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Abstract 

Introduction: Recent success has been achieved in Alzheimer’s disease (AD) clinical trials targeting 

amyloid beta (β), demonstrating a reduction in the rate of cognitive decline. However, testing methods for 

amyloid-β positivity are currently costly or invasive, motivating the development of accessible screening 

approaches to steer patients toward appropriate diagnostic tests. Here, we employ a pre-trained language 

model (Distil-RoBERTa) to identify amyloid-β positivity from a short, connected speech sample. We 

further use explainable AI (XAI) methods to extract interpretable linguistic features that can be employed 

in clinical practice. 

Methods: We obtained language samples from 74 patients with primary progressive aphasia (PPA) across 

its three variants. Amyloid-β positivity was established through the analysis of cerebrospinal fluid, 

amyloid PET, or autopsy. 51% of the sample was amyloid-positive. We trained Distil-RoBERTa for 16 

epochs with a batch size of 6 and a learning rate of 5e−5, and used the LIME algorithm to train 

interpretation models to interpret the trained classifier’s inference conditions. 

Results: Over ten runs of 10-fold cross-validation, the classifier achieved a mean accuracy of 92%, SD = 

0.01. Interpretation models were able to capture the classifier’s behavior well, achieving an accuracy of 

97% against classifier predictions, and uncovering several novel speech patterns that may characterize 

amyloid-β positivity. 

Discussion: Our work improves previous research which indicates connected speech is a useful diagnostic 

input for prediction of the presence of amyloid-β in patients with PPA. Further, we leverage XAI 

techniques to reveal novel linguistic features that can be tested in clinical practice in the appropriate 

subspecialty setting. Computational linguistic analysis of connected speech shows great promise as a 

novel assessment method in patients with AD and related disorders. 
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Introduction 

Recently reported clinical trials investigating disease-modifying therapies targeting amyloid beta (Aβ) 

in patients with early-stage Alzheimer’s disease (AD) have shown promising evidence of clinical 

efficacy.1,2 These agents significantly reduce cerebral amyloid burden and slow clinical decline by 25-

35% in 18 months. To qualify for treatment, the amyloid status of patients with MCI or mild dementia 

suspected of being due to AD needs to be determined. While lumbar puncture for cerebrospinal fluid 

analysis and amyloid PET imaging are currently the gold-standard methods for determining amyloid status 

in vivo, the invasive nature or high cost of these approaches may prevent some patients from obtaining this 

diagnostic information in a timely fashion. In the face of this diagnostic challenge, behavioral measures 

that accurately determine the likelihood of amyloid positivity can serve as a screening measure, steering 

patients toward the additional testing most appropriate for them. Among a large family of digital 

biomarkers of various types of behaviors, computational linguistic measures that can be applied to 

connected speech samples show promise for various purposes, including as a low-cost, accessible 

approach for triaging patients for undertaking further assessments that require specialty expertise or 

invasive or expensive biomarkers.  

In this work, we aim to use machine learning (ML) methods to predict cerebral amyloid-β status 

(positive or negative) in patients with Primary Progressive Aphasia (PPA) using short, connected speech 

samples. PPA is a clinical syndrome characterized by the gradual loss of language abilities, arising when 

AD or Frontotemporal Lobar Degeneration (FTLD) (or rarely other neurodegenerative diseases) initially 

affects brain language networks.3,4 When PPA is the initial presentation of AD, the characteristics of a 

patient’s aphasia usually involve impairments in word retrieval and sentence repetition (often as a result of 

a deficit in auditory-verbal working memory) and may be consistent with the logopenic variant (lvPPA).5–

7 When PPA is the initial presentation of FTLD, the patient’s aphasia is usually characterized by either 

impaired semantic memory (semantic variant, svPPA) or by simplified syntactic structure and effortful 

speech (nonfluent variant, nfvPPA).5 Previous work on predicting amyloid status in PPA using connected 

speech has reached an accuracy of 77%.8 This study used a theory-driven approach using a large set of 

lexical, syntactic, semantic, and pragmatic features for prediction. The language features that contributed 
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to predicting a positive amyloid status included lower idea density, difficulty producing concrete nouns, 

and higher markers of uncertainty. 

