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Abstract 

Purpose: Lung tissue and lung excursion segmentation in thoracic dynamic magnetic resonance 

imaging (dMRI) is a critical step for quantitative analysis of thoracic structure and function in 45 

patients with respiratory disorders such as Thoracic Insufficiency Syndrome (TIS). However, the 

complex variability of intensity and shape of anatomical structures and the low contrast between 

the lung and surrounding tissue in MR images seriously hamper the accuracy and robustness of 

automatic segmentation methods. In this paper, we develop an interactive deep-learning based 

segmentation system to solve this problem.  50 

Material & Methods: Considering the significant difference in lung morphological characteristics 

between normal subjects and TIS subjects, we utilized two independent data sets of normal subjects 

and TIS subjects to train and test our model. 202 dMRI scans from 101 normal pediatric subjects 

and 92 dMRI scans from 46 TIS pediatric subjects were acquired for this study and were randomly 

divided into training, validation, and test sets by an approximate ratio of 5:1:4. First, we designed 55 

an interactive region of interest (ROI) strategy to detect the lung ROI in dMRI for accelerating the 

training speed and reducing the negative influence of tissue located far away from the lung on lung 

segmentation. Second, we utilized a modified 2D U-Net to segment the lung tissue in lung ROIs, 

in which the adjacent slices are utilized as the input data to take advantage of the spatial information 

of the lungs. Third, we extracted the lung shell from the lung segmentation results as the shape 60 

feature and inputted the lung ROIs with shape feature into another modified 2D U-Net to segment 

the lung excursion in dMRI. To evaluate the performance of our approach, we computed the Dice 

coefficient (DC) and max-mean Hausdorff distance (MM-HD) between manual and automatic 

segmentations. In addition, we utilized Coefficient of Variation (CV) to assess the variability of 

our method on repeated dMRI scans and the differences of lung tidal volumes computed from the 65 

manual and automatic segmentation results. 
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Results: The proposed system yielded mean Dice coefficients of 0.96±0.02 and 0.89±0.05 for lung 

segmentation in dMRI of normal subjects and TIS subjects, respectively, demonstrating excellent 

agreement with manual delineation results. The Coefficient of Variation and p-values show that 

the estimated lung tidal volumes of our approach are statistically indistinguishable from those 70 

derived by manual segmentations.  

Conclusions: The proposed approach can be applied to lung tissue and lung excursion 

segmentation from dynamic MR images with high accuracy and efficiency. The proposed approach 

has the potential to be utilized in the assessment of patients with TIS via dMRI routinely. 

 75 

Keywords: Lung tissue, lung excursion, interactive ROI strategy, dynamic MRI (dMRI), 

convolutional neural network 
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1. Introduction 

Background 80 

Thoracic insufficiency syndrome (TIS) is a condition that affects pediatric patients with spine and 

chest wall deformities, leading to respiratory impairment, which is characterized by both restrictive 

and, less commonly, obstructive lung disease due to changes in spine and rib configuration, which 

reduce lung volume, stiffen the chest wall, and weaken respiratory muscles [1, 2]. Collaborative 

efforts between pediatric pulmonologists and spine surgeons are necessary to determine the best 85 

treatment options, including non-surgical and surgical strategies, timing of surgery, and medical 

supportive care [3]. Management and treatment of patients with TIS involve growth-sparing 

surgery, such as the use of the Vertical Expandable Prosthetic Titanium Rib (VEPTR), to preserve 

vertical growth before a definitive spinal fusion at skeletal maturity [4, 5]. To quantitively analyze 

the changes in regional dynamic thoracic function before and after surgical correction of TIS, the 90 

clinical parameters of TIS, including forced vital capacity [6], thoracic and lumbar Cobb angles 

[7], and resting breathing rate (RR) [8], etc. are usually measured. However, these clinical 

parameters have not demonstrated significant changes of lung function after surgery, especially 

when regional components are concerned [9]. To address this problem, Tong et al. proposed the 

quantitative dynamic MRI (QdMRI) method for providing valuable insights into the impact of 95 

surgery on lung volumes [9, 10], by utilizing measurements of lung volume at end-inspiration and 

end-expiration, lung tidal volume, chest wall excursion volume, and diaphragm excursion volume 

separately for each hemi-chest. In addition, QdMRI is more suitable for analyzing the properties 

of multiple objects of interest beyond the lungs for very young TIS patients compared with the 

ultrashort echo time (UTE) MRI [11, 12]. 100 

Thoracic dynamic magnetic resonance imaging (dMRI) has been used to assess regional thoracic 

function in patients with TIS [9], to evaluate lung function in adolescent idiopathic scoliosis (AIS) 
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[13], and to analyze diaphragmatic motion [14]. In such applications, lung tissue and lung 

excursion segmentation in dMRI plays a crucial role in quantitative analysis. However, manual 

delineation of the lung tissue and lung excursion is exceedingly time-consuming and requires 105 

significant labor. Furthermore, this approach is susceptible to inconsistencies between different 

individuals. Consequently, there is a pressing requirement for medical professionals and 

researchers to possess a robust, efficient, accurate, and precise technique for segmenting the lung 

tissue and excursion regions in order to enhance productivity workflow. Nevertheless, 

development of robust systems for this purpose is challenging due to several factors: i) complex 110 

variability of grayscale intensity among different dMRI acquisition protocols, ii) complex structure 

and variability of lung shape across different patients, especially in TIS, iii) low image contrast 

and weak boundary between lung tissue and surrounding tissues, and iv) often inadequate signal-

to-noise ratio on MR images. In addition, the shortage of high-quality annotation data seriously 

limits the development and evaluation of advanced lung segmentation approaches.  115 

Related work 

To solve the above problems, there have been some published studies on lung segmentation in 

MRI and computed tomography (CT), which can be divided into unsupervised and supervised 

models [15]. The unsupervised approaches are based on unsupervised machine learning (ML) 

models and traditional image segmentation methods without the requirement of data annotation. 120 

In [16], an active contour model was developed that provides a smooth boundary and accurately 

captures the high curvature features of the lungs from MR images. In [17], atlas-based methods 

were used to segment the lungs in multi-sequence proton MR images. Hassani et al. [18] proposed 

an automated hybrid method for lung segmentation based on both mathematical morphology and 

the region growing algorithm, where seed points are selected automatically without any user 125 

interaction. Similarly, Mansoor et al. [19] presented a novel method for pathological lung 
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segmentation in CT using a fuzzy connectedness (FC) algorithm and texture-based features, in 

which the seed is automatically selected for initial FC segmentation based on voxel intensity and 

geometrical knowledge. Furthermore, Tong et al. proposed an interactive iterative relative fuzzy 

connectedness approach for lung segmentation on thoracic 4D dynamic MR images, achieving a 130 

mean value of 0.91 and a standard deviation of 0.03 for true positive volume fraction [20]. Yet, the 

above methods have low computation efficiency and may be affected by noise in the MR and CT 

images. To improve robustness and efficiency, some researchers have utilized a supervised 

machine learning model to construct lung segmentation systems. For instance, Neil et al. [21] 

designed hybrid model, in which a hierarchical detection network (HDN) was used to detect stable 135 

landmarks on the surface of the lungs to robustly initialize a level-set model for delineating lung 

contours. In [22], an artificial neural network (ANN) was employed to segment the lung tissue in 

matrix pencil decomposition MRI, achieving a mean value of 0.89 and a standard deviation of 0.03 

for Dice similarity coefficient (DSC).  

