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Abstract

Background: Disease infection data is usually aggregated and shared as a sum of infections

in a given area over time. This data is presented as choropleth maps. The aggregation process

protects privacy and simplifies decision-making but introduces visual bias for large areas and

sparsely populated places. Moreover, aggregated areas of varying sizes cannot be simply used

as the input for complex ecological models, which are based on data retrieved at higher

resolution on regular grids. The issue is especially painful for vector-borne diseases, e.g.

Lyme Disease, where infection risk is closely related to vector species and their ecological

niche.

Methods: The paper presents the method of obtaining high-resolution risk maps using a

pipeline with two components: (1) spatial disaggregation component, which transforms

incidence rate aggregates into the point-support model using Area-to-Point Poisson Kriging,

and (2) species distribution modeling component, which detects areas where ticks bite is

more likely using MaxEnt model. The first component disaggregates Lyme Disease incidence

rates summed over counties in Poland, Central Europe, in 2015. The second component uses

ticks occurrence maps, Leaf Area Index, Normalized Difference Vegetation Index, Land

Surface Temperature derived from Earth Observation satellites, and Digital Elevation Model.
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The final weighted population-at-risk map is a product of both components outputs. The

pipeline is built upon open source and open science projects, and it is reusable.

Results: The presented pipeline creates high-resolution risk maps: vector occurrence

probability map, population-at-risk map, and weighted population-at-risk map which includes

information about local infections and about vector species. The final maps have much better

resolution than aggregated incidence rates. Visual bias for population-at-risk maps is

removed, and unpopulated areas are not presented on the map.

Conclusions: The pipeline might be used for other vector-borne diseases. The final weighted

population-at-risk map might be used as an input for another analytical model requiring

high-resolution data placed over a regular grid. The pipeline removes visual bias and

transforms aggregated data into a high-resolution point-support layer.

Keywords: Species distribution modeling, Ticks, Lyme Disease, Ixodes, Poisson Kriging,

Area-to-Point Kriging, Population at risk
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Background

Lyme Disease incidence rates collected worldwide are aggregated over administrative units.

Spatial aggregation protects patients' privacy and simplifies decision-making by governance

bodies. However, the aggregation process has serious downsides. Administrative units have

varying shapes and sizes (i). Larger areas on choropleth maps tend to get more attention from

human viewers, and perceptual homogeneity of incidence rates across the area is misleading -

especially for sparsely populated regions [1].

Size and extent of aggregated incidence rates are not comparable to other spatial data

sources (ii) used for infection risk modeling. The examples are biotic and abiotic variables

available at a higher resolution that correlate with ticks' abundance and questing behavior.

Local weather is one of those factors. Temperature and humidity directly influence ticks

activity [2, 3]. Climate and climate change variables are other variables worth considering.

Milder winters and higher temperatures increase tick distribution worldwide. In Europe, ticks

are sampled at higher altitudes and latitudes [4]. The number of ticks increases in the northern

United States and Canada [5]. Land cover features are the next group of covariates indirectly

informing about ticks’ possible range [6, 7, 8]. Finally, there are multiple biotic factors

affecting tick abundance and infection risk: vegetation type [9], host availability [10], and

host behavior [11].

Using this data, creating the infection risk model with a fine-scale resolution is

possible. The assumption is that the deconvoluted risk infection map might be weighted by

the probability of the vector’s occurrence derived from the species distribution model. The

first step in the pipeline is the transformation of areal aggregates of incidence rates into

high-resolution blocks and using those blocks as input for the spatial infection risk model

(deconvolution). The second part is the estimation of the species distribution map. Tick

spatial distribution is derived from the climate, spatial features, and vector occurrence
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samples. The final model is an output from the merged deconvoluted infection risk map and

species distribution map. It presents a high-resolution infection risk map, incorporating

information about the vector abundance in a given area.

The study presents a methodology for retrieving the risk of vector-borne disease

infection at a scale finer than the incidence rates aggregated over administrative regions. The

system uses geostatistics, machine learning, remote sensing data, and information about

hard-bodied ticks species to create a high-resolution Lyme disease infection risk map for

Poland. Associated Python code and data are available in a Zenodo archive [12].
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Methods

Data Sources

The system uses spatial (GIS), remote sensing, and public health datasets limited to the area

of Central Europe (Poland and Germany). Processed datasets and metadata are available in

the Zenodo repository.