We seek to improve this state-of-the-art by building a text classifier to predict amyloid status using a 

pre-trained language model. We use a version of RoBERTa, a language model based on BERT9 but with 

optimized training procedures.10 RoBERTa was pre-trained on massive text data (over 160 GB, or 8.5–34 

billion words depending on the encoding) using masked language modeling objectives (i.e., models are 

trained to predict withheld words using surrounding context).10 Through such training processes, language 

models can acquire in-depth knowledge of a language that can be transferred to various downstream 

language tasks, including the present text classification problem. In general, text classification involves 

training models to discriminate between classes (amyloid-β status in the present case) assigned to input 

data (connected speech samples).9,11,12 By leveraging this “transfer” of language knowledge from pre-

training to downstream text classification, we hope to improve on the state of the art, which has instead 

relied on “feature engineering”.13–15 Feature engineering is the process of transforming unstructured 

multidimensional data (e.g., images, connected speech samples) into sets of numerical characteristics (e.g., 

counts of lexical, syntactic, or semantic features). These are then passed to a downstream learning 

algorithm. However, feature engineering can incorporate researchers’ preconceived notions about which 

features are pertinent to a classification task and inevitably reduce high-dimensional linguistic 

representations. Our approach is to improve reported text classification accuracy by training distil-

RoBERTa to map directly from connected speech to amyloid-β status. 

Once the task of classification is complete, we use Explainable AI (XAI) methods to identify the 

linguistic features that distil-RoBERTa has found to be most critical. Explainable AI research focuses on 

making ML algorithms interpretable so that the bases for model outputs can be understood by humans.15,16 

Our work joins a growing literature that implements XAI methods in medical research, where 

professionals need to understand and trust ML model outputs before incorporating them into clinical 

decision-making processes.16–22 In this context, XAI methods can be put to various uses, including helping 

medical professionals choose between competing ML algorithms,23 uncovering and correcting model 

biases,19 or improving model performance.24 Our work answers calls in the literature to pursue a different 

approach: We use XAI for feature discovery.25,26 We first train distil-RoBERTa to classify amyloid-β 

status. We then use an interpretation method27 to discover the features (words and classes of words) that 

contribute most to our classifier’s decisions. Finally, we use dimension reduction and data visualization 

techniques to “see” the critical determinants of the classifier’s inference process. 
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Using XAI is advantageous for two reasons. First, it achieves a balance between performance and 

transparency. As ML models grow more complex, they often achieve better performance at the cost of 

interpretability, i.e., the best explanation of a simple model is the model itself. For example, a coefficient 

(and intercept) in a univariate linear regression captures everything the model “knows” about the 

relationship between a predictor and an outcome. Increasing model complexity can confer gains in 

performance, but models tend to become less inherently explainable. Pretrained deep language models 

(like RoBERTa) are paradigmatic examples of highly complex but inherently unexplainable models, often 

comprising millions or billions of unintelligible parameters. By leveraging XAI methods, we retain 

performance gains due to increased complexity without sacrificing interpretability.27–29 Machine learning 

models are good at identifying patterns in data that humans cannot comprehend, but if models are 

uninterpretable, this knowledge remains locked away in millions of incomprehensible parameters. We 

employ XAI techniques to cut this Gordian Knot by allowing us to “discover” the speech patterns 

RoBERTa has identified as characterizing amyloid-positivity without being limited to a small set of pre-

engineered features. 

 

1 Methods 

1.1 Participants 

For this cross-sectional study, we analyzed data from 71 patients with PPA from our ongoing 

longitudinal study in the PPA Program of the Frontotemporal Disorders Unit at Massachusetts General 

Hospital (MGH). All patients received a standard clinical evaluation comprising a structured history 

obtained from both patient and informant, comprehensive medical, neurological, and psychiatric 

history and exams, neuropsychological and speech-language assessments, and a clinical brain MRI that 

was visually inspected for 1) regional atrophy consistent with or not consistent with a given syndromic 

diagnosis, and 2) other focal brain lesions or evidence of cerebrovascular disease. The clinical 

formulation was performed through consensus conference by our multidisciplinary team of 

neurologists, psychiatrists, neuropsychologists, and speech-language pathologists, with each patient 

classified based on all available clinical information as having mild cognitive impairment or dementia 
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(Cognitive Functional Status), Cognitive-Behavioral Syndrome, and likely etiologic diagnosis 30. All 

patients included in this study met the diagnostic criteria for PPA and were subtyped, if possible, into 

one of the major subtypes with a clinical imaging-supported atrophy pattern: the nonfluent/agrammatic 

variant (nfvPPA), semantic variant (svPPA), or logopenic variant (lvPPA) of PPA 5. Furthermore, all 

patients also met the following criteria: (1) no focal brain lesions or significant cerebrovascular disease 

