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Abstract 21 

In this work we studied the relationship between dengue incidence in Cali and the climatic 22 

variables that are known to have an impact on the mosquito and were available (precipitation, 23 

relative humidity, minimum, mean, and maximum temperature). Since the natural processes 24 

of the mosquito imply that any changes on climatic variables need some time to be visible 25 

on the dengue incidence, a lagged correlation analysis was done in order to choose the 26 

predictor variables of count regression models. A Principal Component Analysis was done to 27 

reduce dimensionality and study the correlation among the climatic variables. Finally, aiming 28 

to predict the monthly dengue incidence, three different regression models were constructed 29 

and compared using de Akaike information criterion. The best model was the negative 30 

binomial regression model, and the predictor variables were mean temperature with a 3-31 

month lag and mean temperature with a 5-month lag as well as their interaction. The other 32 

variables were not significant on the models. And interesting conclusion was that according 33 

to the coefficients of the regression model, a 1°C increase in the monthly mean temperature 34 

will reflect as a 45% increase in dengue incidence after 3 months. The rises to a 64% increase 35 

after 5 months. 36 

Key words 37 

Dengue, Negative binomial regression model, random forest regression, climatic variables. 38 

Author Summary 39 

Dengue is transmitted by the bite of an infected mosquito, and mosquitoes, in turn, are 40 

affected by climatic conditions. In this work studied the relationship between dengue 41 

incidence in Cali and climatic variables, namely precipitation, relative humidity, minimum 42 
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temperature, mean temperature, and maximum temperature using statistical methods. Since 43 

this is a natural and biological process, the changes in climatic conditions need time to have 44 

a visible effect on dengue incidence, hence we identified the significant climatic variables 45 

and the time they take to have a visible effect on dengue incidence. Then, we created three 46 

different models for predicting dengue incidences using the lagged variables and picked the 47 

best one. We concluded that the most critical variable is mean temperature with a 3- and 5-48 

month lag. We also found that a 1°C increase in the monthly mean temperature will reflect 49 

as a 45% increase in dengue incidence after 3 months. The rises to a 64% increase after 5 50 

months. 51 

1. Introduction 52 

Dengue is the viral disease transmitted by Aedes aegypti with the biggest worldwide 53 

spreading. It’s common in warm and humid areas all around the world. It’s transmitted by 54 

the biting of infected mosquitoes, and it can cause high fever, nausea, vomiting, rash and pain 55 

in different parts of the body (eyes, muscles, joints or bones). When severe, it may also cause 56 

internal bleeding and even death [1].  57 

Every year around 50 million dengue cases are registered, and approximately 2.500 million 58 

people live in countries where this disease is endemic [2]. Furthermore, dengue affects Cali, 59 

a city in the southwest of Colombia, chronically. In fact, yearly mean rates of dengue in Cali 60 

reach almost 100 cases per 100.000 inhabitants [3]. 61 

On the other hand, it’s well known that climatic conditions play a big part on the reproduction 62 

and maturation of Aedes aegipti. Warm temperature shortens the incubation time of the 63 

larvae, while precipitation directly affects the availability of breeding places [4–6] Also, 64 
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temperature exerts a significant influence and regulates the development of mosquitoes [7]. 65 

However, excesses of precipitation might imply a reduction of the population since nor larvae 66 

nor pupae survive in these conditions [8–11]. Additionally, El Niño phenomenon (ELSO) is 67 

related with dengue incidence and the effects take several months to be reflected on it 68 

depending on the region [12–14]. 69 

Concerning the modeling of dengue, various count regression models have been successfully 70 

used [15–18]. Amongst them there is the negative binomial model since it, unlike the Poisson 71 

model, doesn’t assume equality between the mean and the variance. Using this type of models 72 

[19–22] found that temperature and relative humidity are important variables for predicting 73 

dengue incidence. 74 

In Cali, diverse intervention measures have been implemented. In 2022, the activities carried 75 

out include drain inspections, household visits for eliminating hatcheries, control campaigns, 76 

biological control, and fumigation. For 2023, the Public Health Department of Cali will begin 77 

its work with initiatives aiming at education and prevention [23]. Nevertheless, it is still 78 

crucial to continue the research on the impact of climatic variables on dengue incidence to 79 

prevent endemic spikes and adjust control strategies. 80 

Because of the way dengue is propagated, focusing control strategies on the vector is 81 

essential, which generally imply intensive and expensive efforts. Hence, this control schemes 82 

must be implemented strategic fashion in order to maximize their efficiency and minimize 83 

costs. Because of this, the study of dengue incidence in relation with climatic variables 84 

associated with the reproduction and development of Aedes aegypti should not be 85 

disregarded. 86 
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The main goal of this research consisted of analyzing the relationship and delay between 87 

climatic variables and dengue incidence. We sought to describe and quantify how the climatic 88 

patterns are directly linked with dengue incidence throughout statistical analysis. Data of Cali 89 

was selected because this city presents one of the highest dengue infection rates in Colombia. 90 

