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Abstract 

Large diffusion-weighted brain MRI (dMRI) studies in neonates are crucial for developmental 

neuroscience. Our aim was to investigate the utility of ComBat, and empirical Bayes tool for 

multisite harmonization, for removing site effects from white matter (WM) dMRI measures in 

healthy infants born 37-42+6 weeks from the Theirworld Edinburgh Birth Cohort (n=86) and 

Developing Human Connectome Project (n=287). 

Skeletonized fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD, RD) maps 

were harmonized. The differences between voxel-wise metrics, skeleton means and histogram 

widths (5th-95th percentile) were assessed before and after harmonization, as well as variance 

associated with gestational age at birth. 
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Before harmonization, large cohort differences were observed in all measures. Harmonization 

removed all voxel-wise differences from MD maps and all metric means and histogram widths, 

however small voxel-wise differences (<1.5% of voxels) remained in FA, AD and RD. We 

detected significant relationships between GA at birth and all metrics. When comparing single 

site and multi-site harmonized datasets of equal sample sizes, harmonized data resulted in smaller 

standardized regression coefficients. 

ComBat will enable unprecedented sample sizes in developmental neuroscience, offering new 

horizons for biomarker discovery and validation, understanding typical and atypical brain 

development, and assessment of neuroprotective therapies. 

 

 

 

 

 

 

 

 

1. Introduction 

Magnetic resonance imaging (MRI) studies in neonates are crucial for assessing brain 

development and elucidating mechanisms underlying typical and atypical neurodevelopmental 
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outcomes. However, neurodevelopment is complex and influenced by multifactorial, often 

interacting neurobiological, (epi)genetic and environmental processes (Sonuga�Barke, 2023). 

Large, representative samples are required to disentangle these processes; this can only be 

achieved by using data acquired from multiple sites. Several large neonatal brain MRI cohorts 

exist that are now available to the research community (Boardman et al., 2020; Edwards et al., 

2022; Howell et al., 2019; Soh et al., 2014); these provide new opportunities to combine datasets 

acquired across multiple sites. This would create unprecedented sample sizes to characterize 

typical population variation, delineate neurodevelopmental risk and resilience factors, identify 

robust and generalizable predictors of outcomes, investigate effects of (epi)genetic variation and 

test novel neuroprotective therapies in at-risk groups. However, there is an urgent need to identify 

robust strategies for combining data acquired across multiple locations.  

Diffusion-weighted MRI (dMRI) measures the displacement of water molecules in tissue over 

time and is used to characterize microstructure in the developing brain (Pecheva et al., 2018). 

Mathematical models of the dMRI signal provide quantitative information which can be used to 

infer characteristics of the underlying tissue. The most used model is the diffusion tensor model 

(DTI), which provides rotationally invariant scalar metrics (fractional anisotropy [FA], and 

mean, axial and radial diffusivity [MD, AD, RD]) that characterize the diffusion properties of a 

tensor fitted to each voxel (Basser et al., 1994). DTI metrics can be calculated from standard 

clinical diffusion MRI sequences (Le Bihan et al., 2001) which have been widely used in 

neonatal dMRI research. Tensor-derived measures of white matter microstructure may be altered 

in neonates at risk of altered brain development such as those born preterm (Dibble et al., 2021; 

Vaher et al., 2022), with hypoxic ischemic encephalopathy (Dibble et al., 2020; Ward et al., 

2006) and with congenital heart disease (Karmacharya et al., 2018; Miller et al., 2007; Mulkey et 
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al., 2014).  These measures are associated with both clinical and environmental risk factors such 

as nutrition, infection, and the perinatal stress environment (Barnett et al., 2018; Blesa et al., 

2019; Boardman & Counsell, 2020; Demers et al., 2021; Lautarescu et al., 2019; Lean et al., 

2022; Stoye et al., 2020; Sullivan et al., 2020l Wheater et al., 2022) and childhood 

neurodevelopmental outcomes in both typical and atypical populations (Dimitrova et al., 2020; 