(e.g., previous strokes, cerebral hemorrhages, meningiomas); (2) no major psychiatric illness not 

adequately treated; and (3) native speaker of English. The clinical and demographic information on the 

sample of participants is shown in Table 1, which included nfvPPA (n = 18), svPPA (n = 18), lvPPA (n 

= 32), and mixed PPA (n = 3). Ratings on the Progressive Aphasia Severity Scale (PASS) were also 

included to illustrate the severity of the patient’s aphasia at a more fine-grained level than the Clinical 

Dementia Rating supplemental language box 31. The PASS uses the clinician’s best judgment and 

integrates information from the patient’s test performance and a structured interview with the patient 

and an informant. The PASS includes “boxes” for fluency, syntax, word retrieval and expression, 

repetition, auditory comprehension, single-word comprehension, reading, writing, and functional 

communication. The PASS Sum-of-Boxes (SoB) is the sum of the box scores. The clinical and 

demographic information on the patients is shown in Table 1. There were no significant differences 

between the PPA-AD and PPA-FTLD groups in the variables included in Table 1. All study 

participants provided informed consent in accordance with guidelines established by the Mass General 

Brigham Healthcare System Institutional Review Boards, which govern human subjects research at 

MGH and specifically approved this entire study. 

Determining amyloid status 

We determined amyloid status by examining cerebrospinal fluid (CSF) analysis, amyloid PET scan 

and/or autopsy results. In this cohort, 36 patients (51%) were amyloid positive and 35 individuals were 

amyloid negative (49%).  

For patients who underwent CSF biomarker analysis, CSF was obtained through lumbar puncture and 

was sent to Athena Laboratories for ADMARK analysis for levels of amyloid-β, total tau, and 
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hyperphosphorylated tau. Standard reference cutpoints were used to determine whether the levels were 

abnormal in a manner consistent with AD neuropathologic changes. 

Some participants underwent 11C-Pittsburgh Compound B (PiB) PET scans. The PiB radiotracer was 

prepared as described previously.32 All PET data were acquired using a Siemens (Knoxville, TN) ECAT 

HR+ scanner: 3D mode, 63 imaging planes, 15.2 cm axial field of view, 5.6 mm transaxial resolution, and 

2.4 mm slice interval. PiB PET images were acquired with an 8.5 to 10.5 mCi bolus injection followed 

immediately by a 40-60 min acquisition. All PET data were reconstructed and attenuation corrected; each 

frame was evaluated to verify adequate count statistics and interframe head motion was corrected. 

Amyloid-β positivity was determined by visual read according to previously published procedures 33 

as well as a summary distribution volume ratio (DVR) of frontal, lateral temporoparietal, and retrosplenial 

(FLR) regions greater than 1.2.34 

Autopsies were performed according to standardized protocols at the Massachusetts Alzheimer’s 

Disease Research Center.35 At the time of autopsy, brains were divided at the midline, with one 

hemisphere sectioned and frozen at −80°C and the other fixed in 10% buffered formalin. After 10 to 14 

days, the formalin-fixed hemisphere was sectioned, photographed, and evaluated grossly by a board-

certified neuropathologist. In each case, 25 tissue sections were obtained utilizing a blocking protocol that 

widely samples anatomical regions relevant for diagnosis of neurodegenerative disorders. These regions 

included the hippocampus, thalamus, subthalamic nucleus, basal ganglia, amygdala, cerebellum with 

dentate nucleus, and all levels of the brainstem. Multiple sections of frontal, parietal, temporal, cingulate, 

and calcarine cortices were also sampled. The tissue blocks were processed on a Thermo Scientific 

Excelsior ES tissue processor, and embedded in paraffin. All sections were cut on a microtome at 7 μmol/l 

and stained with Luxol fast blue/haematoxylin and eosin for routine assessment. Bielschowsky silver stain 

was carried out on sections from select blocks. Immunohistochemistry was performed on sections from 

select blocks and processed on a Leica Bond RX automated stainer (Leica Biosystems), with anti-human 

pan-tau antibody (Dako), anti-human beta-amyloid antibody (Dako), anti-GFAP antibody (Sigma-