2. Materials and methods 91 

2.1. Area of study 92 

Cali, the third biggest city in Colombia, is the capital of the department of Valle del Cauca. 93 

It’s located on the south of the department, on the valley formed by the western and central 94 

branches of the Andes Mountain range, at a mean altitude of 1000 meters above sea level. 95 

Cali is also located on the valley of Cauca River, the second most important of Colombia. 96 

Cali’s geographical coordinates are 3°27’00’’N 76°32’00’’O. Cali’s weather is warm and 97 

humid, with an average temperature of 24°C. 98 

The weather in Cali es characterized for being warm and dry, classifying as tropical with dry 99 

summers according to the Köppen Climate Classification. The western branch of the 100 

mountain range plays an important role stopping the humid air currents coming from the 101 

Pacific Ocean, although the maritime breezes do indeed reach the city. The mountain range 102 

has an average altitude of 2000 meters above sea level at the north of the city, reaching up to 103 

4100 meters on the south, where the highest pluviosity occurs. On average, annual 104 

precipitation lies from 900 mm on the driest areas up to 1800 on the rainiest, being 1483 mm 105 

the average over the majority of Cali’s metropolitan area. Mean temperature es 24.0°C 106 

(73.6°F). From December to February and July to Augusts it’s considered the dry season, 107 

while from March to May and September to November is the rainy season [24]. 108 
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2.2. Data collection  109 

For this study, data of monthly dengue cases provided by the Public Health Department of 110 

Cali was used, encompassing a time period from January of 2015 to December 2021. 111 

Similarly, from the Hydrology, Meteorology and Environmental Studies Institute (IDEAM) 112 

monthly data were collected for the following climatic variables: maximum, minimum and 113 

average temperature (°C), precipitation (mm) and relative humidity (%) on the same time 114 

period. 115 

2.3.  Statistical methods 116 

2.3.1. Random Forest Regression 117 

The random forest regression technique was used for missing data imputation with python’s 118 

sklearn library on Google Collab. This machine learning method stands out for its efficiency 119 

on both classification and regression problems, although in this work we only care for 120 

regression problems. This method is based on the construction of a set of decision trees that 121 

will be used to predict continuous values. This technique is increasingly been used in diverse 122 

areas for the processing of big volumes of data [25,26]. 123 

As shown on Fig 1, the main idea of random forest regression is to create multiple different 124 

regression trees trained with different samples from the training set. Thus, each tree will make 125 

different individual predictions that then will be averaged to produce a single final prediction. 126 

This method tends to be better than using a single regression tree since the latter is highly 127 

sensible to the training data and so, the averaged prediction is more robust. 128 

 129 
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Fig. 1 Random Forrest regression algorithm 130 

 131 

Similarly, regression trees are a machine learning technique used for prediction problems. In 132 

other words, we want to predict the value of a continuous variable y using a set of predictor 133 

variables or covariables X. Hence, a tree is constructed such that on each node examples are 134 

split in a way were on each new node the variance of y is the least possible. This implies 135 

picking on every node a suitable covariable and splitting point c. This process is repeated 136 

until a stop criterion is reached which may depend on the depth of the tree or the number of 137 

examples on the nodes. 138 

It’s essential to remark that each of the regression trees are different, and therefore return 139 

different predictions, because they are constructed from different random samples from the 140 

data base. This is called bagging and is used when working with noise data sets. 141 

2.3.2. Correlation analysis  142 

Since the effect of climatic variables over the dengue incidence is not immediate, a lagged 143 

correlation analysis was made, a common tool of time series analysis, in order to select the 144 

variables and corresponding lag to be the predictors on the regression model. Subsequently, 145 
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the number of dimensions was reduced by doing a principal component analysis (ACP) also 146 

avoiding multicollinearity issues. 147 

2.3.3.   Principal component analysis 148 

ACP is a useful statistical technique for synthesizing information or reducing the number of 149 

variables on a data set without losing important information. During ACP new variables are 150 

created called principal components, which are linear combinations of the original variables 151 

and, additionally, they are pairwise mutually independent. 152 

In this work, ACP was used for two purposes. Firstly, as a data exploration tool in order to 153 

study the correlation between the climatic variables and, secondly, to reduce the amount of 154 

predictor variables in the statistical model. The similarities between these variables were 155 

studied and only one was chosen amongst the groups of homogeneous variables so it acts a 156 

representative, since multiple variables with like behavior is not needed. This analysis was 157 

made using SPSS. 158 

2.3.4.  Regression models 159 

Keeping in mind that dengue incidence is a count variable, three different regression models 160 

were considered for this project, namely, Poisson, negative binomial, and Poisson-inverse 161 

