Gut microbiome co-abundance networks varies with age, sex, **smoking status and body mass index**
Christophe Boetto¹, Violeta Basten Romero¹, Léo Henches¹, Arthur Frouin¹, Antoine Auvergne¹,

Christophe Boetto^{*}, Violeta Basten Romero^{*}, Léo Henches^{*}, Arthur Frouin^{*}, Antoine Auvergne^{*}
Etienne Patin², Marius Bredon^{3,4}, Milieu Intérieur Consortium, Sean P. Kennedy¹, Darragh Duffy⁵, Lluis
Quintana-,
,
,
,
, , Marius Bredon^{9,4}, Milieu Intérieur Consortium, Sean P. Kennedy⁺
ci², Harry Sokol^{3,4,6,7}, Hugues Aschard^{1,8}
Université de Paris, Department of Computational Biology, F-75015 Paris, France
Université de Paris, De , Darragh Duffy³
;
Inflammation Labo
.

Institut Pasteur, Université de Paris, Départment of Computational Biology, F-75015 Paris, France, Institut Pasteur, Université de Paris, Department of Genomes and Genetics, Paris, France, I

Quintana-Murci², Harry Sokol^{3,4,6,7}, Hugues Aschard^{1,8}
¹Institut Pasteur, Université de Paris, Department of Computation²
Institut Pasteur, Université de Paris, Department of Genomes and
³Sorbonne Université, , $\overline{}$, $\overline{\phantom{a$ Quintana-Murci², Harry Sokol^{3,4,6},7, Hugues Aschard^{4,6}
¹Institut Pasteur, Université de Paris, Department of Computation²
Institut Pasteur, Université de Paris, Department of Genomes ana³
Sorbonne Université, I nstitut Pasteur, Oniversité de Paris, Department of Genomes and Genetics, Paris, France, Inserne Université, Inser
Sorbonne Université, Inserm, Centre de recherche Saint-Antoine, CRSA, Microbiota, Gut and Inflammation Labo

Hôpital Saint-Antoine (UMR 3938), 79012, Paris, France,
⁴ Paris Center for Microbiome Medicine, PaCeMM, FHU, F

r ans center for Microbiome Medicine, PaceMM, FHU, Paris, France
⁵Institut Pasteur, Université de Paris, Translational Immunology Unit,

nstitut Pasteur, Université de Paris, Translational Immunology Unit, Paris, France, Castroenterology Department, AP-HP, Saint Antoine Hospital, 75012, Paris, France, ⁷

INRAE Micalis & AgroParisTech, UMR1319, Micalis & AgroParisTech, Jouy en Josas, France,
⁸Uggest TU Chan School of Bublie Hoalth, Department of Enidemialagu, Besten, United Stat

8 Harvard TH Chan School of Public Health, Department of Epidemiology, Boston, United States of America

Abstract

);
| 1
| c || nerent functional communities. Variability in these communities, typically investigated through
a co-abundance, might provide critical insights on the biological links between the gut microbiome
I human phenotypes. However taxa co-abundance, might provide critical insights on the biological links between the gut microbiome
and human phenotypes. However, existing methods to investigate variations in taxa co-abundance
suffer multiple limitatio The transmission provide critical insights on the strength and human phenotypes. However, existing methods to investigate variations in taxa co-abundance suffer multiple limitations. Here, we address the simple but challen suffer multiple limitations. Here, we address the simple but challenging question of identifying
factors associated with variability in gut microbiome taxa co-abundance using a novel covariance-
based method that resolve t such multiple limitations associated with variability in gut microbiome taxa co-abundance using a novel covariance-
based method that resolve these limitations. We screened 80 host factors in 938 healthy
participants, and participants, and identified associations between taxa co-abundance variability and age, sex, smoking
status, and body mass index (BMI) not captured by abundance-based and diversity-based methods.
Increased age and smoking participants, and body mass index (BMI) not captured by abundance-based and diversity-based methods.
Increased age and smoking were associated with an overall decrease in co-abundance, and
conversely BMI with an increase. status, and they made mass in provided with an overall decrease in co-abundance, and conversely BMI with an increase. Finally, we demonstrate that the proposed approach offers a powerful framework for describing taxa netwo Increased age and smoking were associated with an overall associated with an overall development conversely BMI with an increase. Finally, we demonstrate that the proposed approach offers a powerful framework for describin conversely BMI with an increase that m_1 , we demonstrate that the proposed approach offer and proverful framework for describing taxa networks at the individual level and predicting host features. powerful framework for describing taxa networks at the individual level and predicting host features.

Introduction
Major initiatives such as the Human Microbiome Project¹, and epidemiological studies revealed Major initiatives such as the Human Microbiome Project⁺, and epidemiological studies revealed

bortant features associated with changes in the composition of the gut microbiome, including
 e^{24} , sex⁵⁻⁷, BMI⁷⁻⁹, s age²⁻⁴, sex⁵⁻⁷, BMI⁷⁻⁹, smoking habits¹⁰⁻¹², long term diet^{8,3,3-17}, and host genetics¹⁷⁻²² in both healthy
individuals and disease cases²³⁻²⁵. Yet, these studies also highlighted important challenges in
dec individuals and disease cases²³⁻²⁵. Yet, these studies also highlighted important challenges in deciphering the complex host-microbiome relationship^{26,27}. In particular, despite its high dimensional nature, most exist deciphering the complex host-microbiome relationship^{20,27}. In particular, despite its high dimensional
nature, most existing human microbiome studies still focus on univariate approaches, testing
associations between a v nature, most external matrice of interest and each single taxon. To address this limitation, there
has been an increasing interest in multivariate approaches. This includes the application of the alpha
and beta diversity has been an increasing interest in multivariate approaches. This includes the application of the alpha
and beta diversity indexes, which measure intra- and inter-sample distances between microbiome
samples^{19,22,28}, and and beta diversity indexes, which measure intra- and inter-sample distances between microbiome
samples^{19,22,28}, and various multivariate mean-based approaches to conduct a joint test of the
abundance of multiple taxa wi

samples^{19,22,28}, and various multivariate mean-based approaches to conduct a joint test of the
abundance of multiple taxa with a predictor²⁹⁻³¹. Conversely, the study of features associated with
variability in the coabundance of multiple taxa with a predictor²⁹⁻³². Conversely, the study of features associated with
variability in the co-abundance of taxa remains puzzling³²⁻³⁴.
The study of gut microbiome taxa co-abundance, which c variability in the co-abundance of taxa remains puzzling²²⁻³⁴.
The study of gut microbiome taxa co-abundance, which
the gut microbiome, is arising as a promising research top
ecosystem whose constituents form sub-commun the gut microbiome, is arising as a promising research topic³⁵⁻⁴⁰. The gut microbiome is a complex ecosystem whose constituents form sub-communities through interactions between individual taxa. Those sub-communities, s the gut microbiome, is arising as a promising research topic²³⁻³. The gut microbiome is a complex
ecosystem whose constituents form sub-communities through interactions between individual taxa.
Those sub-communities, som Those sub-communities, sometimes referred to as guild³⁷, or cliques, display co-abundances because
they exploit the same class of resources or work together as a coherent functional group^{32,38}.
Previous studies already they exploit the same class of resources or work together as a coherent functional group^{32,38}.
Previous studies already illustrated the potential differences in co-abundance networks across inflammatory bowel disease st they exploit the same class of resources or work together as a coherent functional group^{-2,50}.
Previous studies already illustrated the potential differences in co-abundance networks across
inflammatory bowel disease sta inflammatory bowel disease status and body mass index³⁵, and geographically diverse populations³⁹.
However, there is currently no gold standard method to screen for factors associated with changes in
the co-abondance the co-abondance of bacteria across individuals in a population. Existing methods are typically based
on the inference and pairwise comparison of networks across conditions, using a threshold-based
approach to define co-ab the inference and pairwise comparison of networks across conditions, using a threshold-based
approach to define co-abundances when the phenomenon is likely continuous. Furthermore,
previous works showed that the inferred n approach to define co-abundances when the phenomenon is likely continuous. Furthermore, previous works showed that the inferred networks can vary substantially across approaches⁴¹. More problematic, by construction thos previous works showed that the inferred networks can vary substantially across approaches⁴¹. More
problematic, by construction those methods are restricted to categorical predictors, they do not
allow for variable adjus allow for variable adjustment, and they do not provide a formal global test of association. We
recently developed MANOCCA⁴², a formal statistical framework to test the effect of both categorical
and continuous predictor

recently developed MANOCCA⁴², a formal statistical framework to test the effect of both categorical
and continuous predictors on the covariance matrix of a multivariate outcome $-a$ metric directly
proportional to the corecently developed MANOCCA²², a formal statistical framework to test the effect of both categorical
and continuous predictors on the covariance matrix of a multivariate outcome –a metric directly
proportional to the co-a and comportional to the co-abundance- that addresses these methodological gap.

Here, we applied MANOCCA to study host factors associated with variability in the gut

microbiome co-abundance network of 938 healthy particip proportional to the co-abundance network of 938 healthy participants from the M
microbiome co-abundance network of 938 healthy participants from the M
and compared results with multiple standard univariate and multivariate Here, we applicant matter of 938 healthy participants from the Milieu Interieur cohort⁴³,
I compared results with multiple standard univariate and multivariate approaches. We then
inducted an in-depth examination of the microbiome co-abundance network of 938 healthy participants from the Milieu Interieur cohort⁻⁵, and compared results with multiple standard univariate and multivariate approaches. We then conducted an in-depth examinatio and conducted an in-depth examination of the effect of each associated factor on the taxa interaction
network, highlighting the key taxa impacted and how these factors shape the microbiome
composition. Finally, we used our network, highlighting the key taxa impacted and how these factors shape the microbiome
composition. Finally, we used our framework to assess the performances of predictive models of the
associated factor based on taxa co-a composition. Finally, we used our framework to assess the performances of predictive models of the
associated factor based on taxa co-abundances.
Results
Identifying host factors associated with taxa co-abundance
The com

Results

Examples associated factor based on taxa co-abundances.
 Results
 Results
 Composition of the gut microbiome of a single individual can vary with the many host factors
 **Composition of the gut microbiome of a single Results

Results**
 Results
 Composition of the gut microbiome of a

driving the molecular environment of the g

characteristics might promote specific mechanis $\frac{1}{2}$
 $\frac{1}{2}$ Identifying host factors associated with taxa co-abundance
The composition of the gut microbiome of a single individual can vary with the many host factors The molecular environment of the gut. Exposure to a given environment and host inacteristics might promote specific mechanisms, inducing a collaboration across a limited number species, while another environment would prom characteristics might promote specific mechanisms, inducing a collaboration across a limited number
of species, while another environment would promote only a subset of the same species. The overlap
of such mechanisms can characteristics might promote represent mechanisms, including a subset of the same species. The overlap
of such mechanisms can result in various co-abundances independently of a mean effect of the
exposures in question (Fi of such mechanisms can result in various co-abundances independently of a mean effect of the
exposures in question (Fig. 1). We screened 80 host variables, including demographics, socio-
exposures in question (Fig. 1). We exposures in question (Fig. 1). We screened 80 host variables, including demographics, socio-

exposures in question (Fig. 1). We screened 80 host variables, including demographics, socioexposures in question (Fig. 1). We screened 80 host variables, including demographics, socio-

processional, and dietary habits measurements (Table 31), for association with overall taxa co-
abundance network in healthy individuals using MANOCCA. We conducted analyses at the species,
genus, and family levels, focus

genus, and family levels, focusing on the most common taxa⁴⁴, including respectively 675, 718, and
151 taxa after quality control filtering (Fig. 2 and Table S2). Except when used as predictors, all
analyses were adjust 151 taxa after quality control filtering (Fig. 2 and Table S2). Except when used as predictors, an analyses were adjusted for age, sex and body mass index (BMI).