Recently, deep learning (DL) has revolutionized medical image analysis and achieved superior 140 

performance, involving use of deep neural networks to learn hierarchical feature representations 

from medical images, and eliminating the need for hand-designed features [23]. Deep learning 

models have been successfully applied in various medical imaging applications and have shown 

better capabilities in segmenting and classifying medical images, such as MRI and CT images, 

compared to conventional image processing and machine learning techniques [24, 25]. Several 145 

DL-based lung segmentation approaches have been proposed. For instance, studies [26-28] utilized 

a convolutional neural network (CNN) to segment the lung tissue in CT images, obtaining excellent 

segmentation performance and high efficiency. Similarly, Astley et al. [29] constructed a ventilated 

lung segmentation system based on 3D CNN for multi-nuclear hyperpolarized gas MRI. The 

experimental data demonstrated that the DL-based lung segmentation approaches outperformed 150 
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the unsupervised ML-based methods such as K-means and spatial fuzzy C-means. In their latest 

work [30], a proposed implementable DL segmentation algorithm was used to produce accurate 

lung segmentations on a large, multi-center, multi-acquisition, and multi-disease set of MRI scans. 

In [31], we presented an automatic DL-based lung segmentation system, including two CNNs: i) a 

corner-points detection network for locating the lung in MRI and extracting the region of interest 155 

(ROI) of lung, and ii) a lung segmentation network for pixel-wise classification in the lung ROI. 

The proposed method achieves a high mean value of 0.97 and a low standard deviation of 0.02 for 

3D DSC, demonstrating that the lung ROI can improve lung segmentation performance. However, 

the lung ROI detection accuracy of our method was low for dMRI obtained in TIS patients, 

reducing the lung segmentation performance for TIS patients. In addition, the above methods 160 

cannot produce segmentations of the excursion regions of the chest wall and diaphragm in dMRI 

and meet the requirement of lung tidal volume measurement. 

In this paper, we propose a semi-automated and easy-to-use lung segmentation system for use in 

TIS patients (often with severe deformities of the chest) based on interactive lung ROI strategy and 

deep CNN for dMRI, achieving a high agreement with reference standard manual segmentations. 165 

The main innovations of this study include: 1) a semi-automatic, robust, and accurate segmentation 

system for lung tissue and lung excursion in dMRI; 2) an accurate and adaptive interactive lung 

ROI detection strategy based on the corner-points concept and linear interpolation; 3) a novel 

design of network architecture using the hand-crafted lung shape feature to segment the chest wall 

and diaphragm excursion regions from lung tissue; 4) demonstration of as close to the highest 170 

possible lung segmentation performance considering the quality of the lung ROI in both normal 

subjects and TIS patients; 5) demonstration of high agreement between manually and automatically 

measured lung tidal volumes; and 6) comparison with other methods from the literature to elucidate 

the comprehensive advantages of our approach for application in patients with TIS.  
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The following sections are arranged as follows. The details about our method are introduced in 175 

Section 2 including preparatory operations, interactive ROI strategy, segmentation network design, 

post-processing method, and data augmentation. In Section 3, we illustrate the qualitative and 

quantitative results including lung ROI detection, lung segmentation, lung excursion segmentation, 

estimated tidal volumes, and comparisons between our approach and related studies. Finally, we 

summarize our conclusions in Section 4. 180 

A preliminary report of this work appeared in the proceedings of the 2022 SPIE Medical Imaging 

Conference [31]. The present paper includes the following enhancements over the conference 

paper: (i) a detailed and comprehensive literature review about lung segmentation in MRI; (ii) a 

full description of our approach including dMRI image acquisition, interactive ROI strategy, ROI-

guided lung segmentation model, and shape-guided lung excursion segmentation model; and (iii) 185 

a detailed demonstration of our experimental results  on a much larger data set including illustrative 

segmentation examples, quantitative evaluation metric values, lung tidal volume computation 

results, and comparisons with other approaches in the literature.  

2. Materials & Methods 
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2.1 Method overview  190 

In our study, we focus on the segmentation of lung tissue and lung excursion region from dMRI 

images. As illustrated in Figure 1, the lung region would expand with the diaphragm contracting 

and moving downward during the inspiration cycle. The movement of lung between the end-

expiration and end-inspiration produces the lung excursion region, which can be used to estimate 

the respective tidal volumes. Thus, we firstly design an interactive segmentation model to obtain 195 

the lung region at end-expiration and end-inspiration and then construct the automatic lung 

excursion segmentation model based on the lung region segmentation. 

Figure 1. Illustration of lung tissue and lung excursion region in dMRI. 1
st 

- 2
nd 

rows: Lung tissue 

at end-expiration and end-inspiration (green boundaries). 3
rd

: lung excursion region (red arrows). 

1
st
-4

th
 columns: From the right lung of one normal subject. 

   

Slice #5 Slice #10 Slice #15 

Lung tissue at EE 

Lung tissue at EI 

Lung excursion region 

Slice #3 
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As shown in Figure 2, our study contains three main stages. The preparatory stage, in which we 

acquired and annotated thoracic dynamic 3D MRI scans and repeat-scans, divided into four parts: 

data sets for training, validation, testing, and volume variability study for evaluating the 200 

performance of our system. The model-building stage involves the following steps: i) Designing 

the interactive ROI strategy for localizing lungs based on corner-points of the bounding box and a 

linear interpolating method. ii) Developing a CNN based segmentation model for the lung guided 

by the ROI of the lung from the previous step. iii) Constructing the segmentation network for the 

excursion region based on U-Net and shape-prior information. Excursion region refers to the 205 

region excursed by each hemi-chest wall and hemi-diaphragm, which is required for estimating the 

respective tidal volumes. iv) Devising a post-processing method for reducing the false positive rate 

Figure 2. Processing pipeline depicting the main stages in our study. 

Data acquisition and annotation for lung tissue and 

excursion region 

Construction of ROI-guided convolutional neural network 

for lung segmentation 

Design of interactive ROI strategy for lung  

Construction of shape-guided convolutional neural 

network for lung excursion region segmentation 

Design of post-processing method for excursion region 

Performance of data augmentation and DL model training 

Testing of model and computation of metric values 

Conduct of variability study for estimated lung volumes 

Preparatory Operations 

Building Models 

Evaluating Models 

Training and  
validation sets 

Test set 
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of excursion region. v) Performing data augmentation and DL model training. vi) The evaluation 

stage employed the trained models to segment dMRIs in the testing and repeat-scan sets. 

2.2 Preparatory operations 210 

(a) Acquisition and annotation of datasets 

All dynamic MRI studies were acquired under an IRB-approved research protocol at the Children’s 

Hospital of Philadelphia along with Health Insurance Portability and Accountability Act waiver.  

Our dynamic MRI protocol was as follows: 3.0 T MRI scanner (Siemens Healthcare, Erlangen, 

Germany), true-FISP bright-blood imaging with steady-state precession sequence; TR = 3.82 ms, 215 

TE = 1.91 ms, voxel size ~1×1×6 mm3; 320 × 320 × 38 matrix; bandwidth, 558 Hz; flip angle, 76°. 