K. Feng et al., 2019; Lautarescu et al., 2022; Salvan et al., 2017; Tusor et al., 2012; Ullman et al., 

2015). In addition, dMRI measures have been used as markers of treatment efficacy in trials of 

neuroprotective therapies for neonatal populations (Azzopardi et al., 2016; Law et al., 2021; 

Moltu et al., 2024; O’Gorman et al., 2015; Poppe et al., 2022; Porter et al., 2010). However, 

dMRI-derived measures vary by both scanner and acquisition, meaning it is challenging to 

combine data from multiple centres.  

Automated quantitative analysis of dMRI measures across the brain often requires registration to 

a common space, which is challenging given the large variation in brain size, shape and signal 

intensity across the neonatal period (Dubois et al., 2021). Methods such as tract-based spatial 

statistics (TBSS) (Smith et al., 2006) including its optimization for neonatal datasets (Ball et al., 

2010),  aim to overcome some of these challenges by non-linearly registering data, isolating a 

white matter ’skeleton’ comprising of voxels with the highest FA, and projecting data from 

individuals onto this skeleton to ensure spatial alignment and remove contamination from non-

white matter structures. Tensor-based registration algorithms such as DTI-ToolKit (DTI-TK) 

(Zhang et al., 2006) provide superior registration of neonatal dMRI for TBSS (Wang et al., 

2011). Skeletonised DTI metrics in neonates have been analysed on a voxel-wise basis using 

permutation testing to identify spatially homogenous regions of alterations across the white 

matter skeleton (Barnett et al., 2018; Blesa et al., 2019; Mulkey et al., 2014; Porter et al., 2010). 
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Mean skeletonised DTI metrics can also be extracted from the whole skeleton or from a-priori 

hypothesised regions of the skeleton identified from a white matter atlas. However, both voxel-

wise and analyses of metric averages assume homogeneity in the location and the extent of white 

matter alterations. Peak-width of skeletonized water diffusion metrics is a method originally 

developed to assess small vessel disease in adults (Baykara et al., 2016). This method measures 

the width of the histogram of values within the white matter skeleton (5th to 95th percentile). Blesa 

and colleagues (Blesa et al., 2020) identified correlations between MD, AD and RD histogram 

widths and gestational age (GA) at birth; furthermore, peak-width of skeletonised dMRI 

measures accurately classifies images according to GA at birth. These metrics are of particular 

interest for large scale studies of the neonatal brain because they characterize generalized white 

matter maturation and will capture changes that may be heterogenous in location and extent. In 

adults with small vessel disease, histogram widths were highly reproducible across MRI scanners 

and field strengths (Baykara et al., 2016); however, it is not known if these are reproducible 

across MR scanners in the newborn brain, or whether harmonization is needed to make valid 

inter-site comparisons.  

ComBat (Johnson et al., 2007) is a data harmonization tool originally designed to remove batch 

effects from genomic data and is an effective harmonization tool for adult DTI data (Fortin et al., 

2017). However, the effect of ComBat data harmonizationon voxel-wise, mean and histogram 

widths across the white matter skeleton in healthy typically developing infants has not been 

comprehensively assessed.  

The aims of this study were to assess (i) whether FA, MD, AD and RD histogram widths are 

comparable across scanning sites and (ii) the utility ComBat for removing site effects from DTI 

measures of white matter development in healthy typically developing infants born at 37-42 
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weeks gestational age (‘term’). We assessed differences between sites on a voxel-wise basis and 

across the mean and histogram width before and after harmonization. To investigate the effect of 

harmonization on correlation effects, we assessed the relationship between dMRI metrics and GA 

at birth before and after harmonization. GA at birth was chosen as birth earlier in the term period 

(e.g. 37-38 weeks) is associated with altered neonatal white matter development (Broekman et 

al., 2014a; Gale�Grant et al., 2022; Jin et al., 2019; Ou et al., 2017a) lower neurodevelopmental 

scores (Hua et al., 2019; Rose et al., 2013). 