Aldrich), anti-TDP-43 antibody (Proteintech), and anti-synuclein antibody (Thermo Scientific), as well as 

anti-ubiquitin antibody in the case of Subject 11 (ThermoFisher). Neuropathological examination was 

performed in accordance with published guidelines.36,37  
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1.2 Classification 

Since our task is a small-data classification problem, we use a “distilled” version of RoBERTa (“distil-

RoBERTa”). Distillation involves training a smaller model to learn representations in a larger model to 

achieve comparable results but with less computational cost.13 This smaller model makes sense to avoid 

over-fitting.14 We connected distil-RoBERTa to a standard fully connected classification layer and trained 

on amyloid status labels (negative vs. positive) using ktrain version 0.33.038 in Python 3.7.15. We trained 

for 16 epochs with a batch size of 6 and a learning rate of 5e−5. To assess generalizability, we performed 

ten runs of 10-fold cross-validation. To avoid over-fitting on the training data, we rolled back model 

weights to the best epoch by validation accuracy. If multiple epochs had equal validation accuracy, we 

chose the epoch with the lowest validation loss. The interpretation algorithm necessitated we choose the 

best run, which we did accordingly: Rjk = argmax(Rn
jk

=10), which is to say we calculated the best n = 10 

training runs for each j = 4 classification metric (accuracy, precision, recall, F1) and k = 2 class label 

(positive, negative). To get the best run, we took the mode of the resultant eight metrics (8/8 agreed). 

 

1.3 Interpretation 

1.3.1 LIME 

To establish which linguistic features determined the classifier’s inferences, we used Local 

Interpretable Model-agnostic Explanations (LIME)27 implemented in the Python package eli5, version 

0.13.0.39 The LIME algorithm works by training an interpretable “white box” classifier to predict the 

probabilities output by an uninterpretable “black box” classifier (the best run of the trained distil-

RoBERTA-based classifier, in this case). The notion is that complex non-linear classification functions 

can be locally approximated in the region of a specific example by a linear model (see Figure 3 in Ribeiro 

et al.27). In order to retain interpretability, LIME uses binary vectors to indicate the presence of absence of 

a lexical item, i.e. x′ 
∈ {0,1}d

′
27 (i.e. in place of word embeddings, x ∈ Rd, which are incomprehensible). 

Each text input is then systematically permuted (different words are removed). Simple word counts are 

passed to a linear model (a logistic regression) trained to predict the resultant changes in the black-box 

classifier’s output probabilities. This allows LIME to derive a “weight” for each lexical item which 

captures how much impact it has on the black-box classifier’s probabilities (inference conditions). It may 
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be helpful to conceive of weights as regression coefficients which capture change in y (classifier output 

probabilities) as a function of change in X (the presence or absence of lexical items in input texts).27 

1.3.2 Feature discovery 

Critically, LIME explanations are local, which presents a data-visualization challenge: How can global 

behavior be represented when, even for small data sets, humans cannot be expected to exhaustively 

inspect all N local explanations? We addressed this challenge in two ways. Firstly, we implemented the 

“pick” algorithm proposed in Ribeiro et al.,27 which chooses the B most informative local explanations, 

where B is the number of explanations humans can reasonably be expected to inspect, here B = 2 (for each 

class). 

Second, we used dimension reduction, combined with techniques from Natural Language Processing 

(NLP), to derive the lexemes and Parts of Speech (POS) which most impact the classifier’s inferences. A 

part of speech, or word class, is the grammatical role a given lexical item plays in a particular sentence, 

e.g., noun, verb, determiner, etc. We used the en core web lg model, version 3.4.1, in spaCy, version 

3.4.3, to assign a part-of-speech tag to each word in the input texts. Specifically, we used the token.pos_ 

attribute in spaCy, which uses the Universal Dependencies POS taxonomy.40 We modified this slightly to 

add an “existential there” category, “EX”. This allowed for differentiation between existential uses of 

there, e.g., There is a tree and adverbial ones, e.g., He’s over there by the boat. This was done because an 

inspection of the data indicated existential there was an important category in our data which was not 

captured in the universal dependencies. 

We then defined a function f(t) which ingests text, t, discards punctuation (since text examples were 

transcribed from audio recordings, punctuation may have represented transcribers’ idiosyncratic 

practices), and concatenates the spaCy POS tag with each word, e.g., f(Over there, there is a tree.) = 

Overadp thereadv thereex isverb adet treenoun. Passing the output of f(t) to LIME allowed the effect of each 

unique word-POS pair on the classifier’s output probabilities to be estimated independently, e.g., separate 

weights would be derived for thereex and thereadv in the example above. 