For each sagittal location through the thorax, slice data were gathered over 8–14 tidal breathing 

cycles at about 480 ms per slice. The acquisition time was ~45 minutes. The number of 2D slices 

acquired in this manner was typically 2000 to 3000. From these data, we then constructed a 4D 

image comprising of 200-300 slices using a previously published method [32, 33]. The 4D image 220 

represents the full 3D dynamic chest over one respiratory cycle comprising of 5-8 respiratory time 

points.  

To analyze the difference in lung tissue and lung excursion region segmentation performance 

between normal subjects and TIS patients for our method, we collected dMRI scans from a large 

number of normal subjects and TIS patients and separated the datasets into two sub sets, as 225 

summarized in Table 1. For segmentation tasks, we focused on the 3D images corresponding to 

the end-inspiration (EI) phase and the end-expiration (EE) phase of the 4D image. The “Normal” 

sub dataset was from 101 normal subjects, including 202 3D frames with 5972 2D slices, while the 

TIS sub dataset was from 46 TIS patients, including 92 3D frames with 3676 2D slices. To train 

and evaluate our model, we divided the dMRI scans into training, validation, and testing data sets 230 
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by an approximate ratio of 5:1:4. To evaluate the variability of estimated lung volume in repeated 

scans, we performed repeat scans of 10 normal subjects by performing a second scan after a short 

break at the end of the 1st scan. In each of the first and the second scan, there were 60 3D frames 

in total (roughly 6 frames covering different phases of the respiratory cycle) which were utilized 

to test the repeatability of segmentation; see Table 2. 235 

The 4D constructed dMRI images listed in Table 1 were manually delineated using the open-source 

software CAVASS [34] for the lung tissue and lung excursion region by several rigorously trained 

medical interns and technicians with an appropriate training in human anatomy and the radiological 

appearance of the relevant structures. To ensure annotation quality, the training, guidance of the 

annotation process, and checking for quality were directed by a radiologist (DAT) with over 25 240 

years of experience in MRI and thoracic radiology.  

Table 1. Summary of available dynamic MRI scans for training and testing the segmentation 

models. 

Dataset 
Normal subjects TIS subjects 

Subjects 3D frames   Subjects 3D frames  

Training set 50 100 (2938 slices) 22 44 (1732 slices) 

Validation set 11 22 (642 slices) 4 8 (324 slices) 

Testing set 40 80 (2392 slices) 20 40 (1620 slices) 

Total 101 202 (5972 slices) 46 92 (3676 slices) 

Voxel size (mm3) 0.98x0.98x6.00~1.46x1.46x6.00 

 

Table 2. Summary of available dynamic dMRI scans using the repeat 

scan acquisition protocol for estimating variability. 

Subjects 10 

3D frames for 1st scan 60 

3D frames for 2nd scan 60 

Voxel size  (mm3) 1.46x1.46x6.00~1.56x1.56x6.00 

 

(b) Data pre-processing method 

To reduce the intensity variability due to different acquisition parameters, we employed an MRI 245 

signal intensity standardization method to pre-process the dMRI images. In addition, we utilized 
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an image contrast enhancement method for dMRI images based on the min-max normalization 

model and lung intensity statistics as follows:  

𝐼𝑁(𝑥) = {

𝐼𝑚𝑖𝑛 , if 𝐼(𝑥) < 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 , if 𝐼(𝑥) > 𝐼𝑚𝑎𝑥

𝐼(𝑥),                otherwise

, (1) 

 250 
where 𝐼(𝑥)  and 𝐼𝑁(𝑥)  represent the intensity of pixel 𝑥  in the original image I and the pre-

processed image 𝐼𝑁 , respectively, and 𝐼𝑚𝑖𝑛  and 𝐼𝑚𝑎𝑥  represent the minimum and maximum 

intensity of lung tissue in MRI, respectively. This mapping is used to increase the contrast between 

the lung and surrounding tissues. In our experiments, we set the 𝐼𝑚𝑖𝑛  and 𝐼𝑚𝑎𝑥  to 0 and 400, 

respectively, based on the statistical information from the training data set. To accelerate the 255 

convergence speed for the deep learning models, we rescaled the intensity range of 𝐼𝑁(𝑥) into [0, 

1] as follows: 

𝐼𝑁(𝑥) =
𝐼𝑁(𝑥) − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

. (2) 

 

2.3 Interactive ROI strategy 260 

In our previous work [31], we developed an automatic lung ROI strategy based on the corner-

points detection network to improve lung segmentation performance, which can locate the lung 

tissue in dMRI scans of normal subjects using the bounding-box slice by slice. However, the lung 

detection error becomes large for TIS patients due to the deformed shape of the lung and its 

variability among slices. To ensure the ROI detection accuracy is sufficiently high for normal 265 

subjects and TIS patients, we design a novel interactive ROI strategy based on the corner-points 

concept and linear interpolation, as shown in Figure 3. The main steps in this method are as follows: 
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S1: Identification of the 3D frame at the EE phase. Due to the high similarity among 3D frames in 

one dMRI scan, the same lung ROI found in one 3D frame can be applied in other 3D frames. In 

our method, we utilize the interactive ROI strategy to process the 3D frame at the EE phase. 270 

S2: Separation of the right and left lungs. The 4D dMRI sequence was manually separated into two 

right lung and left lung. We compute the ROIs in right and left lungs separately. Note that the slice 

range of the right lung can overlap with that of the left lung due to disease-related deformations.   

S3: Identification of key slices. Considering the dependence between adjacent slices, we select 

several key slices to conduct the interactive operations, including: 1) the start slice of the lung, 275 

Figure 3. Illustration of the interactive ROI strategy. 

… … 

(𝑥𝑇𝐿
𝑘 , 𝑦𝑇𝐿

𝑘 , 𝑘) 

(𝑥𝐵𝑅
𝑘 , 𝑦𝐵𝑅

𝑘 , 𝑘) 

dMRI slices at EE phase Right lung Left lung 

Separate 

Start slice Middle slice End slice S4: Set corner-points 

S6: Generate Lung 

ROI 

S1: S2: 

S3: 

S5: Linear interpolation 

(𝑥𝑇𝐿
𝑛 , 𝑦𝑇𝐿

𝑛 , 𝑛) 

(𝑥𝑇𝐿
𝑚 , 𝑦𝑇𝐿

𝑚 , 𝑚) 

𝑋 

𝑍 
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which indicates the start position of the lung, 2) the end slice of the lung, which indicates the end 

position of the lung, and 3) the middle slice of the lung, which contains the maximum 2D lung 

tissue region. Note that the lung detection performance of the interactive ROI strategy is related to 

the number of key slices. Thus, the user can add more key slices between the start slice and middle 

slice or end slice to improve the ROI accuracy.  280 

S4: Annotation of the corner-points. Our method requires the user to annotate the top-left 

(𝑥𝑇𝐿 , 𝑦𝑇𝐿) and bottom-right (𝑥𝐵𝑅 , 𝑦𝐵𝑅) points of ROI in the selected key slices. In general, the 

bounding box determined by the top-left and bottom-right points should cover the lung tissue. 