We identified associations with co-abundance variability a We identified associations with co-abundance variability at
after correction for multiple testing $(n = 8,000 \text{ tests}, P \text{ threshold}$
 10^{-55} , $P_{genus} = 3.5 \times 10^{-56}$, $P_{family} = 9.2 \times 10^{-37}$), sex $(P_{species} = 2.2 \times 10^{-18})$, smoking $(P_{species} = 2.8 \$ after correction for multiple testing ($n = 8,000$ tests, P threshold = 6.25 x 10⁻⁶) with age ($P_{species} = 2.0$ x 10⁻⁵⁵, $P_{genus} = 3.5$ x 10⁻⁵⁶, $P_{family} = 9.2$ x 10⁻³⁷), sex ($P_{species} = 2.2$ x 10⁻¹⁷, $P_{genus} = 6.3$ x 10⁻²², 10⁻⁵, $P_{genus} = 3.5 \times 10^{-5}$, $P_{family} = 9.2 \times 10^{-5}$), sex $(P_{species} = 2.2 \times 10^{-5}$, $P_{genus} = 6.3 \times 10^{-2}$, $P_{family} = 3.1 \times 10^{-18}$), smoking $(P_{species} = 2.8 \times 10^{-14}$, $P_{genus} = 1.6 \times 10^{-20}$, $P_{family} = 5.6 \times 10^{-13}$ (Fig. 3). Analyses 18) level further identified an association with body mass index ($P_{genus} = 5.9 \times 10^{-6}$). Note that MANOCCA uses a dimension-reduction step to address the large number of parameters in the taxa covariance matrix. Varying t level further identified an association with body mass index (P_{genus} = 5.9 x 10°). Note that MANOCCA uses a dimension-reduction step to address the large number of parameters in the taxa covariance matrix. Varying the par uses a dimension-reduction-reduc matrix. The parametrization of this step provided in Figures S1-S2 and Supplementary Notes. We also conducted sensitivity analyses, assessing the variability in the results when applying MANOCCA to random subsets of availa

analysis are provided in Figures 31-52 and supplementary Notes. We also conducted sensitivity
analyses, assessing the variability in the results when applying MANOCCA to random subsets of
available taxa. Overall, the larg available taxa. Overall, the larger the set of taxa included, the stronger the association signal (Fig. 53), highlighting a global effect of the four factors on the microbiome co-abundance network.
We applied two alternat **avantable taxa.** Overall, the larger the set of taxa included, the stronger the association signal (Fig. 53), highlighting a global effect of the four factors on the microbiome co-abundance network.
We applied two altern S3), inginighting a global effect of the four factors on the intertoblome co-abundance network.
We applied two alternative multivariate approaches for comparison purposes: a st
MANOVA, testing for association between each MOVA, testing for association between each host factor and the joint abundance of taxa, and
ha diversity using the Shannon and Simpson indexes (Fig. 3, Table S3). Some factors were
nificant after correction for multiple t alpha diversity using the Shannon and Simpson indexes (**Fig. 3, Table S3**). Some factors were
significant after correction for multiple testing (*P* threshold of 6.3 x 10⁻⁴ accounting for the 80 tests
per approach) but alpha diversity using the Shannon and Simpson indexes (Fig. 3) Table 33). Some factors were
significant after correction for multiple testing (P threshold of 6.3 x 10⁻⁴ accounting for the 80 tests
per approach) but at a significant after correction for multiple testing (*P* threshold of 6.3 x 10⁻ accounting for the 80 tests
per approach) but at a much lower significance level. The MANOVA identified an association with age
at the specie per approach) but a much lower significance in the species and family level ($P_{species} = 5.2 \times 10^{-6}$, $P_{family} = 1.0 \times 10^{-29}$) and with sex at the family level ($P_{Simpson} = 3.4 \times 10^{-4}$, $P_{Shannon} = 3.9 \times 10^{-5}$) and the Shannon index ($P = 5.2 \times 10^{-6}$). Both Simpson and Shannon indexes identified a signal with age at the family level ($P_{Simpson} = 3.4 \times 10^{-4}$, $P_{Shannon} = 3.9 \times 10^{-5}$) and the Shannon index also identified age at the genus level ($P_{Shannon} = 1.6$ $(P_{Sinnpon} = 3.4 \times 10^{-7}, P_{Shannon} = 3.9 \times 10^{-7})$ and the Shannon index also identified age at the genus level $(P_{Shannon} = 1.6 \times 10^{-5})$. Altogether, the additional signals observed with smoking and BMI, and the stronger association of (*P_{shannon}* = 1.6 x 10⁻). Altogether, the additional signals observed with smoking and BMI, and the stronger association of age and sex with the covariance-based approach as compared to mean-based and diversity index a stranger information content of the co-
abundances of taxa over these existing metrics to describe the relationship between the gut
microbiome of healthy individuals and these host variables.
Contribution of taxa on the c

signal can be easily extracted. We derived these weights for the age, sex, smoking and BMI signals, Franchine of taxa on the co-abundance association signal

By construction of taxa on the co-abundance association signal

By construction, the MANOCCA statistic is a weighted sum of the contribution from each pair of

taxa **Contribution of taxa on the co-abundance association**
By construction, the MANOCCA statistic is a weighted s
taxa (see **Methods**), so that the contribution weight of eac
signal can be easily extracted. We derived these we (
t si
f f **Contribution of taxa on the co-abundance association signal**
By construction, the MANOCCA statistic is a weighted sum of the contribution from each pair of By construction, the Construction weight of each taxon on the co-abundance association
al can be easily extracted. We derived these weights for the age, sex, smoking and BMI signals,
using on the genus level, which display taxa (see Methods), so that the contribution weight of each taxon on the co-abundance association
signal can be easily extracted. We derived these weights for the age, sex, smoking and BMI signals,
focusing on the genus le signal can be easily and signal can be easier association. As shown in Figure S4a, most
focusing on the genus level, which displayed the strongest association. As shown in Figure S4a, most
faxa display a non-zero contribut focusing on the genus lever, which displayed the strongest association. As shown in Figure 3-a, most taxa display a non-zero contribution to the association, highlighting again the global effect of these factors on the mi factors on the microbiome composition. Nevertheless, these contributions show substantial
heterogeneity, with a limited number of taxa pairs displaying outstanding weights as compared to
the expected under the null (Fig. heterogeneity, with a limited number of taxa pairs displaying outstanding weights as compared to
the expected under the null (Fig. **S4a-b**). To assess potential links between effects on co-abundance
and effects on relativ the expected under the null (Fig. S4a-b). To assess potential links between effects on co-abundance
the expected under the null (Fig. S4a-b). To assess potential links between effects on co-abundance
and effects on relati the expected under the null (Fig. 34a-b). To assess potential links between entects on co-abundance
and effects on relative abundance, we compared the MANOCCA weights against the univariate mean
effect *P*-value associati effect *P*-value associations derived using a linear regression (see **Methods** and **Table S4**). As shown in
Figure S4c, we observed a positive and significant correlation between the two terms for all four
variables (age, Figure S4c, we observed a positive and significant correlation between the two terms for all four variables (age, $P = 1.6 \times 10^{-12}$; sex, $P = 1.3 \times 10^{-40}$; smoking, $P = 2.1 \times 10^{-5}$; BMI, $P = 4.6 \times 10^{-15}$), suggesting a variables (age, $P = 1.6 \times 10^{-12}$; sex, $P = 1.3 \times 10^{-40}$; smoking, $P = 2.1 \times 10^{-5}$; BMI, $P = 4.6 \times 10^{-15}$, suggesting a dual impact of these factors on the abundance and the co-abundance of many of these genera, in agr variables (age, $P = 1.6 \times 10^{-4}$; sex, $P = 1.3 \times 10^{-4}$; smoking, $P = 2.1 \times 10^{-4}$; BMI, $P = 4.6 \times 10^{-4}$), suggesting a dual impact of these factors on the abundance and the co-abundance of many of these genera, in agree genera, in agreement with the existing literature²⁻¹². The correspondence is especially marked for sex. Several top genera contributing to the co-abundance also pass a stringent Bonferroni correction threshold ($P < 8.7 \$ genera, in agreement with the existing literature²¹². The correspondence is especially marked for
sex. Several top genera contributing to the co-abundance also pass a stringent Bonferroni correction
threshold ($P < 8.7 \times$ threshold ($P < 8.7 \times 10^{-7}$) for univariate association. This includes *Bacteroides* ($P = 1.9 \times 10^{-7}$), threshold $(P < 8.7 \times 10^7)$ for univariate association. This includes *Bacteroides* $(P = 1.9 \times 10^7)$,

Coprococcus B (P = 7.1 x 10⁻), Anaerotruncus (P = 8.5 x 10⁻), Agathobacter (P = 3.0 x 10⁻), Alistipes (P

= 2.2 x 10⁻⁸), and Intestinimonas (P = 1.9 x 10⁻⁹).

We next investigated the characteristics of the top = 2.2 x 10°), and *Intestinimonas* ($P = 1.9$ x 10°).
We next investigated the characteristics of contribution to the variability in co-abundance 7, 9 and 6 overlapping sets of families, covered age, sex, smoking and BMI, We next investigated the characteristics of the characteristics of the top states of 9,

1) and 6 overlapping sets of families, covered 50% or more of those top contributing genera with

1), sex, smoking and BMI, respectiv 2.9 and 6 overlapping sets of families, covered 50% or more of those top contributing genera with
age, sex, smoking and BMI, respectively. Those key families include the ones with the highest relative
abundance, *Lachnospi* age, sex, smoking and BMI, respectively. Those key families include the ones with the highest relative
abundance, Lachnospiraceae (23.6%), Bacteroidaceae (22.4%), Ruminococcaceae (7.8%),
Acutalibacteraceae (6.4%), Oscillos abundance, Lachnospiraceae (23.6%), Bacteroidaceae (22.4%), Ruminococcaceae (7.8%),
Acutalibacteraceae (6.4%), Oscillospiraceae (5.6%), but also some rare ones: Eggerthellaceae (0.5%),
Peptostreptococcaceae (0.6%), Muribac abundance, Lachnospiraceae (23.6%), Bacteroidaceae (22.4%), Naminococcaceae (7.6%),
Acutalibacteraceae (6.4%), Oscillospiraceae (5.6%), but also some rare ones: Eggerthellaceae (0.5%),
Peptostreptococcaceae (0.6%), Muriba *Reptostreptococcaceae* (0.4%), Oscillospiraceae (5.6%), but also some rare ones. *Eggertheliaceae* (0.5%),
Peptostreptococcaceae (0.6%), *Muribaculaceae* (0.5%), and four unspecified Co-Abundance Groups
(CAG-74, CAG-508 reprostreptococcaceae (0.6%), Muribaculaceae (0.5%), and four dispectived co-Abundance Groups (CAG-74, CAG-508, CAG-272, CAG-138) (Fig. 4a). While the representativity of families involved in co-
abundance variability was (CAG-74, CAG-508, CAG-272, CAG-138) (Fig. 4a). While the representativity of families involved in co-
abundance variability was somewhat proportional to their relative abundance, we noted several
major differences. Some fa major differences. Some families, such as *Bacteroidaceae* are largely underrepresented in the co-
abundance signal. Conversely, co-abundance involving the *Oscillospiraceae* family are strongly
impacted by all four factor major differences. Some rammes, such as *butteroidatede* are largely didertepresented in the co-
abundance signal. Conversely, co-abundance involving the *Oscillospiraceae* family are strongly
impacted by all four factors,

abundance signal. Conversely, co-abundance involving the Oscillospiraceae family are strongly
impacted by all four factors, and by BMI in particular. Other families also display factor-specific
enrichment, including *Pepto* impresentially, including *Peptostreptococcaceae* and *Muribaculaceae* with smoking, two families
already reported to be associated with smoking status^{45,46}.
Finally, we examined the composition of the top contributing p enrichment, including Peptostreptococcaceae and Muridoccalaceae with smoking, two families
already reported to be associated with smoking status^{45,46}.
Finally, we examined the composition of the top contributing pairs of already reported to be associated with smoking status^{45,46}.
Finally, we examined the composition of the top co
whether they involve changes in interaction within the sainteraction between genera from different families (Finally (intra-family co-abundance) or
Finally interaction between genera from different families (cross-family co-abundance) (**Fig. 4b**). Within-
hily co-abundance represented a small fraction of all interactions, with th wheteraction between genera from different families (cross-family co-abundance) (Fig. 4b). Within-
family co-abundance represented a small fraction of all interactions, with the vast majority of
interactions taking place b Interaction between genera from different families (cross-family co-abundance) (Fig. 4b). Within-
family co-abundance represented a small fraction of all interactions, with the vast majority of
interactions taking place be Families (Fig. 4c-f). Besides a few exceptions
(e.g. variability in the co-abundance between taxa from *Oscillospiraceae* and *Acutalibacteraceae*
families for BMI), we did not observe any marked pattern.
Network of impac

interactions taking place between genera of different families (Fig. 4c-f). Besides a few exceptions
(e.g. variability in the co-abundance between taxa from *Oscillospiraceae* and *Acutalibacteraceae*
families for BMI), we (e.g. variability in the co-abundance between taxa from Oscillospiraceae and Acutalibacteraceae
families for BMI), we did not observe any marked pattern.
Network of impacted taxa
We formed a network of co-abundance varia **Network of impacted taxa**
We formed a network of co-abundance variation from
to the MANOCCA association signal with age, sex, smoki
Material). Altogether, these 4,000 pairs involved a total of
there was a substantial ov ノ
ししょう **Network of impacted taxa**
We formed a network of co-abundance variation from the top 1,000 pairs of genera contributing the MANOCCA association signal with age, sex, smoking, and BMI (Fig. 5a, and supplementary
terial). Altogether, these 4,000 pairs involved a total of 476 unique genera. As shown in Figure 5b,
re was a substantial overlap i to the MANOCCA association signal with age, sex, sinoking, and BMI (Fig. 3a, and supplementary
 Material). Altogether, these 4,000 pairs involved a total of 476 unique genera. As shown in Figure 5b,