 

2. Methods 

The National Research Ethics Service Research Ethics Committees in West London (Developing 

Human Connectome Project (dHCP) 14/LO/1169) and South East Scotland (Theirworld 

Edinburgh Birth Cohort (TEBC) 16/SS/0154) provided ethical approvals.  

In accordance with the declaration of Helsinki, informed written parental consent was obtained 

before MRI. 

2.1 Participants 

Preprocessed dMRI data from a subset of typically developing healthy infants at low risk of 

altered brain development born ≥37.0 weeks from Theirworld Edinburgh Birth Cohort 

(Boardman et al., 2020) and the Developing Human Connectome Project (Edwards et al., 2022) 

were used. 

2.2 MRI acquisition 
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Infants from both cohorts underwent brain MRI during natural sleep with monitoring of pulse 

oximetry, electrocardiography, and temperature. All scans were supervised by a doctor or nurse 

trained in neonatal resuscitation and MR procedures.  

Images acquired at each centre were reviewed by neuroradiologists experienced in neonatal brain 

imaging and all infants included in this analysis had no evidence of major incidental findings.  

2.2.1 Developing Human Connectome Project 

Brain MRI was performed on a Philips Achieva 3 Tesla system (Best, Netherlands) situated in 

the neonatal intensive care unit at St. Thomas’ Hospital using a 32-channel neonatal head coil 

and neonatal positioning device (Hughes et al., 2017). Acoustic protection consisted of earplugs 

made from silicone-based putty placed in the external auditory meatus (President Putty, Coltene 

Whaledent, Mahwah, NJ), neonatal earmuffs (MiniMuffs; Natus Medical, Middleton, WI) and an 

acoustic hood placed over the infant.  

dMRI was acquired with a high angular resolution diffusion multi-shell protocol designed for the 

neonatal brain (TR/TE 3800/90 ms, multiband acceleration factor 4, sensitivity encoding in-plane 

acceleration factor 1.2, in-plane resolution 1.5 × 1.5 mm, slice thickness 3 mm, 1.5 mm overlap, 

300 volumes, diffusion gradient encoding: b = 0 s/mm2 (n = 20), b = 400 s/mm2 (n = 64), b = 

1000 s/mm2 (n = 88), b = 2600 s/mm2 (n = 128) with 4x interleaved phase encoding)(Hutter et 

al., 2018). 

2.2.2 Theirworld Edinburgh Birth Cohort 

Brain MRI was performed on a Siemens MAGNETOM Prisma 3�Tesla system (Erlangen, 

Germany) using a 16-channel pediatric head and neck coil. Acoustic protection consisted of 

flexible ear plugs and neonatal earmuffs (MiniMuffs; Natus Medical, Middleton, WI). 
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High angular resolution dMRI was acquired in 2 separate acquisitions to reduce the time needed 

to re-acquire any data lost to motion artifacts. The first acquisition consisted of 8 baseline 

volumes (b = 0�s/mm2 [b0]) and 64 volumes with b = 750�s/mm2, and the second multi-shell 

acquisition consisted of 8 b0, 3 volumes with b = 200�s/mm2, 6 volumes with b = 500�s/mm2, 

and 64 volumes with b = 2,500�s/mm2 (Acquisition parameters for both sequences: TR/TE 

3500/78.0�ms; multiband acceleration factor 2, in-plane acceleration factor 2, in-plane 

resolution 2mm x 2mm, slice thickness 2mm).  

 

2.3 dMRI preprocessing 

dMRI from each cohort were preprocessed according to local procedures, described below.  

2.3.1 Developing Human Connectome Project 

dMRI underwent parallel imaging reconstruction, denoising (Cordero-Grande et al., 2019; 

Veraart et al., 2016), removal of Gibbs ringing artefacts (Kellner et al., 2016), and correction for 

motion and image distortion using Spherical Harmonics and Radial Decomposition (Christiaens 

et al., 2021). The b=1000s/mm2 shell was extracted for further analysis.  