To visualize these words in the semantic space of the classifier, we extracted the embeddings from the 

second-to-last layer (which is connected to the classifier head) of the trained classifier for each fold. To 

align these with word-POS pairs, some averaging was necessary. This was because distil-RoBERTa uses 
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sub-word tokenization: Words which are out of vocabulary are broken down into constituent parts and

embedded, e.g., symbolism might be represented with an embedding for each of symbol and ism. These

needed to be aligned to the spaCy tokens, which are words. To do this, we calculated the mean of all 

subword tokens within the span defined by the spaCy token boundaries, i.e. for each token, j, an 

embedding was calculated by , where s is the number of subword tokens in the span of ea

word, and Eij is the context-sensitive embedding of the ith subword token of the jth word. This resulted 

each text being represented as an m by n, matrix, T where m = dim(f(t)), and n = 768, the distil-RoBER

embedding dimensions, R768. 

We matched each matrix Ti  for each i participant with the LIME weights (this was possible since f

was used both to extract embeddings and calculate LIME weights). Some averaging was needed to 

facilitate this: Some token weights are 0, and LIME only derives one weight for each orthographically

unique token in f(t), e.g. there would only be one weight for “ball” in “The boy with the ball throws th

ball to the girl”, whereas there would be 2 (slightly) different context-sensitive embeddings. We theref

defined a set Si = ∃{f(ti)} : Wij > 0 which captured the set of j unique token types with non-zero weight

Wij in f(t) for each i participant. We calculated the mean of the token embeddings across these,

where k is the number of tokens in f(ti) which are orthographically identical to each j token type where

> 0 in Si. 

We concatenated the  matrices for each i participants into an embedding matrix MSiN,R768. As a 

visualization convenience, we used singular value decomposition to reduce the second dimension of th

to R3. Inspection of the scree-plot indicated most variance was explained by the first factor, which 

appeared to relate to the class labels, see Supplementary Materials (SM). This resulted in N = 3673 

observations of 816 unique linguistic features (word-POS pairs) with non-zero weights. 

2 Results 

2.1 Classification 

The classifier was able to differentiate between amyloid positive and negative patients with a mean

accuracy score of  0.92, SD = 0.02 (see Table 2). This was significantly better than chance, χ2(1, N

nd 
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71) = 55.94, p < 0.001. An accuracy of 92% represents an absolute improvement of 15% over previously 

published accuracy identifying amyloidosis from connected speech, i.e., 77% in Slegers et al.8 

Additionally, class labels in the latter work were imbalanced: 40.17% of patients were amyloid-positive, 

compared with 51% in this study. Using the zero-rule baseline classifier (which always guesses the most 

frequent class label), our results improve over baseline by 42.1%, compared with 17.17% in Slegers et 

al.,8 a relative improvement of 145.16%. 

2.2 Interpretation 

2.2.1 LIME 

LIME works by using simple interpretable models to linearly approximate a black-box classifier’s 

classification function in the local region of a given example. It is therefore important to understand how 

well the interpretation models capture the black box model’s behavior. We do this in two ways. 

First, we calculate the performance of the interpretation models against the classifier’s output 

probabilities for the n = 5000 permuted text inputs generated by the LIME algorithm. On average, our 

interpretable models performed well: Mean Kullback-Leibler divergence was X� = 0.03, SD = 0.03 (low 

values indicate high agreement between two distributions). Mean distance-weighted-accuracy was X� = 

0.95, SD = 0.05. This is accuracy weighted by a distance measure (cosine similarity), and penalizes 

permuted text examples which are distant from the true example.27 Both metrics indicate that the 

interpretable models do a good job, on average, of capturing the classifier’s behavior. 

Second, we report classification metrics for the interpretation models’ predictions on the actual text 

examples, against both the classifier’s predicted labels and ground truth (Table 3). Again, these suggest 

the interpretable models do a good job of capturing the classifier’s predictions and the true labels. 