there was a substant Material). Altogether, these 4,000 pairs involved a total of 476 unique genera. As shown in Figure 5b, there was a substantial overlap in pairs of co-abundant taxa impacted by sex and BMI (N= 658 pairs, approximately 66% o approximately 66% of sex and BMI associated pairs), and age and smoking habits (N=306 pairs,
approximately 31% of age and smoking-associated pairs). Conversely, the overlap across the nine
other pairs of factors was null o approximately 31% of age and smoking-associated pairs). Conversely, the overlap across the nine
other pairs of factors was null or negligible. At the taxa level, a core of 200 genera were shared
across all predictors (Fig. The pairs of factors was null or negligible. At the taxa level, a core of 200 genera were shared
across all predictors (Fig. 5c). Other genera were evenly spread across factors, except for age and
smoking which involved 49 Find a core of the pairs of factors and production, with a share of the taxa level of the taxa in smoking which involved 49 (13%) and 54 (15%) genera specific to those two factors, respectively.
Together, this suggests tha across all predictors (Fig. 5c). Other genera were evenly spread across factors, except for age and
smoking which involved 49 (13%) and 54 (15%) genera specific to those two factors, respectively.
Together, this suggests t smoking which is suggests that the four factors partly control the interacting partners of this core
genera. As shown in Figure 5d, increased age and smoking are mostly associated with a decrease in
co-abundances, with 86% The Figure 1.1 Section in Figure 5d, increased age and smoking are mostly associated with a decrease in co-abundances, with 86% and 75% of top pairs displaying negative associations with these two factors, respectively. BM genera. As shown in Figure 5d, increased age and showing are mostly associated with a decrease in
co-abundances, with 86% and 75% of top pairs displaying negative associations with these two
factors, respectively. BMI exhi

factors, respectively. BMI exhibited an opposing trend, with 72% of top pairs showing an increase in
co-abundance with increasing BMI. The sex predictor displayed a more balanced distribution, with a
60% decrease and a 40% factors, respectively. Each increasing BMI. The sex predictor displayed a more balanced distribution, with a 60% decrease and a 40% increase of co-abundance in males as compared to females.

Multiple patterns emerged when 60% decrease and a 40% increase of co-abundance in males as compared to females.

Multiple patterns emerged when exploring the contributing genera. Those shared between

smoking and age are especially enriched in the *Osci* Multiple patterns emerged when exploring the contributing genera. Those s
smoking and age are especially enriched in the *Oscillospirales* order (e.g. *Massilliocl*
180, CAG-1427, *Marseille-P4683, and MGYG-HGUT-03297*), a between and age are especially enriched in the Oscillospirales order (e.g. Massillioclostridium, CAG-

2, CAG-1427, Marseille-P4683, and MGYG-HGUT-03297), and consistently exhibited reduced co-

undances with the core taxa smoking and age are especially enfielded in the oscillospirales order (e.g. Massilinocloschatam, exception, 180, CAG-1427, Marseille-P4683, and MGYG-HGUT-03297), and consistently exhibited reduced co-
abundances with the c 180, CAG-1427, Marseine-P4683, and MGTO-HGOT-03237), and consistently exhibited reduced co-
abundances with the core taxa. Among genera unique to smoking, *Bacteroides A* genus was by far
the most impacted, showing a reduc abundances with the core taxa. Among genera unique to smoking, *bucceroides* A genus was by far
the most impacted, showing a reduction of co-abundances with many of the core taxa. Interestingly,
the relative abundance of t the relative abundance of this common genus (detected in 99% of participants, **Table S2**) was not associated with smoking status in our data (*P*-value from a linear regression equals 0.26, **Table S4**). This suggests that the relative abundance of this common genus (detected in 99% of participants, Table 32) was not
associated with smoking status in our data (*P*-value from a linear regression equals 0.26, **Table S4**).
This suggests that sm associated with smoking status in our data (P-value from a linear regression equals 0.20, Table 34).
This suggests that smoking might only break some of its interactions with other genera without $T_{\rm eff}$ suggests that smoking might only break some of its interactions with other genera with

missed by standard abundance-based approaches. A subset of genera contributing to association
with BMI, sex and smoking was enriched from the *Lachnospiraceae* family (*Ruminococcus A, Dorea,*
Coprococcus B, GCA-900066135, missed by The Mill, sex and smoking was enriched from the *Lachnospiraceae* family (*Ruminococcus A, Dorea,*
Coprococcus B, GCA-900066135, Agathobacter), displaying both increased and decreased co-
abundances across predic Coprococcus B, GCA-900066135, Agathobacter), displaying both increased and decreased co-
abundances across predictors. Both *Lachnospiraceae* relative abundance and co-abundance with
other taxa have already been found to b

exprococcus B, GCA 500006135, Agathobacter), displaying both increased and decreased co-
abundances across predictors. Both *Lachnospiraceae* relative abundance and co-abundance with
other taxa have already been found to b abundances across predictors. Both Lachnosphaceae relative abundance and co-abundance with
other taxa have already been found to be associated with human diseases and obesity in
particular^{35,47,48}.
Finally, to assess the particular^{35,47,48}.

Finally, to assess the relevance of the covariance-based co-abundances network impacted, we

considered two alternative approaches. A naïve permutation-based approach, inspired from the

existent⁴¹ Finally, the relevance approaches. A naïve permutation-based approach, inspired from the stent⁴¹, that produces an empirical comparison of pairwise covariance between all taxa (see **thods**), and the commonly used SparCC existent⁴¹, that produces an empirical comparison of pairwise covariance between all taxa (see **Methods**), and the commonly used SparCC⁴⁹ approach (see **Supplementary Notes** for a detailed description of the two approa Methods), and the commonly used SparCC⁻⁻ approach (see **Supplementary Notes** for a detailed description of the two approaches). Note that both the SparCC and the permutation-based approaches, like all existing method, ar approaches, like all existing method, are limited to binary predictors and use a threshold to define
co-abundance in each group studied. Both methods are meant to detect significant differences in
pairwise taxa correlation co-abundance in each group studied. Both methods are meant to detect significant differences in
pairwise taxa correlations across values of a categorical predictor, and should in theory detect effect
on co-abundance varia co-abundance in each group studied. Both methods are meant to detect significant differences in pairwise taxa correlations across values of a categorical predictor, and should in theory detect effect on co-abundance varia particular correlations are interestingly similar to those detected by MANOCCA. However, as showed in the simulation from **Figure S5**, permutation-based shows poor specificity as compared to MANOCCA, and SparCC shows the simulation from **Figure S5**, permutation-based shows poor specificity as compared to MANOCCA, and
SparCC shows the poorest performances in this simulation with almost no power. We applied both
methods to the two binary pr Simulation from Figure 35, permutation-based shows poor specificity as compared to MANOCCA, and
SparCC shows the poorest performances in this simulation with almost no power. We applied both
methods to the two binary pred methods to the two binary predictors, sex and smoking, at the genus level and crossed the results
with MANOCCA's top contributing products. The overlap between MANOCA and the two alternative
methods was very modest, but h with MANOCCA's top contributing products. The overlap between MANOCA and the two alternative
methods was very modest, but highly significant with minimum *P*-values of 1 x 10⁻¹⁴⁵ and 2 x 10⁻¹⁵³ for
sex and smoking res methods was very modest, but highly significant with minimum *P*-values of 1 x 10⁻¹⁴⁵ and 2 x 10⁻¹⁵³ for sex and smoking respectively for the permutation approach (Fig. S6 a-b), and 1 x 10⁻⁷⁰ and 1 x 10⁻⁸² for sex

sex and smoking respectively for the permutation approach (Fig. **S6 a-b**), and 1 x 10⁻⁰ and 1 x 10⁻²
for sex and smoking respectively for the SparCC approach (Fig. **S6c-d**), thus, confirming that those
three alternati For sex and smoking respectively for the sparce approach (Fig. Sec-d), thus, commining that those
three alternative methods do detect some similar network components.
Prediction of individual features based on taxon corre Prediction of individual features based on taxon correlation
Our framework is built out of a linear model where the covariance
level. This is a major advantage over existing correlation approaches⁴¹
complementary analy ? (e r c c c **Prediction of individual features based on taxon correlation**
Our framework is built out of a linear model where the covariance is defined at the individual el. This is a major advantage over existing correlation approaches⁴¹, that allows for a range of
nplementary analyses. One particularly important extension is the possibility of training a
dictive model of an outcome ba level. This is a major advantage over existing correlation approaches⁻², that allows for a range of complementary analyses. One particularly important extension is the possibility of training a predictive model of an ou predictive model of an outcome based on taxa covariance, so that the outcome in question can be
predicted for any new individual based on its microbiome (and conversely). Here, we assessed the
accuracy of MANOCCA to predi predicted for any new individual based on its microbiome (and conversely). Here, we assessed the accuracy of MANOCCA to predict the four most associated features (age, sex, smoking and BMI), using taxa from the species, g predict accuracy of MANOCCA to predict the four most associated features (age, sex, smoking and BMI), using taxa from the species, genus and family level and a 30-fold cross-validation. Accuracy was derived using squaredaccuracy of Manuson and Family level and a 30-fold cross-validation. Accuracy was
derived using squared-correlation (r^2) for continuous outcomes (age and BMI), and using the area
under the receiver operating curve (AUC derived using squared-correlation (r^2) for continuous outcomes (age and BMI), and using the area
under the receiver operating curve (AUC) for binary outcomes (smoking and sex). We compared the
covariance-based predicti

under the receiver operating curve (AUC) for binary outcomes (smoking and sex). We compared the covariance-based prediction model against a standard linear model based on the relative abundance of each single taxa.
As sho covariance-based prediction model against a standard linear model based on the relative abundance
of each single taxa.
As showed in **Figure 6**, the MANOCCA strongly outperforms the standard mean-based prediction
model, be covariance based prediction model, being significantly more accurate in all scenarios we considered. Gain in prediction model, being significantly more accurate in all scenarios we considered. Gain in prediction was espec As showed in Fig
As showed in Fig
model, being signifiespecially large for
MANOCCA equals 0
comparison, the me
significantly higher
species, genus and As showed in Figure 6, the MANOCCA strongly outperforms the standard mean-based prediction
del, being significantly more accurate in all scenarios we considered. Gain in prediction was
ecially large for age with up to a t especially large for age with up to a three-fold increase in power. The median of r_{age}^2 from the
MANOCCA equals 0.27, 0.25 and 0.18 for models based on species, genus and family, respectively. In
comparison, the mean-b especially large for age with up to a three-fold increase in power. The median of r_{age}^2 from the MANOCCA equals 0.27, 0.25 and 0.18 for models based on species, genus and family, respectively. In comparison, the mean-b uye comparison, the mean-based model r_{age}^2 equal 0.10, 0.07 and 0.05, respectively. Prediction was also significantly higher for sex, with AUCs of 0.66, 0.64, and 0.64 for the mean-based model at the species, genus and fam species, genus and family level, respectively, and AUCs of 0.67, 0.69 and 0.70 for the covariance-
based model. This confirms the higher information content of co-abundance as compared to
abundance, and demonstrates the va uye $\tilde{\tau}_{ge}$ equal 0.10, 0.07 and 0.05, respectively. Prediction was also
is of 0.66, 0.64, and 0.64 for the mean-based model at the
ectively, and AUCs of 0.67, 0.69 and 0.70 for the covariance-
ther information content of species, genus and family level, respectively, and AUCs of 0.67, 0.69 and 0.70 for the covariance-
based model. This confirms the higher information content of co-abundance as compared to
abundance, and demonstrates the va abundance, and demonstrates the validity of using covariance-based co-abundances for prediction
purposes.
The higher information content of co-abundances for prediction
purposes. $\tt purpose.$ purposes.