2.3.2 Theirworld Edinburgh Birth Cohort 

The dMRI acquisitions underwent denoising (Veraart et al., 2016) and correction for motion and 

image distortion using outlier replacement and slice-to-volume registration (Andersson et al., 

2003, 2016, 2017; Andersson & Sotiropoulos, 2016; Smith et al., 2004). Bias field 

inhomogeneity correction was performed by calculating the bias field of the mean b0 volume and 

applying the correction to all the volumes (Tustison et al., 2010). The first acquisition consisting 

of 64 directions at b=750s/mm2 was used for further analysis. 
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2.4 dMRI image processing 

b=1000s/mm2 data from the dHCP and b=750s/mm2 were processed using the FMRIB software 

library (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; FSL)(Smith et al., 2004) and DTI-TK (www.dti-

tk.sourceforge.net)(Zhang et al., 2006). Diffusion tensors were calculated on a per voxel basis. 

Tensor images were registered to the Edinburgh Neonatal Atlas tensor template (Blesa et al., 

2016, 2020) using DTI-TK. FA, MD, AD and RD maps were calculated.  

A mean FA image was calculated and a mask of the mean FA skeleton was derived by 

perpendicular non-maximum suppression and an FA threshold of 0.15. The study-specific 

skeleton mask was multiplied with the custom Edinburgh neonatal atlas template skeleton mask 

to remove grey matter regions and fibres passing through the cerebellum, the brainstem and the 

subcortical grey matter (Blesa et al., 2020), based on the custom mask created by Baykara and 

colleagues (Baykara et al., 2016). FA, MD, AD, and RD maps for each dataset were projected 

onto this skeleton. For each infant, the skeleton mean and the width of the histogram (the 

difference between the 95th and 5th percentile voxel) for FA, MD, AD and RD were calculated. 

2.5 Data harmonization 

2.5.1 ComBat 

ComBat (Johnson et al., 2007) implemented in NeuroHarmonize (Pomponio et al., 2020) was 

used to remove the effect of site of acquisition from the skeletonized FA, MD, AD and RD maps. 

ComBat is an empirical Bayes method which linearly models the additive and multiplicative 

effects of site on feature values to minimize the variance associated with site and preserve the 

variance most associated with variables of interest included in the ComBat model (Fortin et al., 
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2017). In this analysis, the variance associated with GA at birth, GA at scan and sex were 

preserved.  

 

2.6 Statistical analysis 

All analyses except for the voxel-wise analyses were undertaken in R version 4.0.3. Differences 

in demographic variables between cohorts were assessed with Mann-Whitney U tests (GA at 

birth, GA at scan) and χ2 (sex).  

2.6.1 Voxel-wise analysis 

To investigate the relationship between voxel-wise dMRI metrics, site and GA at birth before and 

after harmonization, voxel-wise permutation testing (10000 permutations) was performed using 

Randomise in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise). Significant voxels are 

displayed on the mean FA image and T-statistic ranges and percentage of significant voxels are 

reported.  

2.6.1.1 Differences between sites 

General linear models (GLM) were used to assess the differences in dMRI metrics between 

dHCP and TEBC before and after harmonization with GA at birth, GA at scan and sex as 

covariates.  Voxel-wise values before and after harmonization were extracted across the whole 

skeleton and mean difference plots created. 

2.6.1.2 Associations with GA at birth 

To assess the relationship between voxel-wise dMRI metrics and GA at birth before and after 

harmonization, a GLM was used with GA at scan and sex as covariates.   
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A post-hoc analysis was undertaken to investigate the relationship between postnatal age 

(calculated as: GA at scan – GA at birth) and FA in regions where lower GA at birth was 

associated with higher FA. Mean FA values for each infant were extracted from voxels where 

lower FA was associated with higher GA at birth in the harmonized dataset. The association 

between extracted FA values and postnatal age was assessed adjusting for GA at scan and sex. 