2.2.2 Feature importance by part of speech 

We first wanted to understand which parts of speech in general weighted most highly on our 

classifier’s inference conditions, i.e. which parts of speech were the most important basis for its 

predictions. Selecting the top POS tags was non-trivial since frequency differences between different parts 

of speech in English affects results. For instance, the large number of orthographically unique nouns and 

verbs were associated with a large number of unique but small weights, whereas the small number of 
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orthographically-unique, but inferentially important, interjections were associated with a small number of 

unique but large weights. Summing the weights by POS tag would over-represent the importance of nouns 

and under-represent the importance of interjections while aggregating using the mean would skew results 

in the other direction. We balanced these concerns by ranking POS tags using a score: 

 S�� � ∑ �W����
∑ ������
��
���

�
��
���  (1) 

for each POS tag, j, observation, i, and class label, k, i.e. the product of the sum and the mean of the 

absolute value of the weights, for each POS tag and label. Because it is a product of the absolute value of 

the weights, S is not directional; it simply attempts to rank POS tags in terms of their importance to 

classifier inference conditions for each label. Results suggest the 5 most critical POS tags for amyloid 

positive individuals are interjections, determiners, verbs, nouns, and existential ‘there’. For amyloid 

negativity, it is determiners, nouns, interjections, auxiliaries, and verbs (Fig. 1). This suggests clinicians 

seeking to diagnose amyloid positivity should pay close attention to these parts of speech. In the next 

section, we look more granularily at language production patterns characteristic of amyloid status. 

2.2.3 Feature discovery 

We deemed the utility of presenting orthographic representations of tokens to be high, i.e. we wanted to 

plot the important words. To do so, intelligibility necessitated we did not plot all the words. Therefore, we 

used the weights to select the top n tokens by LIME weight within each participant’s connected speech 

sample. For verbs and nouns, n=2, because they are high-frequency, Fig. 2. For other POS tags, n=5, Fig. 

3. Not all POS tags are plotted (SM), rather, after verbs and nouns, we plot the top 8 tags across both class 

labels by S from Equation 1, Fig. 3. Crucially, Fig. 2 & 3 sometimes indicate a difference in the frequency 

with which amyloid positive/negative patients use a given POS, e.g., amyloid positive patients use more 

injections (Fig. 3a). In other cases, a difference of usage within POS tag is indicated, e.g., amyloid 

positive patients use more indefinite articles “a” and fewer definite articles “the” (Fig. 3b). To give 

examples of the features in context, Fig. 4 presents the top explanations for each class label using the 

submodular pick algorithm from Ribeiro et al.,27 which is designed to yield the set of examples with the 

best coverage and least redundancy against the full dataset. Finally, we also release an interactive 
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visualization dashboard of these figures, available at <<TKTKTKT>>. We encourage readers to use it, as 

it provides interactive features which are not possible offline.  

3 Discussion 

This study aimed to use explainable artificial intelligence to predict amyloid status in PPA patients 

based on their short, connected speech samples and to identify linguistic biomarkers of amyloid 

pathology. Our approach showed significant improvements in several key areas when compared to prior 

research on this topic. Using distil-RoBERTa for the classification task, we achieved an accuracy of 92%. 

This result surpasses the accuracy reported in a previous study on predicting amyloid status using 

connected speech samples, exhibiting a relative improvement of 145% when adjusting the chance level 

associated with each study.8 Furthermore, leveraging a pre-trained language model for classification 

eliminated the need to rely on a set of engineered features. Rather, classification was carried out using the 

model’s massive prior knowledge of language, which was fine-tuned to suit our specific classification 

task. After accomplishing the task, we interrogated the model using XAI to uncover the features that 

discriminated between amyloid positive and negative speech samples, allowing for the discovery of 

features previously unnoticed by researchers and clinicians. This approach is of particular importance 

given the paucity of language features distinctive of the amyloid-positive subtype of PPA, mainly 

lvPPA.13 It has also been shown that the connected speech of patients with lvPPA has similarities in 

several key syntactic and lexical domains with patients with svPPA41 which emphasizes the need to 

discover linguistic features that are more specific to amyloid-positive status. In what follows, we discuss 

some of the features made explicit using this approach. 