Discussion

dence that species form functionally coherent groups that work together to exploit the same
ources from the local environment³⁸. Studying those groups, rather than each single taxa, might
p better understand the role of resources from the local environment³⁸. Studying those groups, rather than each single taxa, might
help better understand the role of the microbiome in human health outcomes. With this same
argument, it has already been argument, it has already been proposed to study those groups through variability in the network of co-abundances^{35,39}. Although simple in principle the implementation of this objective can be challenging in practice. He ary and alternation of this objective can be challenging in practice. Here, we applied MANOCCA⁴², a recently developed method, that allows to conduct a formal statistical test of association between taxa covariance and

challenging in practice. Here, we applied MANOCCA⁴², a recently developed method, that allows to conduct a formal statistical test of association between taxa covariance and any predictor, whether continuous, categorical continuous, categorical or binary, to investigate host features associated with the gut microbiome
co-abundance in 938 healthy individuals from the Milieu Interieur cohort.
We identified highly significant associations bet co-abundance in 938 healthy individuals from the Milieu Interieur cohort.
We identified highly significant associations between taxa co-abundance variability and age, sex,
smoking status and body mass index (BMI). Except f We identified highly significant associations between taxa co-abundar
smoking status and body mass index (BMI). Except for BMI, these associ
three taxonomic levels studied: species, genus, and family. In compariso
and dive between taxonomic levels studied: species, genus, and family. In comparison were detected at all
ee taxonomic levels studied: species, genus, and family. In comparison mean-based multivariate
diversity-based analyses only three taxonomic levels studied: species, genus, and family. In comparison mean-based multivariate
and diversity-based analyses only identified associations with age, and one association with sex at
the family level, but at and diversity-based analyses only identified associations with age, and one association with sex at
the family level, but at a much lower significance level. For the four associated features, there was a
significant correl the family level, but at a much lower significance level. For the four associated features, there was a
significant correlation between contribution to co-abundance and univariate effect on relative
abundance, suggesting t the families and the families in this study we applied it to are sox smoking and BML For all fortures to huild productive models. In this study we applied it to are sox smoking and BML For all fortures at the huild product significant correlation between the features impact both the abundance and co-abundance of taxa.
The network of top contributing genera shows that variability in interactions were concentrated in a
limited number of famili The network of top contributing genera shows that variability in interactions were concentrated in a
limited number of families and are essentially taking place between genera of different families,
rather than between gen Imited number of families and are essentially taking place between genera of different families,

rather than between genera of the same family. The overlap of top contributing taxa over the four

features was substantial, rather than between genera of the same family. The overlap of top contributing taxa over the four
features was substantial, especially between age and smoking, and between sex and BMI, suggesting
potentially shared mechani reatures was substantial, especially between age and smoking, and between sex and BMI, suggesting
potentially shared mechanisms. Finally, we demonstrate that the MANOCCA framework can be used
to build predictive models. In Features was substantially shared mechanisms. Finally, we demonstrate that the MANOCCA framework can be used
to build predictive models. In this study we applied it to age, sex, smoking and BMI. For all features,
the predi

potentially shared meddels. In this study we applied it to age, sex, smoking and BMI. For all features, the predictive power based on co-abundances was significantly and systematically higher than for a standard mean-based the predictive power based on co-abundances was significantly and systematically higher than for a
standard mean-based multivariate model, with up to a three-fold increase in r-squared for age.
Our study also has limitatio trandard mean-based multivariate model, with up to a three-fold increase in r-squared for age.

Our study also has limitations. First, the approach is not applicable to microbiome data of small

sample sizes. Despite the d Standard mean-based multivariate model, which up to a hindeptoted incredibte to microbiome data of
sample sizes. Despite the data reduction steps through principal component analysis, the num
PCs analysed should remain sub The sizes. Despite the data reduction steps through principal component analysis, the number of
analysed should remain substantially larger than the sample size, thus limiting the application to
asets of 100 participants o Between the data reduction in the sample size, thus limiting the application to datasets of 100 participants or more. Hopefully, this will become less of an issue thanks to the increasingly large cohorts available. Second datasets of 100 participants or more. Hopefully, this will become less of an issue thanks to the increasingly large cohorts available. Second, because of that data reduction step, each application requires the selection o increasingly large cohorts available. Second, because of that data reduction step, each application
requires the selection of a number of principal components to be kept. While the optimal parameters
are likely to change increasingly large contrained to the multiple components to be kept. While the optimal parameters
requires the selection of a number of principal components to be kept. While the optimal parameters
are likely to change acr are likely to change across data, this analysis suggests that the gain of a systematic screening over a
range of PCs can overcome the cost of additional multiple testing corrections. Third, the proposed
approach does not m are many continuity on a start with the system many of and the gain of a system in a system corrections. Third, the proposed approach does not model the compositional aspect of the data per se⁵⁰. However, when the dimens range of the data is large enough, as for the analysis of species, genus or family, this issue
becomes negligible (Supplementary Notes and Fig. S7). More importantly, the proposed approach
assess variability in the covaria approach does not model the compositional aspect of the data per se³⁰. However, when the dimension of the data is large enough, as for the analysis of species, genus or family, this issue becomes negligible (**Supplementa** becomes negligible (**Supplementary Notes and Fig. S7**). More importantly, the proposed approach
assess variability in the covariance, and under reasonable assumptions, this variability is independent
of the absolute correl becomes negligible (**Supplementary Notes and Fig. 37**). Wore importantly, the proposed approach
assess variability in the covariance, and under reasonable assumptions, this variability is independent
of the absolute correl of the absolute correlation, so that any remaining bias due to the compositional aspect acts as an offset without impacting our test. Fourth, we demonstrated that covariance can be used for prediction purposes, however, th offset without impacting our test. Fourth, we demonstrated that covariance can be used for prediction purposes, however, the implementation of such predictive model will have to be explored further. As for prediction model of the meral interest. The implementation of such predictive model will have to be explored
further. As for prediction model based on relative abundance, some species might not be quantified
in the targeted samples for pre Further. As for prediction model based on relative abundance, some species might not be quantified
in the targeted samples for prediction. This issue will be exacerbated when working with thousands
of covariance terms. One in the targeted samples for prediction. This issue will be exacerbated when working with thousands
of covariance terms. One possible solution is to develop sparse predictive models focusing on pairs of
taxa that are fairly in the targeted samples of covariance terms. One possible solution is to develop sparse predictive models focusing on pairs of taxa that are fairly common, instead of using the entire covariance matrix. Furthermore, we use taxa that are fairly common, instead of using the entire covariance matrix. Furthermore, we used
simple linear predictive models for both abundance and co-abundance. Future work might
investigate the use of more complex me taxa that are fairly commonly instead of a bundance and co-abundance. Future work might investigate the use of more complex methods⁵¹ to combine the proposed covariance into prediction models. sinvestigate the use of more complex methods⁵¹ to combine the proposed covariance into prediction models. investigate the use of more complex methods51 to combine the proposed covariance into prediction

Through the characterization of the links between variability in gut microbiome taxa coabundance and both binary and continuous host features when all existing methods are restricted
co-abundance and both binary and continuous host features when all existing methods are restricted
to *ad hoc* comparisons of Existent. First, the proposed approach and both binary and continuous host features when all existing methods are restricted
to *ad hoc* comparisons of inferred networks across a limited number of conditions. Second, our
 to *ad hoc* comparisons of inferred networks across a limited number of conditions. Second, our framework allows for covariate adjustment, so that the respective effects of correlated factors can be deciphered from one an tramework allows for covariate adjustment, so that the respective effects of correlated factors can
be deciphered from one another. Third, our covariance-based approach provides a mean to derive a
co-abundance metric at th be deciphered from one another. Third, our covariance-based approach provides a mean to derive a co-abundance metric at the individual level, allowing for a range of secondary analyses, including the development of co-abu co-abundance metric at the individual level, allowing for a range of secondary analyses, including the
development of co-abundance-based predictive models. Altogether, the proposed approach open
paths for various co-abund co-abundance metric at the individual level, allowing for a range of secondary analyses, including the
development of co-abundance-based predictive models. Altogether, the proposed approach open co-abundance-based predictive models. Altogether, the proposed approach open
paths for various co-abundance analyses. It is highly complementary to recent efforts to develop
experimental design to study co-abundance (e.g. paths for various co-abundance-analyses. It is highly complementary to recent efforts to develop
experimental design to study co-abundance (e.g. 52). It can be used to produce new working
hypothesis, and assess statis paths for various co-abundance (e.g. ⁵²). It can be used to produce new working
hypothesis, and assess statistical evidence for effect on co-abundance from both observational and
experimental data. experimental design to study co-abundance (e.g. ⁵²). It can be used to produce new working
hypothesis, and assess statistical evidence for effect on co-abundance from both observational and
experimental data. hypothesis, and assess statistical evidence for effect on co-abundance for effect on co-abundance from both observations.
experimental data. experimental data.

Methods

Milieu Interieur gut microbiome data
The Milieu Intérieur Consortium is a population-based cohort initiated in September, 2012⁴³. It The Milieu Intérieur Consortium is a population-based cohort initiated in September, 2012⁻⁻. It nprises 1,000 healthy volunteers, all recruited in the suburban Rennes area (Ille-et-Vilaine, tagne, France), with a 1:1 se Bretagne, France), with a 1:1 sex ratio (500 males, 500 females) and an equal distribution across 5 decades (20 to <30 y, 30 to <40 y, 40 to <50 y, 50 to <60 y). The primary objectives of the MI Consortium are to define t Bretagne, France), France, Fr Consortium are to define the naturally occurring variability in a healthy population's immune
phenotypes and to characterize genetic, environmental and clinical factors driving this variability. The
cohort collected a bro Phenotypes and to characterize genetic, environmental and clinical factors driving this variability. The
cohort collected a broad range of variables, including genetic, genomic, and environmental data, on
most participants phenotypes and a broad range of variables, including genetic, genomic, and environmental data, on most participants. On their first visit the volunteers were also asked to fill in an extended form about socio-demographic, most participants. On their first visit the volunteers were also asked to fill in an extended form about
socio-demographic, lifestyle and family health history, all recorded in an electronic case report form
(eCRF). Gut mi socio-demographic, lifestyle and family health history, all recorded in an electronic case report form (eCRF). Gut microbiota composition was obtained from shotgun metagenomics sequencing, and taxonomic levels were reconst (eCRF). Gut microbiota composition was obtained from shotgun metagenomics sequencing, and
taxonomic levels were reconstructed by summing the normalized abundances within a branch at a
given level (Fig. 2), resulting in a (eCRF). Gut microbiota composition was obtained from shotgun metagenomics sequencing, and
taxonomic levels were reconstructed by summing the normalized abundances within a branch at a
given level (Fig. 2), resulting in a

Covariance method

the level (Fig. 2), resulting in a total of 13,446 unique bacterial species. Further description of the
data generation are provided in **Supplementary Notes.**
Covariance method
Variability in the correlation between two s **Covariance method**
 Covariance Covariance method

Variability in the correlation between two standard

through the element-wise product of those outcomes.
 Y_1 and Y_2 is expressed as $\rho_{Y_1Y_2} = cov(Y_1, Y_2)/(\sigma_{Y_1}\sigma_{Y_2})$,

standardized outcomes an ough the element-wise product of those outcomes. The Pearson correlation coefficient between
and Y_2 is expressed as $\rho_{Y_1Y_2} = cov(Y_1, Y_2)/(\sigma_{Y_1}\sigma_{Y_2})$, with $cov(Y_1, Y_2) = \mathbb{E}[Y_1Y_2] - \mathbb{E}[Y_1]\mathbb{E}[Y_2]$. For
ndardized Y_1 and Y_2 is expressed as $\rho_{Y_1Y_2} = cov(Y_1, Y_2) / (\sigma_{Y_1} \sigma_{Y_2})$, with $cov(Y_1, Y_2) = \mathbb{E}[Y_1Y_2] - \mathbb{E}[Y_1]\mathbb{E}[Y_2]$. For standardized outcomes and a sample size N, it can be re-expressed as the average of the elemen standardized outcomes and a sample size N, it can be re-expressed as the average of the element-
vise product across individuals: $\rho_{Y_1Y_2} = (\sum_{i=1...N} Y_{1i}Y_{2i})/N$. It follows that the effect of a predictor X
on $cor(Y_1, Y_$ sample size N, it can b
 $: v \times v = (\sum_{i=1}^{n} N_i Y_i)^T$ reasonable assumptions, this test is independent of mean and variance effect⁴².

on $cor(Y_1, Y_2)$ can be tested using a standard least-squares regression framework where *X* is treated
as a predictor and the product Y_1Y_2 as the outcome. One can easily demonstrate that, under
reasonable assumptions, as a predictor and the product Y_1Y_2 as the outcome. One can easily demonstrate that, under
reasonable assumptions, this test is independent of mean and variance effect⁴².
Extending the method to more than two outcom reasonable assumptions, this test is independent of mean and variance effect⁴².