The datasets used for the population-at-risk estimation are:

- The population density grid in Poland from the Central Statistical Office [13].

The baseline grid size was 1x1 kilometer. Transformed into 5x5 kilometers

blocks.

- The incidence rates of Lyme Disease in each Polish county in 2015 (Figure 1).

Data was retrieved manually from each voivodship sanitary-epidemiological

station.

- Administrative borders of Polish counties.

The ticks distribution model uses:

- Ticks occurrence locations in Germany [14],

- bioclimatic and environmental factors with spatial resolution 1x1 kilometer:

Land Surface Temperature, Leaf Area Index, Normalized Difference

Vegetation Index, Digital Elevation Model (EU-DEM) for areas of Germany

and Poland. Data was obtained from the Copernicus Land Monitoring Service

[15].
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Figure 1: Spatial distribution of Lyme Disease incidence rates in Polish counties.

Poisson Kriging: spatial interpolation of population at risk

The population-at-risk map was developed using the Poisson Kriging technique. Poisson

Kriging was used for smoothing and areal deconvolution in other public health studies related

to cancer mortality, cholera, and dysentery [1, 16, 17].

The incidence rate is defined as , where is the number of𝑧 υ
α( ) = 105 * 𝑑(υ

α
)/𝑛(υ

α
) 𝑑(υ

α
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cases in a fixed time interval and is the total population in a region. The incidence rate𝑛 υ
α( )

is multiplied by 100,000, which indicates the number of cases for 100,000 inhabitants. The

number of cases is interpreted as a random variable that follows the Poisson𝐷(υ
α
)

distribution with one parameter - the expected number of cases per year. It can be defined as a

product of the local risk and population density on a given area . The local risk𝑟(υ
α
) 𝑛 υ
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The technique can be used for data where spatial autocorrelation is significant. The

semivariogram analysis and modeling precede kriging. The semivariogram measures the

dissimilarity between observations in the function of a distance. When semivariances at short

distances are low and rise with increasing distance, the process is spatially correlated.

(Compare it with Figure 3). Semivariance is the halved mean squared error between point

observations and all other points in a specified range (bin).

, (3)γ(ℎ) = 1
2𝑁  

𝑖=1

𝑁

∑ [𝑧(𝑥
𝑖

+ ℎ) − 𝑧(𝑥
𝑖
)]2

Semivariance analysis, semivariogram modeling, and spatial interpolation steps were

performed in the Python package Pyinterpolate [18].

Vector distribution model

Choropleth map of Lyme Disease incidence rates informs about the medical condition, but it

tells nothing about the vector distribution. Thus, the spatial risk may be miscalculated - tick

bites occur in different places where infected people live. The full information about the

infection risk should include the vector density at a given area or the probability of the vector
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occurrence. The occurrence probability is obtained from the species distribution model.

Models of this type are estimated from the information about bio-climatic factors measured in

places where species are sampled. The model analyses the correlation between bioclimatic

variables and vector occurrences/absences. The popular approach is to use remote sensing

data to study vector species [19].

The maximum entropy MaxEnt model is the most popular species distribution model

architecture [20]. The risk-modeling pipeline uses an implementation of MaxEnt from the

Elapid Python package [21]. The result of the calculations is a tick occurrence probability

map (Figure 4). The pipeline model uses:

- points where Lyme Disease (D.marginatus, D. reticulatus, I. hexagonus, I.ricinus,

I.trianguliceps) transmitting ticks were sampled, within Germany border [22]

- Leaf Area Index, Normalized Difference Vegetation Index (mean and standard

deviation from years 2005-2015), Land Surface Temperature (mean and standard

deviation from years 2017-2020), and Digital Elevation Model EU DEM 1.1 from

Copernicus Land Monitoring Services [15].

Species Distribution Model input - training set - comes from Germany because tick

observations for this country are available, and Germany has a climate and species similar to

Poland.
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Complex vector-borne disease infection risk model

Poisson Kriging model derives the population-at-risk of Lyme Disease infection, and the

species distribution model generates a probability map of vector occurrence. Both parameters

affect local infection risk, and might be related by following reasoning:

, (4)𝑑
𝑛 = 𝑝
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on the equation it can be said that the presented approach of merging Poisson Kriging model

with species distribution model estimates the last part of the first and the last of the equation

(Poisson Kriging represents risk of being infected, and species distribution model links host

and vector populations).