 S5: Interpolation of the coordinates for the interval corner-points. Given the coordinates of the 

top-left points (𝑥𝑇𝐿
𝑛 , 𝑦𝑇𝐿

𝑛 , 𝑛) and (𝑥𝑇𝐿
𝑚 , 𝑦𝑇𝐿

𝑚 , 𝑚) in the n-th and m-th slices, the coordinates of the top-285 

left points between the n-th and m-th slices are computed by linear interpolation along the 3rd 

dimension. The same operations are performed for the bottom-right points. 

S6: Generation of the lung ROI. We utilize the coordinates of the corner-points in each slice to 

generate a rectangular ROI for the slice.  
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2.4 ROI-guided lung tissue segmentation network 290 

 Our joint interactive and CNN strategy is shown in Figure 4. Firstly, we utilized the interactive 

ROI strategy to generate the bounding-box for the lung tissue in 2D MRI slices. Then, the proposed 

image contrast enhancement method was applied to increase the pixel intensity difference between 

the lung and surrounding tissues. The ROIs found in 2D MRI slices in the previous step form the 

input data for the lung segmentation model. Note that we enlarge the size of the ROI by 1.2 times 295 

to ensure that the generated ROI always covers the lung region. The adjacent slices of the target 

slice were also inputted into the segmentation network as the context information to increase lung 

segmentation accuracy. Finally, the output pixel-wise probability map of the segmentation model 

was transformed into a binary image using a threshold of 0.5. To keep the image size of 

segmentation results consistent with the original images, we utilized zero-padding to embed the 300 

segmentations in the full image outside of the ROI. In addition, we utilized morphological 

operations to fill small holes in the lung segmentation results. 

Figure 4. Illustration of ROI-guided U-Net for semi-automatic lung segmentation in dynamic MRI.  
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As shown in Figure 5, the architecture of the lung segmentation network includes three modules: 

i) encode network based on VGG19 [35] (left side) for learning the multi-scale features from the 

input images with size of 224x256x3, including 16 convolutional layers with 3x3 kernels, 4 max-305 

pooling layers with stride 2, 3 dropout layers with rate 0.6, and 5 batch-normalization layers; ii) 

decode network based on FPN [36] (right side) for integrating the multi-scale features by linear 

interpolation and channel concatenation methods, including convolutional layers with 3x3 kernels, 

4 up-sampling layers based on bilinear interpolation, and 4 concatenation layers; and iii) the pixel-

wise classification module for computing the probability value of lung tissue pixel including 2 310 

dropout layers with rate 0.6, 2 convolutional layers with 3x3 kernels, and 1 soft-max function. The 

main differences between our network and U-Net include replacing the de-convolutional layer with 

an up-sampling layer for reducing the number of parameters in our model and using the 

convolutional layer with 3x3 kernels and 32 output channels to reduce the redundancy of the 

feature fusion map.  315 

We utilized a loss function [37] that is a function of Dice, and explicitly FP and FN, to train the 

segmentation network: 

Convolution layer, 3x3 kernel 
BatchNorm layer 
Concatenation, channel stack  
MaxPooling layer, stride 2  
Upsample operation, 2x 
Softmax classifier  
Dropout layer, rate 0.6 

224x256x64 

112x128x128 

56x64x256 

28x32x512 

14x16x512 

28x32x64 

56x64x96 

112x128x128 

224x256x160  Skip Connections 

Encode network: VGG19 Decode network: FPN Pixel-wise classifier 

Input 
Output 

Figure 5. The architecture of lung segmentation network based on U-Net. 
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𝐿(𝑆𝐺; 𝑊) = {[
∑ (1 − 𝐺(𝑥))𝑆(𝑥; 𝑊)𝑥𝜖Ω

∑ 𝑆(𝑥; 𝑊)𝑥𝜖Ω + 𝜀
]

2

+ [
∑ (1 − 𝑆(𝑥; 𝑊))𝐺(𝑥)𝑥𝜖Ω

∑ 𝐺(𝑥)𝑥𝜖Ω + 𝜀
]

2

} 

−𝜆1

2 ∑ 𝐺(𝑥)𝑆(𝑥; 𝑊)𝑥𝜖𝛺

∑ 𝑆(𝑥; 𝑊)𝑥𝜖𝛺 + ∑ 𝐺(𝑥)𝑥𝜖𝛺 + 𝜀
+ 𝜆2‖𝑊‖1, (3) 

 320 

where 𝑆(𝑥) denotes probabilistic value ranging from 0 to 1 output at pixel 𝑥 for its classification, 

G(x) represents binary value at pixel 𝑥, 𝑊 and Ω represent the parameters of the network and the 

image domain, respectively, ‖⋅‖1  is the L1-norm, and 𝜆1  (> 0) and 𝜆2  (> 0) serve as trade-off 

parameters among the three terms. The first two terms represent the false positive rate, false 

negative rate, and Dice index of the segmentation result. The 3rd term was utilized as a sparsity 325 

constraint to reduce the over-fitting risk for our method. 

2.5 Shape-guided lung excursion segmentation network 

In this study, we propose a novel approach to segment the lung excursion region based on a CNN 

and shape prior-knowledge, as shown in Figure 6. In this method, we utilized the pixel-wise logical 

XOR operation to remove the lung segmentation result at the EE phase from the lung segmentation 330 

result at the EI phase to obtain the lung excursion region segmentation result. Recall that our goal 

is to separate the hemi-chest wall excursion component and the hemi-diaphragm excursion 

component from the lung excursion region. This separation cannot be accomplished via simple 

morphological operations or connectivity analysis carried out on the lung excursion region 

segmentation due to the complex shape of lung excursion across different subjects. To accomplish 335 

the separation, our approach is to segment the hemi-diaphragm excursion region first and then to 

subtract this from the lung excursion region to obtain the hemi-chest wall component. 

In the first stage, we computed the lung shell mask, which contains the distribution and shape 

information of lung excursion, using the following steps: i) morphological dilation of the lung 
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segmentation result at the EI phase using a diamond-shaped structuring element of kernel size 5; 340 

ii) morphological erosion of the lung segmentation result at the EE phase using a diamond-shaped 

structuring element of kernel size 5; and iii) pixel-wise logical XOR operation between the erosion 

result and the dilation result. In the second stage, we computed the product between the lung 

segmentation masks and the MRI images to extract lung-shaped ROIs at the EI and EE phases. To 

ensure that the ROIs can cover the lung tissue, we utilized the dilation operation mentioned above.  345 

Then, we inputted the lung ROIs at EI and EI phases and the lung shell mask into a U-Net based 

segmentation network to predict the pixel-wise probability of the diaphragm excursion region. (The 

structure and loss function of lung excursion region segmentation network is the same as those 

employed for the lung tissue segmentation network.) Subsequently, we transformed the probability 

map into the binary diaphragm segmentation result by thresholding method with a threshold of 0.5. 350 

Figure 6. Illustration of shape-guided U-Net for lung excursion segmentation in dynamic MRI. 
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In the third stage, we calculated the chest wall excursion segmentation result by removing the 

diaphragm excursion region from the lung excursion result using pixel-wise logical XOR operation.  