Gaussian. The Poisson model is one of the more classical ones for count data. It assumes that 162 

the data follow a Poisson distribution with the following probability distribution function: 163 

𝑃(𝑌𝑖|𝜇𝑖) =  
𝑒−𝜇𝑖𝜇𝑖

𝑌𝑖

𝑌𝑖!
. 164 
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Here, 𝑌𝑖 is a random variable with mean and variance 𝜇𝑖. For constructing regression models, 165 

𝜇𝑖 is expressed as a function of the independent variables throughout the natural log as a link 166 

function: 167 

ln 𝜇𝑖 = 𝛽′𝑥𝑖. 168 

Similarly, the dependent variable is link, throughout the natural log, whit a linear function of 169 

the independent variables: 170 

ln 𝑌 = 𝛽0 +  𝛽1𝑋1 + ⋯ + 𝛽𝑟𝑋𝑟 . 171 

The negative binomial model is similar to the Poisson model with the key difference that it 172 

relaxes the assumption of equality of mean and variance, which improves it when dealing 173 

with over dispersed data (when variance is bigger than the mean). This is regularly the case 174 

with real data since they can be zero [27]. Therefore, negative binomial regression may be 175 

considered as a generalization of the Poisson regression. 176 

For this model the value of 𝜇 differs from the one it takes on a Poisson regression, namely, 177 

𝜇𝑖 = exp (𝛽′𝑥𝑖 + 𝑒𝑖) = exp(𝛽′𝑥𝑖) exp(𝑒𝑖) 178 

were 𝑒𝑖 is a heterogeneity parameter and exp(𝑒𝑖) ~Γ(𝛼−1, 𝛼−1). The density function for 𝑌𝑖 179 

is:  180 

𝑃(𝑌𝑖|𝑋𝑖) =  
Γ(𝑌𝑖 + 𝛼−1)

Γ(𝑌𝑖 + 1)Γ(𝛼−1)
(

𝛼−1

𝛼−1 + 𝜇𝑖
) + (

𝜇𝑖

𝛼−1 + 𝜇𝑖
). 181 

Finally, the Poisson-inverse Gaussian (PIG) regression is very similar to the negative 182 

binomial, but instead of combining the Poisson distribution with a Gamma distribution, it 183 
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uses an inverse Gaussian distribution. This model is particularly good for data with a high 184 

initial peak and that might be skewed to the far right, o highly over dispersed data [28].  185 

For the PIG regression 𝛼 represents the dispersion parameter and can also be parametrized 186 

as 𝜙 = 1/𝛼. Thereby, the probability distribution function is: 187 

𝑃(𝑌; 𝜇, 𝛼) = √
𝜙

2𝜋𝑌3
exp (

−𝜙(𝑌 − 𝜇)2

2𝜇2𝑌 
) 188 

with 𝑌, 𝜇, 𝜙 > 0. 189 

3. Results 190 

3.1. Data imputation 191 

The first obstacle to present itself was the presence of missing data on the climatic data set. 192 

This a fairly common difficulty when working with climatic data. A process of data 193 

imputation was necessary beforehand. For this purpose, the random forest regression method 194 

was used [29]. First, for every variable, a second meteorological station near Universidad del 195 

Valle without so many missing values was selected (Palmira or Jamundí), and then, the 196 

missing values of this new stations were replaced with the mean, and finally, a random forest 197 

regression model was trained using the secondary station to predict the missing values of the 198 

station at Universidad del Valle. As an example, in Fig 2 shows graphs for the original data 199 

and the completed version with imputation for mean temperature. 200 

 201 

 202 
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Fig. 2 a) original data; b) data with imputation 203 

204 

It should be noted that information form 2005 up to 2022 was used in order to have more 205 

data for the regression model.  206 

3.2. Lagged correlation analysis and election of variables. 207 

Fig 3 shows the time series of dengue incidence in Cali. It can be observed that dengue 208 

incidence is characterized by long periods of relative tranquility, where there are a few 209 

dengue cases, and some peaks where incidence shoots of and reaches much higher values. 210 