To assess the impact of data harmonization on sensitivity, we conducted voxel-wise permutation 

tests with five subsamples of non-harmonized data (dHCP alone, n=86 in each) and five 

subsamples of the full cohort of harmonized TEBC and dHCP (n=86 each). Significant voxels 

were extracted and the overlap of significant voxels across subsamples of un-harmonized data 

and the combined harmonized data. 

 

2.6.2 Mean and histogram width analyses 

2.6.2.1 Differences between sites 

Multiple linear regressions were used to characterize the effect of site on dMRI metric means 

and histogram widths before and after harmonization with GA at birth, GA at scan and sex 

included as covariates. Standardised regression coefficients (β), standard errors and p-values are 

reported. The GVLMA package (Peña & Slate, 2006) assessed the validity of linear regressions, 

and for models where assumptions were violated, analyses were rerun with robust regression 

using fast-s algorithms (Lourenço et al., 2011). 

2.6.1.2 Associations with GA at birth 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.30.24306619doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.30.24306619
http://creativecommons.org/licenses/by/4.0/


 

 

12 

The relationship between GA at birth and dMRI metric means and histogram widths was assessed 

(i) before harmonization in each site separately, (ii) before harmonization without a site 

covariate, (iii) before harmonization with a covariate and (iv) after harmonization using the 

procedures described above with GA at scan and sex included as covariates.  

To assess the impact of data harmonization on standardised regression coefficients, a permutation 

analysis was conducted with 10,000 iterative subsamples of the un-harmonized dHCP (n=86), 

and 10,000 iterative subsamples of the harmonized dHCP and TEBC data (n=86) with robust 

regressions to assess the relationship between GA at birth and dMRI metrics adjusting for GA at 

scan and sex. Mean standardised regression coefficients, 95% confidence intervals and standard 

deviations were calculated for each metric. Independent samples t-tests were used to compare 

standardised regression coefficients between the dHCP alone and harmonized dHCP and TEBC.  

 

2.7 Data availability 

Data from the dHCP is from the 3rd neonatal data release 

(https://www.developingconnectome.org/) (Edwards et al., 2022). Requests for TEBC 

anonymized data will be considered under the study's Data Access and Collaboration policy and 

governance process 

(https://www.ed.ac.uk/centre�reproductivehealth/tebc/about�tebc/for�researchers/data�access

�collaboration). Scripts used to prepare data for harmonization are included as a supplement. 

 

3. Results 
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3.1 Demographics 

The cohorts did not differ significantly for male:female proportion or GA at birth. GA at scan 

was higher in TEBC compared to dHCP (Table 1).  

3.2 Combat 

3.2.1 Voxel-wise metrics 

Voxel-wise differences before and after harmonization are summarised in Figure 1. Before 

harmonization, 44% of FA voxels within the white matter skeleton differed between sites, with 

higher FA values in central white matter regions in the dHCP, and higher FA values in peripheral 

white matter structures in TEBC (t-statistic range -14.32-19.01). 88% of MD (t-statistic range –

11.51-27.89), 73% of AD (t-statistic range –9.95-30.90) and 86% of RD voxels (t-statistic range 

–12.67-23.84) within the white matter skeleton differed between sites, with higher values in 

TEBC compared to dHCP. 

After harmonization with ComBat, 0.2% of FA voxels were different between sites (t-statistic 

range -4.13-5.28), with higher values in TEBC in the right cerebellar peduncle. 0.4% of AD 

voxels differed between sites (t-statistic range –5.73-5.90), with higher AD in the left occipital 

white matter in the dHCP. 1.2% of RD voxels differed between sites (t-statistic range –5.86-

4.05), with higher values in bilateral cerebellar peduncles in the dHCP. There were no significant 

differences in MD between sites (t-statistic range –5.82-4.94). 