2.6 Post-processing  

 Due to the slender structure of the chest wall excursion component, the difficulty of clean chest 

wall excursion segmentation is greater than that of the diaphragm. The minor pixel-wise 355 

classification error in diaphragm excursion segmentation often leads to a high false positive rate in 

chest wall excursion segmentation. To handle this problem, we propose a post-processing method 

based on a convex hull algorithm and logical operations, as shown in Figure 7. Firstly, we compute 

the convex hull of the lung contour, which fills up the bottom of the lung segmentation. Then, we 

perform a logical subtraction operation and edge detection to calculate the bottom and contour 360 

regions of the convex hull, respectively. Next, the lung chest wall mask was computed by removing 

Figure 7. Illustration of post-processing for chest-wall excursion segmentation. 
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the bottom of the convex hull from the contour of the convex hull. Lastly, we integrated the chest 

wall mask with the chest wall excursion segmentation via pixel-wise logical AND operation. 

2.7 Data augmentation and DL model training 

As is well known, the over-fitting problem frequently occurs in DL models due to insufficient 365 

training data. To handle this issue, we utilized two data augmentation methods to process each 

slice in dMRI: (1) resizing the image size with scale factors of 0.7, 0.9, 1.1, and 1.3 by a bilinear 

interpolation method for enriching the size diversity of lung, and (2) varying the intensity level of 

the image by multiplying the pixel-wise intensity value with scale factors of 0.9 and 1.1 for 

enriching the intensity diversity of lung.  370 

At the training stage, we utilized the open-source DL platform TensorFlow [38] to implement the 

lung tissue and excursion segmentation networks. The trade-off parameters 𝜆1  and 𝜆2  in loss 

function were set to 0.5 and 10 based on initial experiments and subsequently fixed. We utilized 

random numbers under a normal distribution to initialize the lung tissue segmentation networks. 

Due to the strong relationship between lung tissue and excursion segmentation tasks, we utilized 375 

the parameters of the trained lung tissue segmentation networks to initialize the lung excursion 

networks. We employed Adam optimization to minimize the loss functions with the following 

hyper-parameters: learning rate 0.00001, batch size of training data 10, and number of iterations 

1000. We computed the loss value on the validation data every 50 iterations and selected the 

network parameters with minimum loss values as the most suitable parameters.  380 

3. Experiments & Evaluation 

3.1 Experiments  

Table 3. Summary of the experiments in this study. 

# Experimental details  Testing data 

E1 
Lung tissue segmentation in dMRI images using modified U-

Net 

Testing set of 

normal subject and 
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E2 

Using Generalized ROI strategy [37] to locate the lung ROI in 

dMRI images and modified U-Net to segment the lung tissue in 

ROI 

TIS subject dMRI 

images, dMRI 

images using repeat 

scans  
E3 

Similar to E2 but using CNN based ROI strategy [31] to locate 

the lung ROI 

E4 
Similar to E2 but using interactive ROI strategy with 3 key 

slices to locate the lung ROI 

E5 
Similar to E2 but using interactive ROI strategy with 5 key 

slices to locate the lung ROI 

E6 Similar to E2 but using the manual lung ROI 

E7 
Similar to E6 but using the SAM model to segment the lung 

tissue in ROI 

E8 
Similar to E6 but using the SAM-Med2D model to segment the 

lung tissue in ROI 

E9 

Inputting dMRI images at EI and EE phases into two modified 

U-Nets for segmenting lung diaphragm excursion and lung 

chest wall excursion, respectively 

Testing set of 

normal subject and 

TIS subject dMRI 

images 

E10 
Similar to E7 but generating lung shell mask based on lung 

segmentation results as additional input data for U-Nets 

E11 

Similar to E8 but only using modified U-Nets to segment 

diaphragm excursion and removing diaphragm from lung 

excursion to compute chest wall excursion result 

E12 
Similar to E9 but additionally using proposed post-processing 

method to refine chest wall excursion segmentation results 

 

We conducted a series of experiments on the testing data as summarized in Table 3. Experiments 

E1 to E5 were for investigating the effect of ROI strategy on lung segmentation performance, 385 

E6was to analyze the variability of lung volume estimation, E7-E8 were to compare the lung 

segmentation performance with the foundation models including Segment Anything Model (SAM) 

[39] and SAM-Med2D [40], and E9 to E12 were to assess excursion segmentation. Note that the 

SAM-Med2D model has a similar structure to SAM but was trained by a large medical dataset. 

The training and inference procedures in the experiments were as follows: (1) employing the same 390 

experimental environments and hyper-parameters to train the comparison models excepting that 

the batch size and number of iterations were set to 50 and 500, (2) utilizing the intensity 

standardization method and the min-max normalization model to pre-process the testing dMRI data, 

(3) inputting the pre-processed testing data into the trained lung tissue segmentation network to 

obtain the pixel-wise probability map, and transformed the probability map into the binary lung 395 
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segmentation result by the thresholding method with a threshold value of 0.7, and (4) inputting the 

dMRI images and the lung tissue segmentation results on EI and EE into the trained lung excursion 

model to obtain the chest wall and diaphragm excursion volumes. Note that the iteration number 

of 500 can ensure the convergence of the loss function and reduce the training time.  

3.2 Metrics 400 

We applied multiple widely regarded metrics to quantitatively analyze lung tissue and lung 

excursion segmentation performance on testing data, including 3D Dice coefficient (DC) and max-

mean Hausdorff distance (MM-HD) [37], defined as follows: 

𝐷𝐶(𝐺, 𝑆) =
2|𝑆 ∩ 𝐺|

|𝑆| + |𝐺|
, (4) 

HD(𝐺, 𝑆) = max{mean𝑔∈𝑏(𝐺)(𝑖𝑛𝑓𝑠∈𝑏(𝑆)𝑑(𝑔, 𝑠)), mean𝑠∈𝑏(𝑆)(𝑖𝑛𝑓𝑔∈𝑏(𝐺)𝑑(𝑠, 𝑔))} , (5) 405 

where  𝐺  and  𝑆  denote the set of voxels in binary ground truth and segmentation results, 

respectively, 𝑏(𝐺) and 𝑏(𝑆) denote the (2D) boundaries of 𝐺 and 𝑆 on slices, respectively, and 

𝑑(𝑔, 𝑠) indicates the (2D) Euclidean distance between 𝑔 and 𝑠. Compared with the classical HD, 

the modified HD reduces the numerical sensitivity to small number of false positive voxels. 

Similarly, we utilized the 2D DC to evaluate the lung ROI accuracy for different ROI strategies, 410 

where 𝑔 ∈ 𝐺 and 𝑠 ∈ 𝑆 in Eq. 5 denote the pixels in the binary ground truth of bounding-boxes 

and the detected ROI results, respectively in the slice. 

To assess the variability of our method on repeated dMRI scans, we designed a comparative test 

based on Coefficient of Variation (CV). Let the volume of the (left or right) lung under 

consideration in the 1st scan be 𝑣1, 𝑣2, …, 𝑣𝑛 and the volume in the 2nd scan be 𝑢1, 𝑢2, …, 𝑢𝑛 for 415 

the n cases. Then we find the coefficient of variation 𝐶𝑉𝑖 for each sample 𝑖 by  
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𝐶𝑉𝑖 = √2
|𝑣𝑖 − 𝑢𝑖|

𝑣𝑖 + 𝑢𝑖
, (6) 

and find the mean and standard deviation of 𝐶𝑉𝑖 values over all subjects to find the CV of our 

volume estimation method.  