One notable difference between amyloid-positive and amyloid-negative patients with PPA is their use 

of verbs. Specifically, amyloid-positive patients tended to use abstract or semantically underspecified 

verbs such as “get,” “have,” and “make,” while amyloid-negative patients used more concrete verbs like 

“pour,” “sail,” and “fly.” This distinction could be interpreted in several ways. One possible explanation is 

that of light versus heavy verb construction.42 Some abstract verbs, such as “have,” “go,” and “make,” can 

be used in a light verb construction (LVC) where a noun or adjective accompanies them to create a new 

meaning. Examples of LVC include “take a walk” or “have a nap.” However, upon inspection of the 

abstract verbs used by amyloid-positive patients, we found a mixed pattern of LVC and non-LVC, making 

this construction a less likely distinguishing explanation. As shown in examples from Figure 3, the verb 

“have” was used both in an LVC (e.g., “having a picnic”) and, also in a non-LVC (e.g., “having a noisy 
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radio”). Another possibility is that the distinction between the types of verbs used by each group is related 

to their frequency of use. Abstract verbs are among the most frequent verbs in most languages.43 

Therefore, amyloid-positive patients may be using more high-frequency verbs than amyloid-negative 

patients. This interpretation is consistent with the finding by Slegers et al., 2021 who reported verb 

frequency as a distinctive feature between amyloid positive and negative classes.8 In our recent work, we 

also showed that verb frequency is a variable that significantly increases classification accuracy among the 

three variants of PPA 44. 

Additionally, we observed conceptual differences in the category of nouns used by the two classes. 

Amyloid-positive patients tended to use nouns such as “radio,” “kite,” “car,” and “boy,” as well as more 

general terms like “stuff” and “thing.” In contrast, these patients were less likely to use words such as 

“water,” “beach,” and “fisher.” This distinction could potentially be explained by noun frequency, as it 

appears that amyloid-positive patients tend to use nouns that, on average, have a higher frequency of 

occurrence than other groups. However, prior research has shown that high-frequency nouns are a 

common feature of patients with both lvPPA and svPPA,45 making noun frequency a less distinctive 

feature. One possible explanation for this noun distinction is that patients with amyloid positivity may 

struggle with visuospatial processing, making them vulnerable to disregarding contextual information. The 

WAB Picnic Picture is a complex scene featuring multiple events taking place across different spatial 

layers. In the foreground, a couple is seen sitting on a picnic blanket next to a radio, with a boy flying a 

kite immediately behind them and a car parked in the near background. In the farthest distance, there is a 

beach scene with a girl building a sandcastle, a man fishing, and a sailboat on the lake. From the nouns 

distinctive of the two classes, it was evident that amyloid-positive patients tended to focus more on 

foreground elements while paying less attention to background details. This finding aligns with a meta-

analysis indicating that individuals with lvPPA typically have poorer visuospatial functioning and 

attention than those with svPPA and nfvPPA.46,47 

Furthermore, our bottom-up analysis of language found filled pauses such as “uh” to be predominantly 

used by amyloid-positive patients, consistent with similar reports in patients with lvPPA.45,48,49 The 

analysis of determiners, as another contributor to the classification, revealed an interesting pattern. 

Amyloid-positive patients predominantly used the indefinite article “a” over the definite article “the,” 

while the opposite pattern was seen in the amyloid-negative group. There are various ways to interpret this 

finding. One possible explanation is based on the Accessibility Theory, 50 which suggests that the choice 

of an article depends on the accessibility of the noun phrase in memory. According to this theory, the 
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definite article is used when the noun phrase is highly accessible, while the indefinite article is used when 

the noun phrase is less accessible. Given the core deficit of word retrieval in patients with lvPPA, it is 

reasonable to expect that they tend to use indefinite articles over definite articles. Another possible 

explanation is based on the Given-New Contract Theory, which proposes that speakers and listeners have 

a shared understanding of the given and new information in a conversation.51 According to this theory, the 

use of the definite article signals that the noun phrase refers to a given or previously mentioned entity, 

while the indefinite article signals that the noun phrase refers to a new or unknown entity. It is possible 

that the differences in article usage reflect impairments in the theory of mind, which is altered in the early 

stages of Alzheimer’s dementia.52 

The discussion above highlights that, by using XAI, the classification of language based on the 

underlying pathology is not merely a practical problem that is solved through a black-box AI model. 

Rather, this approach provides insights into the inner workings of the model and the potential cognitive 

processes underlying language features distinctive of amyloid pathology. In addition, the broad 

accessibility and low cost of this tool mean it has the potential to be used as a screening tool for 

individuals suspected of having Alzheimer’s pathology and who may be candidates for treatments with 

disease-modifying agents. Based on current amyloid imaging guidelines, a complete clinical examination 

is recommended before undergoing scanning for patients presenting with language symptoms suggestive 

of PPA.53,54 However, clinical diagnosis and cognitive testing have shown limited diagnostic performance 

in identifying the underlying pathology, with a sensitivity of 78% and specificity of 80%.55 The use of 

XAI has the potential to improve diagnostic accuracy and provide a more comprehensive understanding of 

the cognitive mechanisms underlying PPA, which could ultimately lead to better clinical outcomes for 

patients. 