3.2.2 Mean and histogram widths 

dMRI metric means and histogram widths before and after harmonization are summarised in 

Table 2 and supplementary figures 1 and 2. Before harmonization, there was a significant effect 
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of site on mean MD, AD and RD and all dMRI metric histogram widths in the white matter 

skeleton. After harmonization, there was no effect of site on dMRI metric means or histogram 

widths (Table 3).  

3.2.3 Relationship with gestational age at birth 

3.2.3.1 Voxel-wise metrics 

Voxel-wise correlations with GA at birth before and after harmonization are summarised in 

Figure 2. Before harmonization, 28% of FA voxels within the white matter skeleton were 

associated with GA at birth. Older GA at birth was associated with higher FA values associated 

in the centrum semiovale, thalamus and corpus callosum and lower FA in the left posterior and 

retrolenticular parts of the internal capsule and bilateral cerebral peduncles (t-statistic range -

8.37-6.59). 86% of MD (t-statistic range –9.89-4.45), 88% of AD (t-statistic range –10.18-3.96) 

and 80% of RD voxels (t-statistic range –13.00-4.55) were negatively associated with GA at 

birth. 

After harmonization with ComBat, 22% of FA voxels were associated with GA at birth. Older 

GA at birth was associated with higher FA values associated in the centrum semiovale, and lower 

FA in the left retrolenticular part of the internal capsule (t-statistic range –6.70-6.71). Post-hoc 

analyses revealed FA values in the cluster within the left retrolenticular part of the internal 

capsule were significantly positively associated with postnatal age (β[SE]=0.358 [0.053], 

p<0.001), adjusting for GA at scan andsex. 46% of MD voxels (t-statistic range –10.33-4.59), 

50% of AD voxels (t-statistic range –8.42-5.09), 39% of RD voxels (t-statistic range –10.48-4.92) 

and were negatively associated with GA at birth across the supratentorial white matter. 
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When iteratively assessing voxel-wise correlations with GA at birth, t-statistic ranges were 

similar for TEBC (n=86), five subsets of the dHCP (n=86), and five subsets of harmonized TEBC 

and dHCP (n=86) (Figure 3). Significant voxels identified in each iteration of dHCP and 

harmonized TEBC and dHCP are shown in Figure 4. 

3.2.3.2 Mean and histogram width 

Table 4 summarises the relationship between GA at birth and dMRI metric means and histogram 

widths in: TEBC, dHCP, the combined dataset with no correction for site, the combined dataset 

with site as a covariate (linear correction) and the combined dataset after ComBat harmonization. 

Standardised regression coefficients were similar across TEBC, dHCP and the harmonized 

dataset, however statistical power is higher in the combined dataset, revealing significant 

associations between GA at birth and mean MD, AD and RD as well as histogram widths across 

all metrics. Figure 5 shows the relationship between GA at birth and mean FA and histogram 

width in TEBC, dHCP, both datasets after ComBat harmonization and both datasets with site as a 

linear covariate in the regression.    
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In permutation tests, standardised regression coefficients for gestational age at birth were 

significantly lower in the combined harmonized data for all metrics except FA histogram width 

(Table 5). 

4. Discussion 

In this study we assessed the utility of ComBat for data harmonization across skeletonized DTI 

metrics in the neonatal brain. Before data harmonization, large differences in voxel-wise, mean 

and histogram widths were observed between two cohorts of healthy control infants who 

underwent neonatal brain MRI using different scanning hardware and sequence parameters. 

Harmonization removed all voxel-wise differences from mean diffusivity maps, however small 

differences (<1.5% of voxels in the white matter skeleton) remained in FA, AD and RD. 

Harmonization also removed significant differences in skeletonised DTI metric means and 

histogram widths. In the large combined harmonized dataset, we were able to detect significant 

relationships between GA at birth and mean and histogram widths of DTI metrics even though 

the study population comprised term infants only. However, when comparing single site and 

multi-site harmonized datasets of equal sample sizes, harmonized data resulted in smaller 

standardised correlation coefficients for GA at birth. 