Bellow the relationship between this behavior and the aforementioned climatic variables. 211 

Fig. 3 Monthly dengue cases in Cali 212 

 213 

Using R, the correlation of each variable with dengue incidence was studied. However, the 214 

nature of the vector implies the need of considering a lag. In fact, later on we verify that the 215 

a b 
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lagged variables show higher correlation with dengue incidence than without any lag. Fig 4 216 

shows the lagged cross correlation analysis for all the climatic variables. 217 

Fig. 4 Lagged correlation analysis 218 

For precipitation (Fig 4. a) there’s significant negative correlation at -0.4 lag, meaning 219 

between incidence and the precipitation of 5 months in the past. For maximum temperature 220 

a b 

c d 
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(Fig. 4 b) the most significant correlation is around a -0.4 lag, resulting in a 4-month lag. The 221 

relation is direct. For average temperature (Fig. 4 c) there are two lags with significant 222 

correlation, a direct correlation with a 5-month lag and an inverse correlation with a 3-month 223 

lag. For minimum temperature the significant correlation is negative at a 7-month lag. And 224 

for relative humidity there is negative significant correlation at a 5-month lag. To summarize, 225 

the chosen variables after the lagged correlation analysis are Precipitation(t-5), Maximum 226 

Temperature(t-5), Mean Temperature(t-3), Mean Temperature(t-5), Minimum Temperature(t-227 

7) and Relative Humidity(t-5). It must be noted that before doing this analysis the first 228 

difference of ever variables was calculated in order to guarantee stationarity and avoid 229 

spurious correlation. 230 

3.3. Principal component analysis (ACP) 231 

The multicollinearity problem must be addressed since, naturally, climatic variables are 232 

correlated amongst themselves. Table 1 shows de correlation matrix of the climatic variables. 233 

Table 1 Correlation matrix of the climatic variables 234 

Correlation matrix 

 Precipitation 

(t-5) 

Maximum 

Temperature 

(t-5) 

Mean 

Temperature 

(t-5) 

Mean 

Temperature 

(t-3) 

Minimum 

Temperature 

(t-7) 

Relative 

Humidity 

(t-5) 

Correlation Precipitation 

(t-5) 
1,000 -,388 -,387 ,012 ,116 ,555 

Maximum 

Temperature 

(t-5) 

-,388 1,000 ,766 ,065 -,054 -,605 

Mean 

Temperature 

(t-5) 

-,387 ,766 1,000 ,119 ,096 -,698 
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Mean 

Temperature 

(t-3) 

,012 ,065 ,119 1,000 ,238 ,060 

Minimum 

Temperature 

(t-7) 

,116 -,054 ,096 ,238 1,000 ,174 

Relative 

humidity (t-5) 
,555 -,605 -,698 ,060 ,174 1,000 

Sig. 

(unilateral) 

Precipitation 

(t-5) 
 <.001 <.001 ,460 ,167 <.001 

Maximum 

Temperature 

(t-5) 

,000  ,000 ,295 ,327 ,000 

Mean 

Temperature 

(t-5) 

,000 ,000  ,161 ,212 ,000 

Mean 

Temperature 

(t-3) 

,460 ,295 ,161  ,023 ,309 

Minimum 

Temperature 

(t-7) 

,167 ,327 ,212 ,023  ,073 

Relative 

humidity (t-5) 
,000 ,000 ,000 ,309 ,073  

Fig 5 shows the associated variance to each of the principal components. According to this, 235 

we pick the first to components which explain 67,3% of the variance. 236 

Fig. 5 Sedimentation graph of the ACP 237 
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 238 

Fig 6 reveals that the variables can be separated in two groups. Therefore, instead of using 239 

the principal components as predictor variables, we choose one variable for each group 240 

making the regression easier to understand and conclude. The selected variables are Mean 241 

Temperature(t-5) and Mean Temperature(t-3). 242 

Fig. 6 Principal components in rotated space 243 

 244 

3.4.Regression models 245 
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Table 2 presents a comparison of the three regression models used in this work including 246 

deviance, Akaike information criterion (AIC) and the p-values of the adjusted models for 247 

every variable. For every model the best variable choice was both mean temperature lag 248 

variables and their interaction. 249 

Table 2. Comparison of the regression models. 250 

Model 

Residual 

deviance 

AIC 

P-VALUES 

Intercept 

Mean 

Temperature (t-5) 

Mean 

temperature (t-3) 