Extending the method to more than two outcomes can be done through the following three

steps: i) starting with *K* centered outcomes Y_1 External point of the method outcomes $Y_1, ..., Y_K$, all the pairwise products are computed:
 $= Y_i Y_j$ for $i \in [\![1, K]\!]$ and $i < j$; ii) The P_{ij} products are then mapped to the quantiles of a

rmal distribution using an inver $P_{ij} = Y_i Y_j$ for $i \in [\![1, K]\!]$ and $i < j$; ii) The P_{ij} products are then mapped to the quantiles of a
normal distribution using an inverse-rank normal transformation; iii) To reduce the dimension of
product matrix, P is t formal distribution using an inverse-rank normal transformation; iii) To reduce the dimension of
product matrix, P is then projected in a reduced latent space of dimension $p \ll \frac{k(k-1)}{2}$ using the
Principal Components An product matrix, *P* is then projected in a reduced latent space of dimension $p \ll \frac{k(k-1)}{2}$ using the
Principal Components Analysis transformation: $PC_r = Q_r = \sum_{i=0}^{K} \sum_{j>i}^{K} \lambda_{ij}^{(r)} Y_i Y_j$; iv) The resulting
Principal Co product matrix, *P* is then projected in a reduced latent space of dimension $p \ll \frac{\kappa(\kappa-1)}{2}$ using the
Principal Components Analysis transformation: $PC_r = Q_r = \sum_{i=0}^K \sum_{j>i}^K \lambda_{ij}^{(r)} Y_i Y_j$; iv) The resulting
Principal Principal Components Analysis transformation: $PC_r = Q_r = \sum_{i=0}^{n} \sum_{j>i}^{n} \lambda_{ij}^{V}$
Principal Components (PC) are then mapped to the quantiles of a norm
inverse-rank transformation, and scaled. This gives, for N considered $\sum_{i=0}^{R} \sum_{j>i} \lambda_{ij}^{V_i} Y_i Y_j$; iv) The resulting
of a normal distribution using an
isidered individuals, a matrix **Q** of
nation of each step is available in⁴².
itrix **C**, which can be continuous,
or and the covariance $i=0$ $\sum_{j>i}^{n}$ inverse-rank transformation, and scaled. This gives, for *N* considered individuals, a matrix **Q** of
dimension $N \times p$ that we can use for the test. A detailed explanation of each step is available in⁴².
Finally, given a dimension $N \times p$ that we can use for the test. A detailed explanation of each step is available in⁴².
Finally, given a scaled predictor X and scaled covariates matrix C , which can be continuous, categorical or binar

dimension $N \times p$ that we can use for the test. A detailed explanation of each step is available in⁻².
Finally, given a scaled predictor X and scaled covariates matrix **C**, which can be continuous,
categorical or binar Finally, given a standard multivariate model: $Q \sim X + C$.

When applied to taxa, we varied the number of principal components used in MANOCCA from

two to one hundred but limited the number of PC analysed for each predictor conducted using a standard multivariate model: $Q \sim X + C$.

When applied to taxa, we varied the number of principal components used in MANOCCA from

two to one hundred but limited the number of PC analysed for each predicto When applied to taxa, we varied the number of princit
two to one hundred but limited the number of PC an
guidelines provided in⁴², and used a stringent multiple tes
the various number of PCs considered. Additional detai b to one hundred but limited the number of PC analysed for each predictor based on the delines provided in⁴², and used a stringent multiple testing significance threshold to account for various number of PCs considered. guidelines provided in⁴², and used a stringent multiple testing significance threshold to account for
the various number of PCs considered. Additional details are provided in **Supplementary Notes** and
Figures S1-2.
Co guidelines provided in²², and used a stringent multiple testing significance threshold to account for
the various number of PCs considered. Additional details are provided in **Supplementary Notes** and
Figures S1-2.
Co

Figures S1-2.
 Contribution of taxa to covariance association signal

All the steps in the derivation of the statistical test are linear operations, which means that the

contribution of features contributing to the MANO Figures 31-2.
Contribution
All the ste
contribution n
|
| **Contribution of taxa to covariance association signal**
All the steps in the derivation of the statistical test are linear operations, which means that the All the steps in the derivative is the statistical test are linear operation, make intended the intended test
tribution of features contributing to the MANOCCA association signal can be summed. Two types contribution of features contributing to the MANOCCA association signal can be summed. Two types

the covariance contribution assigned to each single taxon. The contribution of a given pair of taxa *i* and *j* to the covariance signal, $\phi(P_{ij})$, is defined as the square of the PCA loadings multiplied by the univariate and *j* to the covariance signal, $\phi(P_{ij})$, is defined as the square of the PCA loadings multiplied by the univariate association coefficient $\hat{\beta}^2$ of the corresponding principal components with the considered predict univariate association coefficient $\hat{\beta}^2$ of the corresponding principal components with the considered predictor: $\phi(P_{ij}) = \sum_{r=1}^p \hat{\beta}_r^2 (\lambda_{ij}^{(r)})^2$, where $\lambda_{ij}^{(r)}$ is the loading of the *ij* pair of taxa for PC univariate association coefficient β^2 of the corresponding principal components with the considered
predictor: $\phi(P_{ij}) = \sum_{r=1}^p \hat{\beta}_r^2 (\lambda_{ij}^{(r)})^2$, where $\lambda_{ij}^{(r)}$ is the loading of the *ij* pair of taxa for PC *r* . The total number of PCs included in the analysis. The single taxa contribution, $\psi(Y_i)$, can be derived
by summing its contributions across all pairs: $\psi(Y_i) = \sum_{j=1}^{K-1} \phi(P_{ij})$, with $j \neq i$, and K is the total
number of μ_{ij}) = $\Delta_{r=1}$ Pr χ_{ij}
ber of PCs included
ts contributions act $r_{r=1}^{\mu} \beta_r^2$ $\binom{r}{r}$, where $\lambda^{(r)}$ 丿
:: Y_i) = $\sum_{j=1}^{n-1} \phi(P_{ij})$

Environmental association screening using MANOCCA

the total number of pairs.
 Environmental association screening using MANOCCA

We applied MANOCCA to identify environmental factors associated with a change in covariances

between taxa at the family, genus and species l and K is the total
and K is the total
ange in covariances
are asked to fill in a
le, and vaccination **Environmental association screening using MA**
We applied MANOCCA to identify environment
between taxa at the family, genus and species level
questionnaire of 44 pages, covering multiple panel
history. We selected the most or the total set of the total set of the total solutions of the total sphires, lifestyle, and vaccination
sphics, lifestyle, and vaccination
ading to the selection of 102 Environmental

We applied M

between taxa at t

questionnaire of

history. We sele

environmental fa |
|
|
|
| We applied Manusdon States and Species level. Milieu Interieur volunteers were asked to fill in a stionnaire of 44 pages, covering multiple panels such as demographics, lifestyle, and vaccination cory. We selected the most questionnaire of 44 pages, covering multiple panels such as demographics, lifestyle, and vaccination
history. We selected the most relevant panels for the study, leading to the selection of 102
environmental factors. Among mistory. We selected the most relevant panels for the study, leading to the selection of 102
environmental factors. Among them was included diet information collected as part of the Nutrinet
study⁵³: the top three factor http://web.arthout.com/selected the most included diet information collected as part of the Nutrinet
study⁵³: the top three factors from the Nutrinet factors analysis, and the Nutrinet profiles were
binarized to yes/no. study⁵³: the top three factors from the Nutrinet factors analysis, and the Nutrinet profiles were binarized to yes/no. We filtered out variables with more than half of the sample size in missing values, or a binary predi binary or a binary predictor with frequencies smaller than 5%. For categorical predictors displaying highly skewed distributions, outliers, defined as value three more standard deviation away from the mean were merged wit highly skewed distributions, outliers, defined as value three more standard deviation away from the
mean were merged with a lower occurring category. A total of 80 environmental factors remained
for analysis. After filteri be a mean were merged with a lower occurring category. A total of 80 environmental factors remained
for analysis. After filtering, we ended up with a cohort of 938 individuals with complete shotgun
sequencing, age, sex and mean analysis. After filtering, we ended up with a cohort of 938 individuals with complete shotgun
sequencing, age, sex and body mass index (BMI) data. For the genus and family levels, we kept taxa
abundant in at least 5% For analysis. After the sex and body mass index (BMI) data. For the genus and family levels, we kept taxa abundant in at least 5% of the cohort, leading to a drop from 1,192 genera to 718 genera, and 216 families to 151 fa shundant in at least 5% of the cohort, leading to a drop from 1,192 genera to 718 genera, and 216
families to 151 families. At the specie level, to avoid having too many species with regard to the
sample size, we set the t Families to 151 families. At the specie level, to avoid having too many species with regard to the
sample size, we set the threshold to 40% of the cohort leading to a drop from 3,885 species to 675
species.
Comparison wit

Families to 151 species.
Species.
Comparison with Manova and alpha diversity
For comparison purposes, we considered three alternative multivariate methods: a standard
MANOVA and the alpha diversity, using the Shannon and S species.
 Comparison with Manova and alpha diversity

For comparison purposes, we considered three alternative multivariate methods: a standard

MANOVA and the alpha diversity, using the Shannon and Simpson indexes. The **Compar**
For c
MANOV,
methodo
were ma
taxa rela しゅうしょう しゅうしゅう しゅうしょう しゅうしゅつ しゅうしゅう しゅうしょう しゅうしょう しゅうしゃ しゅうしゃ いちのとり しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ **Comparison with Manova and alpha diversity**
For comparison purposes, we considered three alternative multivariate methods: a standard MANOVA and the alpha diversity, using the Shannon and Simpson indexes. The screening
methodology was the same as the one used for MANOCCA, though some pre-processing adjustments
were made to match the expected assumptions methodology was the same as the one used for MANOCCA, though some pre-processing adjustments
were made to match the expected assumptions of each method. The MANOVA was applied to the
taxa relative abundances from a given methodology was the same the same prioring of each method. The MANOVA was applied to the taxa relative abundances from a given phylogenic level, which was processed following standards from the literature⁵⁴: proportion taxa relative abundances from a given phylogenic level, which was processed following standards
from the literature⁵⁴: proportion followed by arcsin root transformation followed by a scaling. With
Y the matrix of resu from the literature⁵⁴: proportion followed by arcsin root transformation followed by a scaling. With **Y** the matrix of resulting taxa, *X* the considered predictor, and **C** a matrix of covariates. We applied the Wilk's from the literature⁻⁻⁻: proportion followed by arcsin root transformation followed by a scaling. With **Y** the matrix of resulting taxa, *X* the considered predictor, and **C** a matrix of covariates. We applied the Wilk's size, we could compute a P-value for the statistic : det($\tilde{Y}^T\tilde{Y} - N\hat{\beta}\hat{\beta}^T$)/det ($\tilde{Y}^T\tilde{Y}$) ~ $F(p, N-p-1)$.

the Wilk's lambda test : $\mathbf{Y} \sim X + \mathbf{C}$, and in more details with $\tilde{\mathbf{Y}} = \mathbf{Y} - \beta_c C$ the residual matrix after adjustment from the covariates, $\hat{\beta} = (X^T X)^{-1} (X^T \tilde{Y})$ the regression coefficient and N the samp adjustment from the covariates, $\beta = (X^T X)^{-1} (X^T Y)$ the regression coefficient and N the sample
size, we could compute a *P*-value for the statistic : det $(\tilde{Y}^T \tilde{Y} - N \beta \beta^T)/\det (\tilde{Y}^T \tilde{Y}) \sim F(p, N - p - 1)$.
For the a size, we could compute a *P*-value for the statistic : det($Y'Y - N\beta\beta'$)/det ($Y'Y$) ~ $F(p, N-p-1)$.

For the alpha diversity indexes, the raw abundances were used to the corresponding metric :
 $\alpha_{Shannon} = \sum_{i=1}^{N} \frac{x_i}{\sum_{j=1$ $F_{\text{anmon}} = \sum_{i=1}^{N} \frac{x_i}{\sum_{j=1}^{N} x_j} \log \left(\frac{x_i}{\sum_{j=1}^{N} x_j} \right)$ and $\alpha_{Simpson} = 1 - \sum_{i=1}^{N} \frac{x_i(x_i-1)}{(\sum_{j=1}^{N} x_j)((\sum_{j=1}^{N} x_j)-1)}$. The resulting α is tested in a standard univariate linear regression adjusted for the $\alpha_{Shannon} = \sum_{i=1}^{N} \frac{x_i}{\sum_{j=1}^{N}}$ was tested in a standa $\sum_{j=1}^{n} x_j$ l^{umv} $\frac{1}{\sqrt{N}}$ $\sum_{j=1}^{n} x_j$ $\sum_{i=1}^{N} \frac{x_i}{\sum_{j=1}^{N} x_j} \log \left(\frac{x_i}{\sum_{j=1}^{N} x_j} \right)$ and $\alpha_{Simpson} = 1 - \sum_{i=1}^{N} \frac{x_i(x_i - x_i)}{(\sum_{j=1}^{N} x_j)(\sum_{j=1}^{N} x_j)}$
a standard univariate linear regression adjusted for the covaria
s assessed using a Wald test to th $(\sum_{j=1}^{N} x_j)((\sum_{j=1}^{N} x_j)-1)$ i' . The resulting = was tested in a standard univariate linear regression adjusted for the covariates: $\alpha \sim \delta_X X + \delta_C C$. The effect of X was assessed using a Wald test to the $\hat{\delta}_X$. effect of λ was assessed using a wald test to the θ \overline{a}