Note that the CV value can be influenced by several parameters during each scanning such as how 420 

the patient is positioned, the slice plane orientation relative to the anatomy, difference in the way 

the body interacts with the magnetic field, etc.  

3.3 Lung ROI detection  

In Figure 8 and Table 4, we illustrate lung ROI detection strategies. The results indicate that the 

proposed interactive ROI strategy achieves good agreement with the manual ROI and outperforms 425 

other comparative methods. The detection results of the generalized ROI (GROI) [37] and 

(b) (a) (c) (d) 

Normal 

subjects 

TIS 

patients 

Figure 8. Examples of lung ROI detection in dMRI. The red and green rectangles represent automatic and 

manual ROIs, respectively.  (a) Generalized ROI, (b) CNN based automatic ROI, (c) Interactive ROI with 

3 initial ROIs, and (d) Interactive ROI with 5 initial ROIs. 
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automatic ROI methods are much greater or smaller than the manual ROIs, leading to over-

segmentation or under-segmentation of lung tissue. In addition, we observe that the 2D DC for the 

interactive ROI strategy with 5 initial ROIs is 0.91 and 0.90 for the normal and TIS testing data, 

respectively, which is 0.5 higher than those from the approach with 3 initial ROIs. Though more 430 

initial ROIs would improve lung detection accuracy, the cost of the interaction operation would 

increase at the same time. Considering the efficiency and accuracy of lung ROI detection, we 

generally utilized 5 initial ROIs to locate the right and left lungs in dMRI. 

Table 4. Comparison of quantitative results among ROI detection methods. 

 ROI detection strategies 
2D DC   

Normal subjects   TIS subjects    

E2 Strategy 1：Generalized ROI (GROI) 0.23/0.12 0.32/0.18 

E3 Strategy 2：CNN based automatic ROI 0.92/0.13 0.84/0.21 

E4 
Strategy 3：Interactive ROI with 3 

initial ROIs 
0.86/0.06 0.85/0.15 

E5 
Strategy 4：Interactive ROI with 5 

initial ROIs 
0.91/0.14 0.90/0.16 

3.4 Lung tissue segmentation 

In Figure 9, we show four representative examples of lung tissue segmentation using 8 comparative 435 

experiments. We observe that most of the lung segmentation results have high similarity with the 

ground truth, especially for normal subjects. Due to the complex shape of the lungs in dMRIs of 

patients, the lung segmentation performance is poorer for TIS subjects. Also, the false-positive 

problem in the results of E1 and E2 is more obvious than in others, due to the interference from 

the surrounding tissue. The comparison of performance between E1 and other experiments 440 

demonstrates that the ROI detection strategies can efficiently improve lung segmentation accuracy. 

The comparison between E7 and E8 indicates that the large medical image dataset can enhance the 

lung segmentation performance of the foundation model. 
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Table 5 summarizes the quantitative results of lung tissue segmentation for the 8 experiments. We 

GT 

Normal subject A 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

Normal subject B TIS subject A TIS subject B 

Figure 9. Examples of lung tissue segmentation in dMRI. The orange and green colors represent 

automatic and manual segmentations, respectively. 1
st 

row: Ground truth of lung segmentation. 2
nd

 – 9
th

: 

Automatic lung segmentation results from experiments E1-E8. 
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observe that the model in E5 obtains high mean values of 0.96 and 0.89 and low standard deviations 445 

of 0.02 and 0.05 for 3D DC on normal and TIS subjects, respectively, indicating excellent lung 

segmentation accuracy and stability. The difference between E5 and E6 is very small, 

demonstrating that the accuracy of the lung ROI detection strategy is close to the pure manual 

approach. In contrast, there exists a significant difference of 3D DC value between experiments 

E1 and E2 and other experiments with p-values less than 0.05 using t-test, indicating that accurate 450 

lung ROI can significantly increase lung tissue segmentation performance for U-Nets. Furthermore, 

the proposed approach in experiment E5 achieves a low mean value of 3.58 and a low standard 

deviation of 3.27 for CV% on the repeat scan data, indicating high reproducibility. The proposed 

model in E6 outperforms the SAM-Med2D in E8 in terms of lung segmentation, especially on the 

TIS subjects, demonstrating that the foundation models, not refined by the corresponding medical 455 

image dataset, may exhibit inferior performance compared to the classic DL models. 

Table 5. Lung segmentation on testing data from Normal and TIS data sets. All values are expressed as mean/standard 

deviation. 

 
Lung segmentation 

methods 

Normal subject testing data Repeat scan data TIS subject testing data 

3D DC 
2D MM-HD 

(mm) 
CV% 3D DC 

2D MM-HD 

(mm) 

E1 U-Net 0.83/0.13 6.10/3.71 8.35/3.53 0.77/0.16 7.87/5.54 

E2 
Generalized ROI + U-

Net 0.84/0.14 8.23/7.56 7.75/3.62 0.80/0.13 8.26/4.52 

E3 
CNN based automatic 

ROI + U-Net 0.96/0.03 2.13/7.14 4.12/4.2 0.82/0.10 6.87/5.08 

E4 
Interactive ROI (3 key 

slices) + U-Net 0.93/0.04 3.46/2.54 5.84/2.49 0.85/0.07 5.25/3.70 

E5 
Interactive ROI (5 key 

slices) + U-Net 0.96/0.02 2.73/1.36 3.58/3.27 0.89/0.05 4.49/3.95 

E6 Manual ROI + U-Net 0.98/0.01 1.90/0.76 2.95/3.03 0.90/0.05 4.08/2.72 

E7 Manual ROI + SAM 0.75/0.15 8.94/5.06 10.37/5.91 0.68/0.14 9.21/6.27 

E8 
Manual ROI + SAM-

Med2D 0.85/0.08 7.18/6.88 7.63/3.84 0.74/0.12 8.43/5.25 
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To demonstrate the effectiveness of 3D lung segmentation of our approach, we used CAVASS to 

display the manual and automatic segmentation results of the dMRIs as 3D surface renderings. 

Normal subject A 

GT Proposed, DC = 0.96 SAM, DC = 0.76 SAM-Med2D, DC =0.88  

GT Proposed, DC = 0.95 SAM, DC = 0.74 SAM-Med2D, DC =0.87  

GT Proposed, DC = 0.93 SAM, DC = 0.75 SAM-Med2D, DC =0.86  

GT Proposed, DC = 0.87 SAM, DC = 0.55 SAM-Med2D, DC =0.76  

GT Proposed, DC = 0.85 SAM, DC = 0.64 SAM-Med2D, DC =0.73  

GT Proposed, DC = 0.83 SAM, DC = 0.75 SAM-Med2D, DC =0.81  

Normal subject B 

TIS subject C 

Normal subject C 

TIS subject B 

TIS subject A 

Figure 10. Illustration of lung 3D segmentation results: 1
st
-3

rd 
rows: From dMRI scans of 3 normal subjects. 4

th
-

6
th

 rows: From dMRI scans of 3 TIS subjects. 1
st 

column: GT segmentations. 2
nd

 - 4
th

 columns: Automatic 

segmentations using proposed method, SAM, and SAM-2Med2D, respectively.  
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Figure 10 illustrates four representative 3D visualization examples for 3 normal and 3 TIS subjects. 