Interaction 

Poisson 34224.0 34826.0 2.00E-16 2.00E-16 2.00E-16 2.00E-16 

Negative 

binomial 

76.388 1095.80 0.00898 0.00893 0.01 0.01249 

PIG 1075.814 1085.81 0.0439 0.0423 0.0463 0.0539 

Clearly, the Poisson model is not good, probably because dengue incidences is over 251 

dispersed, its mean is 981.6 and its variance is 950046.6. Therefore, this model was 252 

discarded. Regarding the negative binomial and the PIG models, the negative binomial is 253 

chosen because its deviance is better and shows a slightly better adjustment to the data as 254 

seen in the p-values. As Table 3 shows, all the variables and the intercept were significant for 255 

the negative binomial model. 256 

Table 3 Coefficients of the negative binomial model 257 

Coefficients Estimation Std. Error z value Pr(>|z|) 

(Intercept) -225.2824 86.2199 -2.613 0.00898 

Mean Temperature(t-5) 8.9056 3.4062 2.615 0.00893 

Mean Temperature(t-3) 8.8248 3.4262 2.576 0.01 
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Interaction -0.338 0.1353 -2.498 0.01249 

We can also verify that the data resemble a negative binomial distribution as Fig 7 shows. 258 

Fig. 7 Frequency distribution 259 

 260 

The resulting model can be expressed as follows: 261 

𝐷𝑒𝑛𝑔𝑢𝑒 = 𝑒(−225.2824+8.9056𝑀𝑒𝑎𝑛𝑇𝑒𝑚𝑝5+8.8248𝑀𝑒𝑎𝑛𝑇𝑒𝑚𝑝3−0.338𝑀𝑒𝑎𝑛𝑇𝑒𝑚𝑝5𝑀𝑒𝑎𝑛𝑇𝑒𝑚𝑝3). 262 

Fig 8 displays both real data and data predicted by the negative binomial regression model. 263 

The fit is good since the predicted values (red) resemble the real data (black) in the time 264 

series as well as the histogram (Fig 9). However, it’s clear that the fit could be better, for 265 

example, the peaks of 2016 and 202 aren’t predicted correctly, while the dengue cases on the 266 

low incidence seasons are overestimated. It must be kept in mind that 2020 was an atypical 267 

year due to the Covid-19 pandemic. 268 
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Fig. 8 Adjusted regression model for 

dengue incidence

 

Fig. 9 Histogram of dengue incidence 

 

  

 269 

Knowing that the average temperature for the data set is 25°C, the coefficients can be used 270 

for the following interpretations: If the average monthly temperature in Cali increases by one 271 

degree, a 45% increase in dengue cases is expected after 3 months. Additionally, after 5 272 

months, the same increase of one degree will imply a 64% increase in dengue incidence. This 273 

is particularly worrying considering the temperature rise tendencies because of global 274 

warming and the recent arrival of El Niño phenomenon. 275 

4. Discussion 276 

The results obtained on the data imputation process shows that this methodology is a feasible 277 

and efficient way of estimating missing data. 278 

The negative binomial regression model was found to be the best for predicting monthly 279 

dengue incidence in Cali using mean temperature with 3 and 5 months lags. This implies that 280 

the effect of a change in temperature takes about 3 months to be visible in dengue incidence. 281 

This could be attributed to the biological processes of Aedes aegypti such as maturation and 282 
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reproduction which are known to be affected by the climatic variables. Taking into 283 

consideration that the life span of a female mosquito is about 6 weeks, we can conclude that 284 

it takes at least two generation of mosquitoes for the dengue incidence to be affected by a 285 

change in temperature. 286 

In other matters, the absence of other climatic variables from the regression model does not 287 

necessarily imply that they have no effect over dengue incidence, seeing that the naturally 288 

have a big correlation with temperature. For instance, both precipitation and relative humidity 289 

are inversely proportional to temperature, as the ACP shows. 290 

Forecasts are worrisome, because an increase in average temperature could transform into a 291 

significant increase in dengue cases having serious repercussions on public health. 292 

Finally, its recommended to deepen on this type of predictive studies. This research has some 293 

limitations that can be improved upon on further work. Firstly, there isn’t a lot of climatic 294 

data. Only one meteorological station with enough data was found, and even then, this data 295 

was incomplete and hence an imputation processes was necessary. Secondly, expanding the 296 

time period of the study is recommended in order to obtain more robust results, but this will 297 

imply recollecting more data for both dengue and the climatic variables. And finally, this 298 

work didn’t take into consideration the autoregressive component of dengue (present dengue 299 

incidence depends on the incidence of past months). This could lead to more accurate 300 

predictions. 301 
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