Deriving the covariance network
Networks of variation in the covariance were built using the top 1,000 co-abunding pairs derived The MANOCCA test. In representing the network, we included three parameters: the total
mber of connections (qualified through the node size), the actual pairwise taxa connection (edges
the graph), and the direction of hos number of connections (qualified through the node size), the actual pairwise taxa connection (edges
in the graph), and the direction of host factor effect on the covariance (decrease or increase of co-
abundance). For eac number of connections (qualities in the node of contractions (decrease or increase of co-
abundance). For each pair $Y_i Y_j$ adjusted for covariates $C : \widetilde{Y_i Y_j} = Y_i Y_j - (C^T C)^{-1} C^T Y_i Y_j C$, the
direction of effect was derived abundance). For each pair $Y_i Y_j$ adjusted for covariates $C : Y_i Y_j = Y_i Y_j - C$
direction of effect was derived using the sign of the regression coefficient f
 $\beta_{ij} = (X^T X)^{-1} X Y_i Y_j$. For shared pairs with mixed direction of effe $C^T C)^{-1} C^T Y_i Y_j C$, the
or the predictor X:
was colored in black.
the association with
aap from *matplotlib*
al predictor colours. direction of effect was derived using the sign of the regression coefficient for the predictor $X : \beta_{ij} = (X^T X)^{-1} X Y_i Y_j$. For shared pairs with mixed direction of effect, the edge was colored in black.
To facilitate the re $\beta_{ij} = (X^T X)^{-1} X Y_i Y_j$. For shared pairs with mixed direction of effect, the edge was colored in black.
To facilitate the reading of the network, we coloured the node conditional on the association with
each of the four p

To facilitate the four predictors of interest, or shared among them. The 'viridis' cmap from *matplotlib*
was used as colour scheme, with each shared taxa being a combination of original predictor colours.
Comparison with Each of the four predictors of interest, of shared among them. The Vindis' emap from *interprotity*
was used as colour scheme, with each shared taxa being a combination of original predictor colours.
Comparison with othe Comparison with other network-based approaches
For comparison purposes, we derived a permutation-based network inference approach fo
binary predictor, which we used to validate the MANOCCA network. In brief, we derive t しょくにゅう For comparison purposes, we derived a permutation-based network inference approach for ary predictor, which we used to validate the MANOCCA network. In brief, we derive the pairwise
variance matrix for each categorical value, and then derive the empirical distribution of the
relation under the null by simul covariance matrix for each categorical value, and then derive the empirical distribution of the
correlation under the null by simulating $N_{permutations}$ covariances after shuffling the abundances of
a bacterial taxa for each indi correlation under the null by simulating $N_{permutations}$ covariances after shuffling the abundances of
a bacterial taxa for each individual. Using a fixed detection threshold, we can then select pairs of taxa
with extreme covaria a bacterial taxa for each individual. Using a fixed detection threshold, we can then select pairs of taxa
with extreme covariances. Since we are interested in variability of the covariance, we only keep the
pairs uniquely a bacterial taxa for existing a finite state in variability of the covariance, we only keep the
pairs uniquely detected across all values of the given predictor. When applied to compare results
from the sex and smoking an pairs uniquely detected across all values of the given predictor. When applied to compare results
from the sex and smoking analyses, we ran 100,000 permutations, and retrieved the unique pairs
detected in either group (wom pairs uniquely accretion analyses, we ran 100,000 permutations, and retrieved the unique pairs
detected in either group (women vs men, and non-smoker vs ever smoke). We also ran the SparCC⁴⁹
correlation analysis, as thi detected in either group (women vs men, and non-smoker vs ever smoke). We also ran the SparCC⁴⁹
correlation analysis, as this approach is commonly used and performed relatively well in a review of
existing approaches⁴¹ existing approaches⁴¹. We ran SparCC using the recommended parameters, deriving the *P*-values
using 1,000 permutations, on both the simulated data (Fig. S5) and the real data (Fig. S6). Further
descriptions of both appr

existing approaches^{-*}. We ran SparCC using the recommended parameters, deriving the *P*-values
using 1,000 permutations, on both the simulated data (**Fig. S5**) and the real data (**Fig. S6**). Further
descriptions of both Using 1,000 permutations, on both the simulated data (Fig. 35) and the real data (Fig. 36). Further
descriptions of both approaches are provided in the **Supplementary Notes**.
Using co-abundance for prediction purposes
We Using co-abundance for prediction purposes
We assessed the performances of a predictive model based on cover-
implementation of a predictive model follows the standard used for multiv
given outcome A to be predicted, the ;
)
e
(Using co-abundance for prediction purposes
We assessed the performances of a predictive model based on covariance across taxa. The blementation of a predictive model follows the standard used for multivariate linear model. For a
en outcome A to be predicted, the estimated coefficients between A and $PC_{i=1...L}^{(train)}$ obtained in a
ning dataset from MANOC given outcome A to be predicted, the estimated coefficients between A and $PC_{i=1...L}^{(train)}$ obtained in a
training dataset from MANOCCA, $\hat{\beta} = (\hat{\beta}_1 ... \hat{\beta}_L)$ are projected on the principal component from an
independent tes given outcome A to be predicted, the estimated coefficients between A and $PC_{i=1...L}^{C_{i}}$ obtained in a
training dataset from MANOCCA, $\hat{\beta} = (\hat{\beta}_1 ... \hat{\beta}_L)$ are projected on the principal component from an
independent te $\frac{1}{1}$ (cruciii) training dataset from MANOCCA, $\mathbf{p} = (p_1 ... p_L)$ are projected on the principal component from an
independent test dataset and summed up to form a predictive score $S = \sum_{i=1}^{L} \hat{\beta}_i P C_i^{(test)}$. Note that
the dimensionality $\frac{1}{p}$ to form to the proof.
Digital to the proof of the proof independent test dataset and summed up to form a predictive score $3 - \sum_{i=1}^n p_i v_i$. Wote that
the dimensionality of the covariance data and the principal component analysis (PCA) step make the
implementation slightly mor $_{i=1}^{\nu}\,\beta_i\,PC_i$
ysis (PCA
nts deriv $\mu_{i=1}$ β_i PC_i ^(cese) implementation slightly more complex. In particular, the principal components derived on the same
variables for two independent samples might not always match, with structure in the data being
capture by different compone implementation slightly more complement particular, the principal complete complete in the data being
capture by different components. To avoid this issue, PCA is not applied in the test data. Instead,
 $PC_i^{(test)}$ are derive variables for two independent samples might not always minimal properties in the test data. Instead,
 $PC_i^{(test)}$ are derived by projecting out the loadings from the training sets: $PC_i^{(test)} = \sum_{i=1}^{L} \lambda_i^{(i)} X_j$,

where $\lambda_j^{($ $PC_i^{(test)}$ are derived by projecting out the loadings from the training sets: $PC_i^{(test)} = \sum_i^L \lambda_j^{(i)} X_j$,
where $\lambda_j^{(i)}$ is the loading of variable $PC_i^{(train)}$ for product of taxa *i* obtained in the train data. It also
implies $PC_i^{(test)}$ are derived by projecting out the loadings from the training sets: $PC_i^{(test)} = \sum_i A_j^{(i)} X_j$
where $\lambda_j^{(i)}$ is the loading of variable $PC_i^{(train)}$ for product of taxa *i* obtained in the train data. It also
implies that $\zeta^{(test)}$ are derived by projecting out the loadings from the training sets: $PC_i^{(test)} = \sum_i^L \lambda_i^{(i)}$ \cdot^{\prime} is the loading of variable $PC_{\cdot}^{\prime\prime\prime\prime\mu\prime\mu\prime}$

, り f _ p l / e Implies that the test dataset should have the same dimension (i.e. approximately the same list of taxa) as the train dataset.
We applied this approach for the prediction of age, BMI, smoking and sex using taxa from the thr is the loading of variable PC_i
at the test dataset should have train dataset.
blied this approach for the p
set taxa levels (species, genut
other factors as covariate. Fo
wo independent sets: a trainining samples. We mea implies that the test dataset.

We applied this approach for the prediction of age, BMI, smoking and sex using taxa from the

three lowest taxa levels (species, genus and family), using a 30-fold cross-validation, and with we applied this appro
three lowest taxa levels
including other factors as
split into two independen
10% remaining samples. We approach the prediction of the prediction, and without
be lowest taxa levels (species, genus and family), using a 30-fold cross-validation, and without
luding other factors as covariate. For each of the 30 cross-validat three lowest taxa is the lowest taxa in the lowest taxa including other factors as covariate. For each of the 30 cross-validation, the dataset was randomly split into two independent sets: a training set including 90% of t including other factors as constants as covariant of the 30 cross-validation, we can be considered the split into two independent sets: a training set including 90% of the data and a test set including the 10% remaining sa split into the independent sets: a training set including 90% of the later and a test set including squared-
10% remaining samples. We measured the accuracy of the predictive model using squared-

predictive power of binary outcome. It equals the probability of correctly classifying a random
sample from the test data.
Acknowledgment
This research was supported by the Agence Nationale pour la Recherche (ANR-20-CE15 $(S, A^{(test)})$, and using the area under the

The AUC is a common metric to quantify the

robability of correctly classifying a random

get pour la Recherche (ANR-20-CE15-0012-01). correlation for continuous outcomes, derived as $cor(S, A^{(test)})^2$, and using the area under the predictive power of binary outcome. It equals the probability of correctly classifying a random
sample from the test data.
Acknowledgment
This research was supported by the Agence Nationale pour la Recherche (ANR-20-CE15

Acknowledgment

prediction the test data.
 Acknowledgment

This research was supported by the Agence Nationale pour la Recherche (ANR-20-CE15-0012-01).

This work has been conducted as part of the INCEPTION program (Investissement d'Ave **Acknowledgment**
This research was support
This work has been condu
ANR-16-CONV-0005). The I
pour la Recherche (ANR-10 |
s
s
F
J This work has been conducted as part of the INCEPTION program (Investissement d'Avenir grant
ANR-16-CONV-0005). The Milieu Interieur consortium was also supported by the Agence Nationale
pour la Recherche (ANR-10-LABX-69-0 This work has been conducted as part of the Interiormal program (interferent directions) and
ANR-16-CONV-0005). The Milieu Interieur consortium was also supported by the Agence Nationale
pour la Recherche (ANR-10-LABX-69-0

Code availability

pour la Recherche (ANR-10-LABX-69-01).
 Code availability

All code is available in Python and R at: <u>https://gitlab.pasteur.fr/statistical-genetics/manocca</u>

The complete network with full annotation is available in htm **Code availability
All code is available in Python and R at: <u>ht</u>
The complete network with full annotatic
genetics/manocca** $\begin{array}{c} \begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array} \end{array}$ The complete network with full annotation is available in html at: https://gitlab.pasteur.fr/statistical-genetics/manocca
 References

1. Integrative, H.M.P.R.N.C. The Integrative Human Microbiome Project. *Nature* 569,

References

-
-
-
- 4. Saraswati, S. & Sitaraman, R. Aging and the human gut microbiota-from correlation to causality. Front **References
1.** Integrative,
2. Xu, C., Zhu,
3. O'Toole, P.V
4. Saraswati, S
Microbiol 5, $\begin{array}{c} \n\begin{array}{ccc} \n\text{1} & \text{1} & \text{1$ 1. Integrative, H.M.P. IN.N.C. The Integrative Human Microbiolie Project: Nature 369, 641-648 (2019).

2. Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. *BMC Microbiol* 19, 236 (2019).

3. O'Toole, P. 2. Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol 19, 236 (2019).

3. O'Toole, P.W. & Jeffery, I.B. Gut microbiota and aging. Science **350**, 1214-5 (2015).

4. Saraswati, S. & Sitaraman,
- *Microbiol 5, 704 (2014).*
Zhang, X. *et al.* Sex- an
populations of different
Kim, Y.S., Unno, T., Kim,
48-60 (2020).
Min, Y. *et al.* Sex-specifi
2408 (2019).
- Microbiol 5, 764 (2014).

Microbiol 5, 764 (2014).

2hang, X. *et al.* Sex- and age-related trajectories of the adult human gut microbiota-shared across

populations of different ethnicities. *Nature Aging* 1, 87-100 (2021 Eriang, X. et al. Sex- and age-related trajectories of the adult human gut microbiota shared across
populations of different ethnicities. Nature Aging 1, 87-100 (2021).
6. Kim, Y.S., Unno, T., Kim, B.Y. & Park, M.S. Sex Di populations of different ethnicities. *Nature Aging 1, 87-100 (2021)*.
Kim, Y.S., Unno, T., Kim, B.Y. & Park, M.S. Sex Differences in Gut M
48-60 (2020).
Min, Y. *et al.* Sex-specific association between gut microbiome and
- 6. Kim, Y.S., Omio, T., Kim, B.Y. & Fank, M.S. Sex Differences in Gut Microbiota. World J Mens Health 38,
48-60 (2020).
7. Min, Y. *et al.* Sex-specific association between gut microbiome and fat distribution. *Nat Commun* Min, Y. *et al.*
2408 (2019).
Dominianni, *(*
microbiome. *F*
Zahavi, L. *et (*
2785-2792 (20
-
- 7. Min, Y. et al. Sex-specific association between gut microbionie and fat distribution. Nat Commun 10,
2408 (2019).
8. Dominianni, C. *et al.* Sex, body mass index, and dietary fiber intake influence the human gut
microbi 2008
Dominianni,
microbiome.
Zahavi, L. *et*
2785-2792 (2
Gui, X., Yang 8. Bommanni, C. et al. Sex, body mass malex, and dietary meet make innefice the human gut
microbiome. PLoS One 10, e0124599 (2015).
2. Zahavi, L. et al. Bacterial SNPs in the human gut microbiome associate with host BMI. N microbiome. PLos One 10, eor244339 (2013).
Zahavi, L. *et al.* Bacterial SNPs in the humai
2785-2792 (2023).
Gui, X., Yang, Z. & Li, M.D. Effect of Cigaret
Physiol 12, 673341 (2021).
Fan, J. *et al.* Cross-talks between
- 2785-2792 (2023).