Merging both models allows for weighting local population at risk with probability of𝑟
^
(ν

α
) 

ticks (vectors) occurrence . Species-probability weighting lowers local population-at-risk𝑃
*
(ν

α
)

indices when the probability of occurrence is below 0.5, and the risk increases for probabilities

greater than 0.5. The equation for normalized risk index is:
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The high-level flow with input datasets and model outputs is presented in the diagram (Figure

2).

Figure 2: Modeling steps.

Results

The first step is to check if Lyme Disease incidence rates in neighboring areas are similar. It can

be done by analyzing the semivariogram, the plot of squared error between neighboring areas as

a function of the distance between them (Figure 3). Each county area was transformed to its

centroid, and semivariance was measured between those centroids. The plot shows that

neighboring counties have similar incidence rates.
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Figure 3: Dissimilarity of point pairs representing county centroids over a rising distance.

Numbers show how many point pairs are averaged to obtain a result.

Semivariances increase up to 60 kilometers, then oscillate around the maximum variance

threshold. This means that the spatial correlation between neighboring areas is noticeable up to

60 kilometers, thus the Poisson Kriging model’s maximum range is set to this distance. The

input for the population-at-risk are Lyme Disease incidence rates in Polish counties (Figure 1)

and the Population Density grid (Figure 4).
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Figure 4: Number of inhabitants in Poland on 5x5 kilometers grid.

Population density creates point support for the deconvolution of areal incidence rate data into

small and regularly spaced units. The final population-at-risk map is presented in Figure 5.
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Figure 5: Population-at-risk after Area-to-Point Poisson Kriging transformation.

The next step is creating a species distribution map with tick occurrence probability based on

the MaxEnt model and remotely sensed covariates. The map is presented in Figure 6 and shows

blocks with tick occurrence probability.
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Figure 6: Hard-bodied ticks occurrence probability in Poland.

Both models are weighted (see equation 5), and we obtain the final weighted Lyme Disease

infection risk map. Data at this stage is smoothed and ready for further analysis and

decision-making (Figure 7).
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Figure 7: Weighted Population-at-Risk model output.

The pipeline of risk modeling is especially useful for representation of different kinds of risks.

There are three outputs: population-at-risk map (1), species distribution model (2), and

weighted infection-risk map (3). Every single output might be used for decision-making

purposes. Figure 8 shows the approach where a researcher may focus on different aspects of

disease monitoring (with filtering results that are below some risk or probability threshold).

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2024. ; https://doi.org/10.1101/2024.05.03.24306806doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306806
http://creativecommons.org/licenses/by/4.0/


Figure 8: Areas that need special attention. The most dangerous regions are those where the

Weighted Population at Risk is highest and are close to the environment supporting ticks’

activity.
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Discussion

The Presented vector-borne infection risk modeling pipeline is a cost-effective method. It does

not require large-scale sampling or sharing of exact location data about patients. Poisson Kriging

smooths aggregated incidence rates maps and transforms areal counts into population-unit

blocks. The weighting step by species distribution map puts more importance on populations

where the probability of vector occurrence is high, making final results more reliable for

decision-making. The most important result of the analysis is when the infection risk is high and

environmental factors support ticks' existence, those areas and their population require

additional monitoring.

The model has downsides. Tick bites may occur in a place different from the population block.

People are traveling and hiking long distances from their homes. Thus, some infections might be

“imported”, which is the model's source of bias. The model does not estimate risk levels using

weather variables that are affecting tick questing behavior, so it is only a spatial representation

of the infection risk. It might be expanded into the spatio-temporal model using additional

weighting factors related to weather patterns.

Using Poisson Kriging model the researcher might analyze spatial patterns and the distance at

which infections are correlated. Kriging property is the generation of variance error map, which

shows undersampled areas where additional sampling might be performed.

It is worth noticing that output risk map might be used as an input for complex models using

high resolution remotely sensed layers and spatial information for better risk prediction. The

modeling pipeline is designed for vector-borne diseases, but Poisson Kriging model alone might

work with other diseases and conditions aggregated over areas as a ratio of cases per

population.
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Summary

The paper presents the analytical pipeline for the interpolation of local vector-borne disease

risk. The pipeline uses Area-to-Point Poisson Kriging with aggregated incidence rates and

population density support for the development of the population-at-risk map and species

distribution modeling for the probability of vector occurrence. The product of both components

is a weighted population-at-risk map, which includes information about local infections and

vector species.
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