Future research is needed to overcome the limitations of this study, such as the relatively small sample 

size that may hinder the generalizability of the findings across diverse populations, and the complexity of 

the machine learning algorithms, which could result in model overfitting. Moreover, the current findings 

are exclusively based on English language data. To determine if the observed verb frequency effects are 

consistent across languages, particularly those with varying verb distributions such as Persian,56 future 

studies should include languages other than English. Lastly, additional testing in a different cohort of PPA 

patients is essential to validate and broaden the applicability of these findings across diverse patient 

groups. 
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Tables 

Table 1 

The clinical and demographic information of patients with amyloid positive and negative status  

Amyloid status Amyloid positive Amyloid negative 

Age of symptom onset (SD) 70.5 (8.5) 66.9 (6.1) 

Sex, percent female 44.4% 51.4% 

Years of education (SD) 16.1 (2.5) 16.5 (2.6) 

Handedness, percent right-handed 86.2% 84.4% 

PASS, Sum of Boxes (SD) 5.9 (3.4) 4.2 (2.9) 
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Table 2 

Distil-RoBERTa classification metrics 

Amyloid status Accuracy∗ Precision∗∗ Recall† F1‡ 

Negative 
0.92 (0.01) 

0.92 (0.03) 0.93 (0.02) 0.92 (0.02) 

Positive 0.93 (0.02) 0.92 (0.02) 0.92 (0.02) 

Mean and (SD) are presented over 10 training runs. 
∗Accuracy is a = (tp+tn)/(tp+fp+fn+tn) where tp is the number of true positives, tn is the number of true negatives, fp is the number of false positives and 
the number of false negatives. 
∗∗Precision is p = tp/(tp + fp); it captures the model’s likelihood of being correct if it makes a positive prediction and is therefore sensitive to the model’s t
error rate.  
†The denominator in the recall is false negatives, r = tp/(tp+fn); it, therefore, captures whether the model tends to miss true examples and is sensitive to th
model’s type II 
error rate. 
‡F1 is the harmonic mean of recall and precision, F1 , and attempts to balance the two.  

d fn is 

’s type I 

 the 
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Table 3 

Interpretable LIME models’ classification metrics 

Target Amyloid status Accuracy∗ Precision∗ Recall∗ F1∗ 

Predicted labels Negative 
0.97 

1 0.94 0.97 

 Positive 0.95 1 0.97 

True labels Negative 
0.93 

0.97 0.89 0.93 

 Positive 0.9 0.97 0.93 

Performance with reference to distil-RoBERTa predicted labels and true labels is presented. 
∗See notes to Table 2.  
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4 Figures 

 
Figure 1: Parts of speech tags ranked by aggregated weight per tag, where aggregate weight is S from Equation 1 (i.e. the product of the sum 
and the mean of weight per tag).   
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Figure 2: The (a) verbs and (b) nouns from among the top 2 words by LIME weight in each participant’s connected speech sample. Above 
and Figs. 3 & 4, we plot tokens over principal components 1 and 3 (for aesthetics reasons, SM). We use point size to represent LIME weights 

using the following monotonic transformation: �� � ����� ���������

�	
����������
�, where λ is a constant scaling factor chosen for aesthetic 

reasons to equal 5, and W is the vector of LIME weights.  
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Figure 3: The top n = 5 words within each tag for the top 8 POS tags (apart from verbs and nouns) in descending order of S’ from Equation 
2.  
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(a) Amyloid negative example 1 

 

(b) Amyloid positive example 1

 
 
(c) Amyloid negative example 2 

 

 
(d) Amyloid positive example 2 

 

Figure 4: The top 2 most informative examples for each label, according to the submodular pick algorithm from Ribeiro et al. 201
These examples were chosen from the subset of examples where y = yˆ = y′, i.e. where true labels equal classifier predictions equa
interpretation-model predictions. Green highlights indicate a word that positively increments the probability of the predicted class
in amyloid positive examples the inclusion of green-highlighted words increases the classifier’s predicted probability that y = amy
positive. In negative examples, the opposite is true. 

  

016.27 

ual 
ss, i.e. 

myloid 
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