We observe that the 3D lung segmentations show good agreement with the GT 3-dimensionally, 460 

preserving the complete anatomical structure of the right and left lungs with detail. The above 

results demonstrate the validity and robustness of our lung segmentation system. 

3.5 Lung excursion segmentation  

Figure 11 shows 6 representative lung excursion segmentations from normal and TIS subjects, 

illustrating consistence with manual segmentations. We observe that the diaphragm excursion 465 

segmentation (shown in green) is better than that of the chest wall excursion (shown in red) for all 

GT 

E9 

E10 

E11 

E12 

Normal subjects 

 
TIS subjects 

Figure 11. Examples of lung excursion segmentation in dMRI. The red and green colors represent chest wall 

and diaphragm excursion segmentations, respectively. 1
st 

row: Ground truth of excursion segmentation. 2
nd-

5
th row: Automatic lung excursion segmentation results from experiments E7-E10. 1

st
-3

rd
 columns: From 

normal subjects. 4
th

-6
th

. From TIS subjects. 
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experiments, due to the complex slender structure of the chest wall excursion component. By 

comparing the lung excursion segmentations of E11 and E12, we find that the proposed post-

processing method can effectively reduce the false-positive pixels in the chest wall excursion 

segmentations.  470 

Table 6 illustrates the quantitative results for experiments E9-E12. The proposed method achieves 

acceptably high mean values and low standard deviations for 3D DC on normal and TIS subjects.  

Due to the slender size and complex shape of the diaphragm and particularly chest wall excursion 

components, the Dice values can be considered as representing very good segmentations in view 

of the non-linear behavior of Dice for sparse objects compared to large non-sparse objects [41]. 475 

The comparison of results from experiments E9 and E10 demonstrates that the shape feature of 

lung shell can improve the diaphragm excursion segmentation. Also, we observe that the chest wall 

excursion segmentation performance of E11 is better than that of E10, illustrating that the chest 

wall excursion region produced by subtracting the diaphragm excursion from the lung tidal volume 

is more accurate than the chest wall excursion region predicted directly via U-Net.   480 

Table 6. Diaphragm and chest wall excursion segmentations from testing data set of normal and TIS data 

sets. All values are expressed as mean/standard deviation. 

 
Lung excursion segmentation 

methods 

3D DC on Normal subject 

testing data 

3D DC on TIS subject 

testing data 

Chest wall Diaphragm Chest wall Diaphragm 

E9 Two U-Nets 0.22/0.07 0.68/0.07 0.18/0.12 0.54/0.09 

E10 Two U-Nets + Lung shell feature 0.28/0.06 0.70/0.08 0.23/0.09 0.59/0.08 

E11 
Proposed shape-guided lung 

excursion segmentation model 
0.60/0.08 0.78/0.06 0.48/0.13 0.69/0.08 

E12 

Proposed shape-guided lung 

excursion segmentation model + 

Post-processing 

0.62/0.07 0.78/0.06 0.53/0.10 0.69/0.08 
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3.6 Tidal volume computation 

In order to assess the clinical utility of our system, we computed the volumes of the left and right 

lungs at both EI and EE using both the proposed method and manual segmentations of the lung 

tissue, as displayed in Table 7. Additionally, we computed the coefficients of variation (CVs) and 485 

p-values to compare the automatically and manually generated measurements of the lungs. Our 

analysis reveals that our proposed approach yields a low mean value and a low standard deviation 

for CV, indicating a strong agreement between the two measurement methods. Furthermore, the 

majority of p-values exceed 0.05, demonstrating that the disparity between the proposed and 

manual measurements is not statistically significant. 490 

We employed a linear regression plot to evaluate the concordance between manual and automatic 

measurements, as depicted in Figure 12. The regression coefficient for the measures exceeded 0.97 

(range: R = 0.97 to 0.997), indicating a strong agreement with the ground truth. 

Table 7. Lung volumes calculated on testing dataset of normal and TIS datasets. All values are expressed as 

mean/standard deviation. 

Parameters 

(mL) 

Normal subjects TIS subjects 

Manual 
Proposed 

method 
CV% 

P-

value 
Manual 

Proposed 

method 
CV% 

P-

value 

Left lung 

volume at end-

inspiration 

527.82±196.83 464.97±170.7 8.88±2.51 0.091 250.98±180.98 209.36±163.62 22.05±23 0.124 

Right lung 

volume at end-

inspiration 

690.16±228.97 636.28±209.01 5.83±2.44 0.222 371.03±244.7 313.61±236.62 17.07±15.64 0.129 

Left lung 

volume at end-

expiration 

482.56±185.93 431.14±164.92 
7.91±2.66 

 
0.147 235.97±186.88 199.11±160.26 12.58±7.63 0.177 

Right lung 

volume at end-

expiration 

633.82±218.13 589.93±201.32 
5.14±2.2 

 
0.298 336.7±238.07 295.63±232.59 20.58±26.5 0.265 
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3.7 Computational considerations 

All experiments were conducted on a PC with an Intel i7-7700K CPU and two NVIDIA 1080 Ti 495 

GPUs. To assess the efficiency of our system, we computed the average processing time per subject 

and slice for each procedure, as shown in Table 8, which are found to be lower than 82 and 3 

seconds, respectively. Note that the average processing time include the average time of 78.62 for 

interactive ROI strategy (5 key slices), which can save 44% time of manual ROI setting. The 

efficiency of our approach can meet the practical needs of image analysis of TIS patients for 500 

clinical or research purposes. 

Table 8. Average processing time in seconds (per subject and per slice) for each procedure in our approach. 

Methods Proposed SAM-Med2D 
Procedures Per subject Per slice Per subject Per slice 
Interactive operations 78.62±5.97 2.03 141.8±13.49 3.68 
Pre-processing method for dMRI 0.05±0.01 < 0.01 - - 
ROI-guided lung tissue 
segmentation model 

1.64±0.15 0.04 2.16±0.18 0.05 

Figure 12. Linear regression plots of lung volume derived from dMRI scans using testing data. 1
st 

row: Lung 

volume at end-inspiration. 2
nd

 row: Lung volume at end-expiration. 1
st 

column: From normal subjects. 2
nd

 

column: From TIS subjects. 

Lung volume at 

end expiration 

Lung volume at 

end inspiration 

Normal Subjects TIS Subjects 
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Shape-guided lung excursion 
segmentation model 

1.27±0.06 0.03 - - 

Post-processing method for chest 
wall segmentation result 

0.13±0.01 < 0.01 - - 

Total 81.71±5.25 2.11 143.96±12.87 3.73 

3.8 Comparison with published literature 

Table 9. Comparison with lung segmentation methods in the literature.  

Reference Year Approach Data type Number of 

training/testing 

cases 

Metrics 

Mansoor et al. 

[19]  

2014 Fuzzy connectedness 

image segmentation 

algorithm  

Chest CT 0/403 scans DC=0.96; 

HD=18.82 mm; 

Tustison et al. 

