analysis of G2019S and R1441G patients
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Comparative gene ontology (GO) enrichment analysis of the differential proteins observed in
G2019S and R1441G L2PD was done in Metascape under a multiple testing adj. P<0.05, here
denoted as a dashed red line. (a) GO enrichment plot in G2019S L2PD vs controls. (b) GO
enrichment plot in R1441G L2PD vs controls. Proteome changes related to both mutations
showed affection of similar functional terms affecting the endolysosomal pathway (red asterisks),

protein homeostasis (green), and mitochondria function (blue).

Suppl. Fig. 4. Proteome and phospho-proteome analysis of iPD compared to L2PD

Curtain weblinks provide access to raw and differential analysis data. The legend colour code
shows hits categorisation based on statistical significance and applies to all the panels. (a)
Volcano plot of the proteome analysis in iPD vs controls showing no differential hit under the

statistical cut-off used (Curtain). (b) Volcano plot representing protein differences between iPD

and G2019S L2PD, showing iPD up-regulated proteins as red dots on the left (Curtain). (c) Volcano
plot representing protein changes between iPD and R1441G L2PD, with iPD up-regulated proteins
as red dots on the left, and iPD down-regulated (i.e., up-regulated in R1441G L2PD) as red dots
on the right (d) Volcano plot of the phospho-proteome analysis in iPD vs controls showing no
differential hit, despite being iPD the groups with larger sample size in the study (Curtain PTM).
(e) Volcano plot representing phospho-protein differences between iPD and G2019S L2PD, with
proteins hyper-phosphorylated in G2019S L2PD as red dots on the right, showing pSer106 RAB12
as top hit, and proteins hyper-phosphorylated in iPD (i.e., hypo-phosphorylated in G2019S L2PD)
as red dots on the left (Curtain PTM). (f) Similar analysis as in the previous panel, here comparing

the phospho-proteome comparison between iPD and R1441G L2PD (Curtain PTM).

Suppl. Fig. 5. Expanded 1-year follow-up of pSer106 RAB12 and other markers by immunoblot
Full immunoblot assessment of pSer106 RAB12 phosphorylation levels, and expression levels of
RABYA and LAMP1, using >1-year follow-up PBMC samples from a subset of the LRRK2 cohort
from Clinic-Barcelona (n=48), including G2019S L2PD (n=12), G2019S L2NMCs (n=6), iPD (n=15),
and controls (n=15). Dot plots representing normalised levels after the band densitometric

analysis for the various studied makers in all subjects studied in duplicates as it follows, pSer106
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RAB12 / Total RAB12; RAB9A / GADPH; and LAMP1 / GADPH, all of them double normalised to
the same intergel control also measured in duplicates. In each plot, overall intergroup differences
were assessed using Kruskal-Wallis test followed by post-hoc Dunn’s test under an FDR multiple

testing adjusted P<0.05. (*) Denotes intergel control.

Suppl. Fig. 6. Expanded pSer106 RAB12 responsiveness to MLi-2 LRRK2 inhibition

Full immunoblot analysis of pSer106 RAB12 / Total RAB12 and pThr73 RAB10 / Total RAB10 using
two technical replicates of PBMC lysates from G2019S L2PD (n=3) and healthy controls (n=3),
treated with DMSO or the MLi-2 LRRK2 inhibitor (200 nM, 30 min), showing a diminishment of
pSer106 RAB12 phosphorylation levels after LRRK2 inhibition by MLi-2 treatment.

Suppl. Fig. 7. A 17-feature protein classifier for G2019S carriers

To explore alternative classifiers for G2019S carriers and healthy controls, here we applied the
same method as described for the 18-feature G2019S phospho-/protein signature, and
considered exclusively cross-group differential proteins but not phospho-sites. (a) 17-protein
G2019S best classifier found in G2019S carriers, symptomatic and asymptomatic, and controls.
(b) Relative contribution of features from the 17-protein G2019S classifier shown on the upper
bar plot; Metascape gene ontology enrichment analysis of the 17-feature G2019S signature
displayed on lower bar plot. (c) Receiver Operating Curve (ROC) analysis of the 17-protein G2019S
signature with a balanced accuracy of 0.963 for discriminating G2019S L2PD, G2019S L2NMCs
and controls, with an area under the curve (AUC) of 1.00 between G2019S L2PD and controls,
and 0.99 between G2019S L2NMCs and controls. (d) Principal component analysis (PCA) based
on the 17-protein G2019S classifier displaying different subject profiles of G2019S carriers and

healthy controls based on LRRK2 mutation and disease status.
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Table 1. Participant clinic-demographics. Data are expressed as a mean = standard deviation (S.D.) with the number of available subjects/totals in brackets. L2PD

= LRRK2-associated PD patients; LZNMC = LRRK2 non-manifesting carriers; iPD = idiopathic PD; C = controls; AAO = age-at-onset; UPDRS-III = Unified Parkinson’s

Disease Rating Scale; MoCA = Montreal cognitive assessment; LEDD = levodopa equivalent daily dose;

“u u

= not applicable; NA = not available.