9. Zahavi, L. et al. Bacterial SNPs in the human gut microbiome associate with host BMI. Nat Med 29,

9. Gui, X., Yang, Z. & Li, M.D. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Fron
-
- Gui, X., Yang, Z. &
Physiol **12**, 673341
Fan, J. *et al.* Cros
randomization stuc
Antinozzi, M. *et a.*
Review. *Biomedicir* 10. Gui, X., Yang, Z. & Li, W.D. Lifect of Cigarette Shoke on Gut Microbiota. State of Knowledge. Tront

Physiol 12, 673341 (2021).

11. Fan, J. et al. Cross-talks between gut microbiota and tobacco smoking: a two-sample M Fan, J. *et al.* Cross-talks l
Fan, J. *et al.* Cross-talks l
randomization study. *BMC*
Antinozzi, M. *et al.* Cigare
Review. *Biomedicines* **10**(20
Xu, Z. & Knight, R. Dietar
(2015). 11. Fan, J. et al. Cross-talks between gut microbiota and tobacco smoking. a two-sample Mendelian

randomization study. *BMC Med* **21**, 163 (2023).

12. Antinozzi, M. *et al.* Cigarette Smoking and Human Gut Microbiota in randomization study. *BMC Med 21*, 103 (2023).
Antinozzi, M. *et al.* Cigarette Smoking and Hu
Review. *Biomedicines* **10**(2022).
Xu, Z. & Knight, R. Dietary effects on human
(2015).
Stege, P.B. *et al.* Impact of long-ter
- 12. Antinozzi, M. et al. Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic

Review. Biomedicines 10(2022).

13. Xu, Z. & Knight, R. Dietary effects on human gut microbiome diversity. *Br J Nutr* 11 Review. *Biomedicines* 10(2022).
Ru, Z. & Knight, R. Dietary efferences.
Stege, P.B. *et al.* Impact of Icoppulation. *Sci Rep* 12, 1892 (20
Rinninella, E. *et al.* The role of d
62-63, 101828 (2023).
- Stege,
Stege,
populat
Rinnine
62-63, 1
Perler,
Diet and
- 13. Xu, Z. & Kinght, R. Dietary effects on human gut microbionie diversity. Br J Nutr 113 Supply, S1-5

14. Stege, P.B. *et al.* Impact of long-term dietary habits on the human gut resistome in the Dutch

population. Sci R 14. Stege, P.B. et al. Impact of long-term dietary habits on the human gut resistome in the Dutch
population. Sci Rep 12, 1892 (2022).
15. Rinninella, E. et al. The role of diet in shaping human gut microbiota. Best Prac population. Scriber 12, 1892 (2022).
Rinninella, E. *et al.* The role of diet in
62-63, 101828 (2023).
Perler, B.K., Friedman, E.S. & Wu, G
Diet and Human Health. Annu Rev Pl
Qin, Y. *et al.* Combined effects of hos
- 15. Rinninella, E. *et al.* The role of diet in shaping human gut microbiota. *Best Pract Res Clin Gastroenterol*
 62-63, 101828 (2023).

Perler, B.K., Friedman, E.S. & Wu, G.D. The Role of the Gut Microbiota in the Rela **62-63, 101628 (2023).**
Perler, B.K., Friedman,
Diet and Human Healt
Qin, Y. *et al.* Combined
in a single population c
Bonder, M.J. *et al*. The
- Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease Diet and Human Health. Annu Rev Physiol 85, 443-468 (2023).
Qin, Y. *et al.* Combined effects of host genetics and diet on hu
in a single population cohort. *Nat Genet* 54, 134-142 (2022).
Bonder, M.J. *et al.* The effect 17. Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease
in a single population cohort. *Nat Genet* 54, 134-142 (2022).
18. Bonder, M.J. *et al.* The effect of host genetic
- in a single population cohort. Nat Genet 34, 134-142 (2022).
Bonder, M.J. *et al.* The effect of host genetics on the gut micr 18. Bonder, M.J. et al. The effect of host genetics on the gut microbiome. Nat Genet 48, 1407-1412 (2016).

-
- 19. Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy

19. Kurilshikov, A. *et al.* Large-scale association analyses identify host factors influencing human gut

19. Turp
-
- cohort. Nat Genet 48, 1413-1417 (2016).
Kurilshikov, A. *et al.* Large-scale associ
microbiome composition. Nat Genet 53, 1
Lopera-Maya, E.A. *et al.* Effect of host &
Dutch Microbiome Project. Nat Genet 54,
Ruhlemann, M.C 20. Kurilshikov, A. et al. Large-scale association analyses identify host factors inhactenig human gut
microbiome composition. Nat Genet 53, 156-165 (2021).
21. Lopera-Maya, E.A. et al. Effect of host genetics on the gut m microbiome composition. Nat Genet 33, 156-165 (2021).
Lopera-Maya, E.A. *et al.* Effect of host genetics on the
Dutch Microbiome Project. Nat Genet 54, 143-151 (2022)
Ruhlemann, M.C. *et al.* Genome-wide association sti
in 21. Lopera-Maya, E.A. *et al.* Effect of host genetics on the gut microbiome in 7,738 participants of the

22. Ruhlemann, M.C. *et al.* Genome-wide association study in 8,956 German individuals identifies

influence of ABO Butch Microbiome Project. Nut Genet 34, 143-131 (2022).
Ruhlemann, M.C. *et al.* Genome-wide association student
Influence of ABO histo-blood groups on gut microbiome. N
Hou, K. *et al.* Microbiota in health and diseases.
-
- 22. Ruhlemann, W.C. et *ul.* Genome-wide association study in 8,956 German multiplates influence of ABO histo-blood groups on gut microbiome. *Nature Genetics* 53, 147-+ (2021).
23. Hou, K. *et al.* Microbiota in health an influence of ABO histo-blood groups on gut microbiome. Nature demetites 33, 147-1 (2021).
Hou, K. *et al.* Microbiota in health and diseases. *Signal Transduct Target Ther 7*, 135 (2022).
Daniel, N., Lecuyer, E. & Chassain
-
- 23. Hou, K. et al. Microbiota in health and diseases. Signal Transduct Target Ther 7, 135 (2022).
24. Daniel, N., Lecuyer, E. & Chassaing, B. Host/microbiota interactions in health and disease
mucosal microbiology! *Mucosa* mucosal microbiology! *Mucosal Immunol* **14**, 1006-1016 (2021).
25. Vijay, A. & Valdes, A.M. Role of the gut microbiome in chronic diseases: a narrative review. *Eur J Clin
26. Awany, D. <i>et al.* Host and Microbiome Genome Mucosal Inicrobiology! Mucosal Immanol 14, 1000-1010 (2021).
Vijay, A. & Valdes, A.M. Role of the gut microbiome in chronic (
Nutr 76, 489-501 (2022).
Awany, D. *et al.* Host and Microbiome Genome-Wide Ass
Challenges. Fron 25. Vijay, A. & Valdes, A.M. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin
26. Awany, D. *et al.* Host and Microbiome Genome-Wide Association Studies: Current State and
27. Sanna, S., Kuril Nutr 76, 489-501 (2022).
Awany, D. *et al.* Host
Challenges. Front Genet 9
Sanna, S., Kurilshikov, A.,
studying effects of host g
Davenport, E.R. *et al.* Ge
e0140301 (2015).
- 26. Awany, D. et al. Host and Microbiome Genome-Wide Association Studies. Current State and
Challenges. Front Genet 9, 637 (2018).
27. Sanna, S., Kurilshikov, A., van der Graaf, A., Fu, J. & Zhernakova, A. Challenges and f
-
- Challenges. Front Genet 9, 637 (2016).
Sanna, S., Kurilshikov, A., van der Graat
studying effects of host genetics on the
Davenport, E.R. *et al.* Genome-Wide A
e0140301 (2015).
Degraders, Metabolites, and Predicted 27. Studying effects of host genetics on the gut microbiome. *Nat Genet* 54, 100-106 (2022).
28. Davenport, E.R. *et al.* Genome-Wide Association Studies of the Human Gut Microbiota. *PLoS One* 10,
29. Raimondi, S. *et al.* Studying effects of host genetics on the gut microbiome. Nat Genet 54, 100-100 (2022).
Davenport, E.R. *et al.* Genome-Wide Association Studies of the Human Gut Microbiota
e0140301 (2015).
Raimondi, S. *et al.* Multivariat
- 28. Bavenport, E.R. et al. Genome-Wide Association Stadies of the Human Gut Microbiota. 7 209 One 10,

29. Raimondi, S. *et al.* Multivariate Analysis in Microbiome Description: Correlation of Human Gut Protein

Degraders, e0140301 (2015).

Raimondi, S. *et al.* Multivariate Analysis in Microbiome Description: Correlation of Human Gut Protein

Degraders, Metabolites, and Predicted Metabolic Functions. *Front Microbiol* **12**, 723479 (2021).
 29. Raimondi, S. et al. Multivariate Analysis in Microbiolne Description: Correlation of Human Gut Protein
Degraders, Metabolites, and Predicted Metabolic Functions. *Front Microbiol* 12, 723479 (2021).
30. Le Cao, K.A. *e* Degraders, Metabolites, and Predicted Metabolic Functions. Front Microbiol 12, 723479 (2021).
Le Cao, K.A. *et al.* MixMC: A Multivariate Statistical Framework to Gain Insight into Mi
Communities. PLoS One 11, e0160169 (20
-
- 30. Le Cao, K.A. et al. MixMC: A Multivariate Statistical Framework to Gain Insight into Microbial
Communities. PLoS One 11, e0160169 (2016).
31. Banerjee, K., Chen, J. & Zhan, X. Adaptive and powerful microbiome multivari Communities. PLOS One 11, e0160169 (2016).
Banerjee, K., Chen, J. & Zhan, X. Adaptive and
via feature selection. NAR Genom Bioinform 4,
Faust, K. & Raes, J. Microbial interactions: fr
(2012).
Kumar, M., Ji, B., Zengler, K. 32. Baner, R. & Raes, J. Microbial interactions: from networks to models. Nat Rev Microbiol 10, 538-50
32. Baust, K. & Raes, J. Microbial interactions: from networks to models. Nat Rev Microbiol 10, 538-50
33. Kumar, M., J
-
- via reature selection. NAR Genom Biomjorm 4, Iqab120 (2022).
Faust, K. & Raes, J. Microbial interactions: from networks to
(2012).
Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approac
Microbiol 4, 1253-1267 (2019 32. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat Rev Microbiol 10, 338-50
(2012).
33. Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the microbiome. Nat
34. Schm ,
Kumar,
Microbi
Schmidt
172, 11
Chen, L
and obe 33. Kumar, M., 31, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the microbiome. Nat

Microbiol 4, 1253-1267 (2019).

34. Schmidt, T.S.B., Raes, J. & Bork, P. The Human Gut Microbiome: From Association to Microbiol 4, 1253-1267 (2015).
Schmidt, T.S.B., Raes, J. & Bork
172, 1198-1215 (2018).
Chen, L. *et al.* Gut microbial co
and obesity. Nat Commun 11, 4
Berry, D. & Widder, S. Deciph
occurrence networks. Front Mic
- 34. Schmidt, T.S.B., Raes, J. & Bork, P. The Human Gut Microbiome: From Association to Modulation. Cell
 172, 1198-1215 (2018).