[17]  

2016 Atlas-based  Multi-sequence 

Proton MRI 

0/62 scans DC =0.98 ± 0.01 

Tong et al. 

[20] 

2017 Interactive iterative 

relative fuzzy 

connectedness image 

segmentation 

algorithm 

Thoracic dynamic 

MRI 

0/39 scans True Positive Rate = 

0.91±0.03; 

HD = 2.15±0.33 mm; 

Hu et al. [27]  2020 Mask R-CNN Chest CT 998/267 slices DC = 0.97±0.03 

Chen et al. 

[42]  

2020 3D FCN Dual-energy CT 27/9 scans DC = 0.98±0.02 

Willers et al. 

[22] 

2020 Artificial Neural 

Network 

Matrix pencil 

decomposition 

MRI 

51/25 scans DC = 0.94 ± 0.01 

Astley et al. 

[29] 

2020 3D CNN Multi-nuclear 

hyperpolarized gas 

MRI 

669/74 scans DC = 0.96± 0.02; 

HD = 2.22 ± 2.16 

mm; 

Zhao et al. 

[28] 

2021 3D V-Net Chest CT 90/22 scans DC = 0.98 

Astley et al. 

[30] 

2023 DL-based Multi-sequence 

proton MRI 

593/82 scans DC = 0.96; 

HD =1.63 mm; 

Cheng et al. 

[40] 

2023 Manual ROI and 

SAM-Med2D model 

Thoracic dynamic 

MRI 

4.6M images 

and 19.7 

masks/Unknown 

i) Normal subjects: 

3D DC = 0.85±0.08, 

2D MM-HD = 

7.18/6.88 mm; 

ii) TIS patients: 3D 

DC = 0.74/0.12, 2D 

MM-HD = 8.43/5.25 

mm; 

Proposed 2023 Interactive ROI 

strategy and ROI-

guided CNN 

Thoracic dynamic 

MRI 

i) Normal 

subjects: 100/80 

scans;  

ii) TIS subjects: 

44/40 scans; 

i) Normal subjects: 

3D DC = 0.96±0.02, 

2D MM-HD = 

2.73/1.36 mm; 

ii) TIS patients: 3D 

DC = 0.89/0.05, 2D 

MM-HD = 4.49/3.95 

mm; 
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As illustrated in Table 9, we compare the lung segmentation performance of our approach with 

several state-of-the-art methods. Our research work has several advantages over published studies 505 

as outlined below: 

i) Data size: In our work, we acquired and annotated data sets from 101 normal subjects and 

TIS subjects with 248 dMRI scans as the experimental data, which are greater than those 

utilized in most other studies. We randomly selected 120 dMRI scans from the normal and 

TIS subjects as the testing data. In comparison, the study [29] utilized 669 and 74 multi-510 

nuclear hyperpolarized gas MRI scans as the training data/testing data. It is known that less 

testing data would reduce the confidence of performance evaluation for DL-based models. 

Moreover, the gas MRI scans in that study were not dynamic scans as in our case, and 

hence the study cannot be strictly compared with our study. 

ii) Interactive ROI strategy: This study provides an accurate, simple, and easy-to-use ROI 515 

extraction approach for dMRI scans, enabling good compatibility and generalizability of 

the approach to other lung segmentation applications. In addition, we conducted ablation 

experiments to demonstrate that the lung ROIs can effectively improve lung segmentation 

accuracy.  

iii) Lung excursion segmentation: Distinct from other studies, we designed an efficient 520 

segmentation model to automatically delineate the chest wall and diaphragm excursion 

components of the lungs based on CNN and lung shell feature, contributing to calculation 

of important clinical measurements of lung structure and function for TIS patient 

assessment. Due to the complex shape of the chest wall excursion component, their false-

positive and false-negative challenges are more serious than for the diaphragm excursion 525 

component. To improve the segmentation performance for the chest wall component, we 

proposed a post-processing method to refine the results. 
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iv) TIS application: The acquired dMRI data set includes 46 subjects with TIS. The proposed 

method achieves good segmentation performance for both normal subjects and TIS subjects. 

In contrast, other studies did not evaluate the lung tissue segmentation performance of 530 

subjects with TIS where the anatomy undergoes severe distortions. Also, this study 

assessed lung tidal volume, chest wall excursion volume, and diaphragm excursion volume 

results, which are clinically relevant measurements in patients with TIS and other 

respiratory diseases. The experimental data shown in Table 7 and Figure 12 demonstrate 

that the automatic estimation of the clinically relevant measurements has good agreement 535 

with that derived from GT segmentations. Therefore, our approach is amenable for routine 

use in patients. 

v) Segmentation performance: Due to the lack of other publicly available thoracic dynamic 

MRI datasets, we cannot conduct a direct comparison of performance with other methods 

published in the literature. The main factors potentially influencing the lung segmentation 540 

performance include the size of the testing data, the image quality of the testing data, the 

quality of manual annotation, etc. We utilized the largest possible independent data set to 

estimate the metric values of performance for our approach. The mean value of DC based 

on our approach is competitive with that of other studies, with a standard deviation lower 

than that of most other methods. We randomly selected 100/80 3D dMRI frames from 545 

normal subjects as the training/testing data and achieved a mean value of 0.96 for 3D DC. 

In comparison, the study [29] obtained a mean value of 0.96 using 669 and 74 MRI scans 

as the training data/testing data. Compared with the SAM-Med2D model, which was 

trained by millions of medical images, our method also has higher efficiency and accuracy 

in terms of lung segmentation.   550 
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3.9 Limitations 

There are some limitations in our method. Firstly, the lung segmentation system for dMRI requires 

users to set 10 corner-points of the initial ROI for the right and left lungs separately. We are 

working on simplifying this interactive operation. Second, the lung segmentation performance of 

our method heavily depends on the lung ROI detection result. For some lungs with extreme 555 

distortions as encountered in some TIS patients, it may be very difficult to recognize the location 

of the lungs, even for experts, resulting in disconnected lungs in the segmentation result. Third, the 

lung excursion segmentation accuracy of our system can be improved. We are designing a novel 

segmentation network by integrating more TIS-specific hand-crafted features with deep learning 

features to enhance the chest wall excursion segmentation performance. 560 

4. Conclusions 

In this paper, we utilized deep learning techniques to construct a semi-automatic system for lung 

tissue and lung excursion segmentation in thoracic dynamic magnetic resonance imaging for the 

quantitative analysis of lung function. Our method can be divided into three stages: 1) extraction 

of the lung ROI from dMRI slices using the interactive ROI strategy for reducing the negative 565 

influence of the tissue located far away from the lung, 2) segmentation of the lung tissue in the 

lung ROIs using a modified 2D U-Net, and 3) segmentation of the lung excursion region in the 

lung ROIs using the lung shell based on 2D U-Net. The quantitative and illustrative experimental 

results performed on a large and independent testing data set demonstrate that our approach 

achieves excellent agreement with manual detection and segmentation of lung tissue and lung 570 

excursion region in dMRI both in normal subjects and TIS patients. In addition, the computation 

of lung tidal volumes using our system is close to that derived manually, indicating strong potential 

for clinical utility in the assessment of patients with TIS. 
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