N Age at PD Disease Passed

Cohort (males/ sampling AAO duration UPDRS-III H&Y MoCA 'EEmD')) COoVID-19

females) (years) (years) (years) € (yes/no)
Meta 174
G2019S L2PD 37(20/17) | 63.5£9.1(37/37) 55.1+10.2 (33/37) 8.446.3 (33/37) 16.0+9.7 (34/37) | 2.040.6 (21/37) | 24.3+4.5(35/37) | 635.8+438.8(29/39) | 4/30(34/37)
G2019S L2NMC 27 (18/9) | 56.7+14.1 (26/27) - - 1.0+1.6 (22/27) - 25.4+6.6 (25/27) - 6/19 (25/27)
R1441G L2PD 14(7/7) 67.1+9.5 (14/14) | 55.8+11.4(14/14) | 12.3+5.5(14/14) | 19.8+12.0 (14/14) | 2.2+0.9(13/14) | 23.245.5(10/14) | 711.5+355.7 (14/14) | 4/10(14/14)
R1441G L2NMC 11 (4/7) 61.1£5.5(11/11) - - 1.242.1 (11/11) - 28.6+2.0 (11/11) - 1/10(11/11)
iPD 40 (30/10) | 67.3£7.7 (40/40) 62.1£8.5 (40/40) 5.2+4.3 (40/40) | 19.7+13.2 (40/40) | 2.240.6 (31/40) | 25.6+3.7 (33/40) | 584.7+373.6(37/40) | 1/37(38/40)
C 45 (18/27) | 60.0+£10.9 (45/45) - - 1.242.2 (17/27) - 27.5+3.2 (27/27) - 14/30 (44/45)
B - Barcelona 76
G2019S L2PD 16 (7/9) 65.5+ 8.3 (16/16) 53.5+11.3 (14/16) 11.4+7.1(14/16) | 13.0+7.2(13/16) | 2.0+0.5(11/16) | 25.0+4.3(14/16) | 596.5+269.7 (13/18) | 2/12(14/16)
G2019S L2NMC 11(7/4) | 47.8£15.5(10/11) - - 0.3+0.7 (10/11) - 28.2+2.0 (10/11) - 4/5(9/11)
R1441G L2PD 1(0/1) 44.0(1/1) 32.0(1/1) 12.0 (1/1) 16.0 (1/1) NA (0/1) 30.0(1/1) 400 (1/1) 0/1(1/1)
R1441G L2NMC 3(2/1) 65.311.5 (3/3) - - 3.0£3.6 (3/3) - 29.340.6 (3/3) - 1/2(3/3)
iPD 20 (16/4) | 68.3+7.9 (20/20) 64.3+7.8 (20/20) 4.0 +3.0(20/20) 14.7+4.2 (20/20) | 1.9+0.2 (20/20) | 27.2+3.2(20/20) | 453.8+279.8(19/20) | 1/19(20/20)
C 25(9/16) | 63.9+10.6 (25/25) - - 1.7+2.4 (16/25) - 27.9+2.1 (25/25) - 8/17 (25/25)
S - Santander 55
G2019S L2PD 20(13/0) | 61.3+9.0(20/20) 55.6+9.1 (18/20) 6.1+4.7 (18/20) | 18.1+11.0(20/20) | 1.9+0.6(9/20) | 24.2+4.6(20/20) | 652.7 +562.3(15/20) | 2/17(19/20)
G2019S L2NMC | 15(11/4) | 62.6+10.2 (15/15) - - 1.8+1.9 (11/15) - 23.3+8.1 (14/15) - 2/13 (15/15)
iPD 10 (6/4) 67.2+7.6 (10/10) 62.0+6.3 (10/10) 5.2+4.0 (10/10) 17.948.3 (10/10) 2.5(1/10) 23+3.5 (10/10) 479.9 £ 220.2 (8/10) 0/8 (8/10)
C 10 (4/6) | 56.9+11.1 (10/10) - - NA - 25.0+3.6 (6/6) - 1/8 (9/10)
D - Donostia 43
G2019S L2PD 1(0/1) 78.0(1/1) 68.0 (1/1) 10.0 (1/1) 15.0 (1/1) 3.0(1/1) 19.0 (1/1) 893 (1/1) 0/1(1/1)
G2019S L2NMC 1(0/1) 58.0(1/1) - - NA - 29 (1/1) - 0/1(1/1)
R1441G L2PD 13 (7/6) 68.9+7.1(13/13) 56.5+9.7 (13/13) 12.445.7 (13/13) | 20.1£12.5(13/13) | 2.2+0.9 (13/13) 22.445.2(9/13) | 735.5+358.3(13/13) | 4/9(13/13)
R1441G L2NMC 8 (2/6) 59.5+5.6 (8/8) - - 0.5+0.8 (6/6) - 28.3+2.3 (6/6) - 0/8 (8/8)
iPD 10 (8/2) 65.4+7.8 (10/10) 57.9+10.6 (10/10) 7.5+5.9 (10/10) 31.7420.7 (10/10) | 2.7+0.7 (10/10) | 23.7£2.9(10/10) | 917.3+441.8 (10/10) | 0/10(10/10)
C 10 (5/5) 53.5+8.1 (10/10) - - NA - 29.1+3.9 (5/5) - 5/5 (10/10)
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Suppl. Fig. 1 Comparison of proteome hits identified across different groups
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Suppl. Fig. 4 proteome and phospho-proteome analysis of iPD compared to L2PD
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Suppl. Fig. 5 Expanded 1-year follow-up of pSer106 RAB12 and other markers by immunoblot
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Suppl. Fig. 6 Expanded pSer106 RAB12 responsiveness to MLi-2 LRRK2 inhibition
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Suppl. Fig. 7 A 17-feature protein classifier for G2019S carriers