Chen, L. *et al.* Gut microbial co-abundance networks show specificity in inflammatory bowe 172, 1198-1215 (2018).
Chen, L. *et al.* Gut micr
and obesity. *Nat Commi*
Berry, D. & Widder, S.
occurrence networks. Fl
Banerjee, S., Schlaeppi,
and functioning. *Nat Re*
- 33. Chen, L. et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease
and obesity. Nat Commun 11, 4018 (2020).
36. Berry, D. & Widder, S. Deciphering microbial interactions and detecting ke and obesity. Nat Commun 11, 4018 (2020).
Berry, D. & Widder, S. Deciphering micro
occurrence networks. *Front Microbiol* 5, 21!
Banerjee, S., Schlaeppi, K. & van der Heijde
and functioning. *Nat Rev Microbiol* 16, 567-
Wu,
- Banerjee, S., Schlaeppi, K. & van der Heijden, M.G.A.
Banerjee, S., Schlaeppi, K. & van der Heijden, M.G.A.
and functioning. *Nat Rev Microbiol* **16**, 567-576 (2011
Wu, G., Zhao, N., Zhang, C., Lam, Y.Y. & Zhao,
microbiome
- 38. Mu, G., Zhao, N., Zhang, C., Lam, Y.Y. & Zhao, L. Guild-based analysis for understanding gut
38. Wu, G., Zhao, N., Zhang, C., Lam, Y.Y. & Zhao, L. Guild-based analysis for understanding gut
39. Jackson, M.A. *et al.* D and functioning. Nut Rev Microbiol 16, 567-576 (2016).
Wu, G., Zhao, N., Zhang, C., Lam, Y.Y. & Zhao, L.
microbiome in human health and diseases. *Genome Me*
Jackson, M.A. *et al.* Detection of stable community si
networks
- 39. Jackson, M.A. *et al.* Detection of stable community structures within gut microbiota co-occurrence
- microbiome in human health and diseases. *Genome Med* 13, 22 (2021).
39. Jackson, M.A. *et al.* Detection of stable community structures within gut microbiota co-occurrence
networks from different human populations. *Peerl*
- microbiome in human health and diseases. Genome Med 13, 22 (2021).
Jackson, M.A. *et al.* Detection of stable community structures within
networks from different human populations. *Peerl* **6**, e4303 (2018).
Bayer, G., Gan 39. Jackson, M.A. *et al.* Detection of stable community structures within gut microbiota co-occurrence
networks from different human populations. *Peerl* **6**, e4303 (2018).
8ayer, G., Ganobis, C.M., Allen-Vercoe, E. & Phi networks from different human populations. Peer, **G**, e4303 (2016).
Bayer, G., Ganobis, C.M., Allen-Vercoe, E. & Philpott, D.J. Def
promising tools to understand and combat disease. *Microbes Infect*
Weiss, S. *et al.* Cor promising tools to understand and combat disease. *Microbes inject 23*, 104816 (2021).
Weiss, S. *et al.* Correlation detection strategies in microbial data sets vary widely in
precision. *ISME J* **10**, 1669-81 (2016).
Boe
-
- 43. Thomas, S. *et al.* The Milieu Interieur study an integrative approach for study of human
immunological variance. *Clin Immunol* 157, 277-93 (2015).
44. Lozupone, C.A. *et al.* Meta-analyses of studies of the human m 41. Weiss, S. et al. Correlation detection strategies in iniciobial data sets vary widely in sensitivity and
precision. ISME J 10, 1669-81 (2016).
42. Boetto, C. et al. A multivariate outcome test of covariance. *bioRxiv*, precision. *ISME* J 10, 1009-81 (2016).
Boetto, C. *et al.* A multivariate outcor
Thomas, S. *et al.* The Milieu Inte
immunological variance. *Clin Immuno*
Lozupone, C.A. *et al.* Meta-analyses
(2013).
Tam, A. *et al.* Eff 42. Boetto, C. et al. A multivariate outcome test of covariance. bionary, 2023.09.20.390234 (2023).
43. Thomas, S. *et al.* The Milieu Interieur study - an integrative approach for study of
immunological variance. *Clin Im*
- 43. Thomas, S. et al. The Willieu Interieur study an integrative approach for study of human
immunological variance. Clin Immunol 157, 277-93 (2015).
44. Lozupone, C.A. *et al.* Meta-analyses of studies of the human micr Infinanciogical variance. C*immuniol* 157, 277-93 (2015).
Lozupone, C.A. *et al.* Meta-analyses of studies of the hu
(2013).
Tam, A. *et al.* Effects of sex and chronic cigarette smoke
PLoS One **15**, e0230932 (2020).
Ant
- 44. Lozupone, C.A. et al. Meta-analyses of studies of the human microbiotal denome Res 23, 1704-14

45. Tam, A. et al. Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome.
 PLoS One **15**, e0 (2022).
Tam, A.
PLoS Or
Antone
populat
Meehar
family c
- PLOS One 13, e0230932 (2020).
Antonello, G. *et al.* Smoking a
population. Sci Rep 13, 18904 (2
Meehan, C.J. & Beiko, R.G. A pf
family of digestive tract-associa[.]
Vacca, M. *et al.* The Controversi
- 45. Tam, A. et al. Effects of sex and chronic eigenctic smoke exposure on the mouse cecar microbiome.

46. Antonello, G. *et al.* Smoking and salivary microbiota: a cross-sectional analysis of an Italian alpine

147. Meeha 46. Antonello, G. et al. Shoking and salivary includiotel. a cross-sectional analysis of an Italian alphie
population. Sci Rep 13, 18904 (2023).
47. Meehan, C.J. & Beiko, R.G. A phylogenomic view of ecological specializati population. Scritep 13, 18904 (2023).
Meehan, C.J. & Beiko, R.G. A phyloge
family of digestive tract-associated ba
Vacca, M. *et al.* The Controversial Role 17. Framily of digestive tract-associated bacteria. *Genome Biol Evol* **6**, 703-13 (2014).
48. Vacca, M. *et al.* The Controversial Role of Human Gut Lachnospiraceae. *Microorganisms* **8**(2020).
- family of digestive tract-associated bacteria. Genome Biol Evol 6, 703-13 (2014).
Vacca, M. *et al.* The Controversial Role of Human Gut Lachnospiraceae. *Microorg*
Macca, M. *et al.* The Controversial Role of Human Gut La 48. Vacca, M. et al. The Controversial Role of Human Gut Lachnospiraceae. *Microorganisms* 8(2020).

-
-
- 49. Friedman, J. & Alm, E.J. Inferring Correlation Networks from Genomic Survey Data. 7209

Computational Biology 8, e1002687 (2012).

50. Gloor, G.B., Macklaim, J.M., Pawlowsky-Glahn, V. & Egozcue, J.J. Microbiome Dataset Computational Biology 8, e1002667 (2012).
Gloor, G.B., Macklaim, J.M., Pawlowsky
Compositional: And This Is Not Optional. *Frc*
Marcos-Zambrano, L.J. *et al.* Applications
Review on Feature Selection, Biomarker
Microbiol Compositional: And This Is Not Optional. *Front Microbiol* **8**, 2224 (2017).

51. Marcos-Zambrano, L.J. *et al.* Applications of Machine Learning in Human Microbiome Studies: A

Review on Feature Selection, Biomarker Ident Compositional: And This Is Not Optional: *Front Microbiol* 8, 2224 (2017).
Marcos-Zambrano, L.J. *et al.* Applications of Machine Learning in Hi
Review on Feature Selection, Biomarker Identification, Disease Prec
Microbio Fraction Scalings C.J. et al. Applications of Machine Learning in Human Microbiolne Statistics. A
Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Front
Microbiol 12, 634511 (2021).

- Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Tront
Microbiol 12, 634511 (2021).
Ho, P.Y., Nguyen, T.H., Sanchez, J.M., Defelice, B.C. & Huang, K.C. Resource competition predicts
 Microbiol 12, 034311 (2021).
Ho, P.Y., Nguyen, T.H., Sanc
assembly of gut bacterial com
(!!! INVALID CITATION !!! {}).
Sokal, R.R. & Rohlf, F.J. *Biome*
Freeman, 1981).
-
- 53. Assembly of gut bacterial communities in vitro. Nat Microbiol 9, 1036-1048 (2024).

53. (!!! INVALID CITATION !!! {}).

54. Sokal, R.R. & Rohlf, F.J. *Biometry: The Principles and Practice of Statistics in Biological R* assembly of gut bacterial communities in vitro. Nat Microbiol 9, 1036-1048 (2024).
(!!! INVALID CITATION !!! {}).
Sokal, R.R. & Rohlf, F.J. *Biometry: The Principles and Practice of Statistics in Biologi*
Freeman, 1981). 54. Sokal, R.R. & Rohlf, F.J. *Biomi*
Freeman, 1981).
Example 2 54. Sokal, R.R. & Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, (W. H.
Freeman, 1981). $\frac{1}{2}$

Figures

Figure 1. Co-abundance testing principle
Panel a) illustrates the targeted mechanism at the individual level. The equilibrium of a given Panel a) illustrates the targeted mechanism at the individual level. The equilibrium of a given microbiota ecosystem can change conditionally on the environment, impacting not only the marginal abundance, but also the co-abundance of species. Under environment E1, the available local resources foster a complementary system involving species α , β , and ω . Under environment E2, the available local resources foster a complementary system involving species β , and δ . Panel b) illustrates an application scenario at the population level, where health features (biological, clinical illustrates an application scenario at the population level, where health features (biological, clinical or environmental variables) are tested for association with the covariance matrix of the microbiome measured in the same individuals. When the feature of interest is binary (e.g. exposed vs
unexposed), the approach consists in testing for statistical differences in the observed microbiome unexposed), the approach consists in testing for statistical differences in the observed microbiome covariance derived in exposed and unexposed participants separately. When the feature of interest is continuous, the same principle applies.

Figure 2. Milieu Interieur microbiota composition
Panel a) shows the relative abundance of taxa across the seven taxonomic levels (Kingdom, Phylum, Panel a) shows the relative abundance of taxa across the seven taxonomic levels (Kingdom, Phylum, Class, Order, Family, Genus, Species). Panel b) shows the covariance matrices at the Family, Genus, and Species levels derived from all 938 patients.

Figure 3. Screening for environmental and clinical factors
Association screening between 80 environmental and clinical factors from the Milieu Interieur cohort and the covariance of taxa at the species (a), genus (b) and family (c) taxonomic levels. Each panel display the - $log 10(P)$ of each predictor. Results from MANOCCA are based on the optimal number of display the -log10(P) of each predictor. Results from MANOCCA are based on the optimal number of principal components. Results from MANOCCA are compared against three alternative approaches: a standard MANOVA, and alpha diversity tests based on both Simpson and Shannon metrics. The red dash line indicates the stringent Bonferroni correction threshold accounting for all predictors and sets of PCs tested.

Figure 4. Cross and inter-family interactions for age, sex, smoking and BMI
We used the top 5% pairs of genera with the largest contribution to the covariance test to investigate whether variability in co-abundance involved genera from the same family or from different families. Panel (a) presents the relative abundance of the family from these top genera in the whole cohort Panel (a) presents the relative abundance of the family from these top genera in the whole cohort (grey bar), and the number of interactions observed for genera from each of these families. Panel (b) illustrates the difference between cross-family and within family interactions. Detailed co-abundance pairs are presented for age(b), sex(c), smoking(d) and BMI(e). The Y axis represents the families of the top subset of genera involved, and that together explain up to 50% of the signal. The X axis shows the distribution of families for the associated genera, defined as a count per family. The length of the bar indicates how many pairs are involved for each top family. Colours were assigned only for the top families, and white blocs correspond to the unlisted categories.

Figure 5 Co-abundance network influenced by age, sex, smoking and BMI
For the top four associated features from the MANOCCA (age, sex, BMI and smoking), we extracted For the top 1000 contributing pairs of genera out of the 259,560 total products and derived the direction
of effect of each predictor on the pair of co-abundance. We plotted the Venn diagram of shared pairs
between each fe of effect of each predictor on the pair of co-abundance. We plotted the Venn diagram of shared pairs
between each feature in a) and the overlap in taxa in b). In c) we show the distribution of direction of
effects per pred of effects per predictor, and for the age – smoking and sex – BMI intersections. We then used the pairs of features to derive a network of the changes in correlation with regard to each predictor. The node size, representi effects per predictor, and for the age – smoking and sex – BMI intersections. We then used the pairs
of features to derive a network of the changes in correlation with regard to each predictor. The node
size, representing of features to derive a network of the changes in correlation with regard to each predictor. The node
size, representing a genus, is proportional to its number of contributions with other genera, and
edges link the top con size, representing a genus, is proportional to its number of contributions with other genera, and
edges link the top contributing pairs. The edge colors indicates the direction of effect with green
indicating that an incre size, representing a genus, is proportional to the colors indicates the direction of effect with green indicating that an increase of the predictor drives an increase in co-abundance, red shows that an increase of the pre eduction of the predictor drives an increase in co-abundance, red shows that an increase of the predictor drives a reduction in co-abundance and black indicates a mixed direction of effect for the overlapping predictors.

Figure 6. Predictive power of covariance-based models
We estimated the predictive power of co-abundance models (blue/green boxplots) as compared to The standard mean-based multivariate model (red/orange boxplots). For each of the four most associated features (age, sex, smoking and BMI) and the three lower taxonomic levels (species, genus, family), we derived the pre associated features (age, sex, smoking and BMI) and the three lower taxonomic levels (species, genus, family), we derived the prediction accuracy using the squared-correlation (R^2) for continuous features and the area u Experies Species Centus Constants Centus Centus

Species Centus Cen genus, ramily), we derived the prediction accuracy using the squared-correlation (R
features and the area under the receiver operating curve (AUC) for binary feature. 1
done using a 30-fold cross validation, with the score The analysis was

Infe analysis was

Ind the R2 being

pdels was tested

T done using a 30-fold cross validation, with the score being train in 90% of the data, and the R2 being
derived in the remaining 10%. The significance of the difference between the two models was tested
using a two-sample

AUC linear model = AUC MANOCCA