Large differences in voxel-wise DTI metrics as well as skeletonised mean (except FA) and 

histogram widths were observed between sites, however these were removed with ComBat 

harmonization. Voxel-wise mean-difference plots, and skeleton means and histogram widths, of 

DTI metrics after harmonization remained different between cohorts, which reflects the 

significantly higher GA at scan in TEBC. When adjusting for GA at scan, GA at birth and sex, 

there were no significant effect of site on DTI metric means or histogram widths. When 

combining data from multiple sites, standardizing preprocessing and quality control strategies can 
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reduce variation between sites, however differences related to data acquisition are likely to 

impact extracted metrics (Galdi et al., 2024). ComBat has been used to harmonize DTI metric 

maps from very preterm infants imaged with different sequences on the same MRI system 

(Parikh et al., 2021), region of interest measures in term and preterm infants (Galdi et al., 2018), 

and DTI metrics along white matter tractography reconstruction in infants with congenital heart 

disease (Meyers et al., 2022). We add to this literature by demonstrating that ComBat 

successfully harmonizes voxel-wise DTI metrics as well as mean values and histogram widths 

from the white matter skeleton.  This provides novel opportunities to retrospectively combine 

neonatal dMRI cohorts and overcome sample size limitations often inherent to neonatal 

neuroimaging research (Korom et al., 2022) and undertake large meta-analyses of neonatal 

neuroimaging studies. In addition, these tools may be used in clinical trials of neuroprotective 

ages in neonates which use dMRI an outcome, but often recruit across multiple research centers 

to reach adequate sample sizes.  

After harmonization with ComBat and adjustment for GA at scan, GA at birth and sex, small 

differences in voxel-wise FA, AD, RD were found between sites. These differences may 

represent subtle differences between cohorts not captured in the covariates included in this 

analysis. Fortin and colleagues reported no white matter voxels were associated with site after 

ComBat harmonization of FA and MD maps in adults (Fortin et al., 2007). However, the authors 

used a Bonferroni correction without threshold-free cluster enhancement to control the family-

wise error rate, which is more conservative than the correction used in our study and may account 

for the differing results. Further work with larger multi-site samples is required to investigate 

differences between neonatal cohorts after data harmonization.   
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When iteratively examining the relationship between GA at birth and mean and histogram widths 

of DTI metrics across 10,000 subsets of 86 babies from dHCP data and harmonized dHCP and 

TEBC, regression coefficients for all metrics (except FA histogram width) were significantly 

higher in the dHCP alone subsets. Harmonization with ComBat may therefore slightly reduce 

statistical power when compared to a dataset of equivalent size from one site. However, it is 

important to note that across the whole harmonized sample, regression coefficients were similar 

to TEBC (n=86), but p-values were lower reflecting the increased statistical power achieved by 

combining samples. Overall, harmonization improves statistical power through increased sample 

sizes, however some additional variance may be introduced when combining samples which is 

not captured by harmonization.  

To our knowledge this is the largest study to assess the relationship between gestational age at 

birth and neonatal dMRI metrics in healthy infants born >37.0 weeks. Average mean, axial and 

radial diffusivity and the histogram width for all tensor metrics were associated with GA at birth. 

Voxel-wise TBSS analyses revealed significant associations between lower GA at birth and 

lower FA, and higher MD, AD and RD throughout the white matter. This may represent altered 

white matter development at younger GA at birth within this sample of healthy term infants. In 

voxel-wise TBSS studies, lower FA and higher MD, AD and RD across the brain were associated 

with lower GA at birth (Broekman et al., 2014; Gale�Grant et al., 2022; Jin et al., 2019; Ou et 

al., 2017). Interestingly, we also identified a small region of the posterior/retrolenticular part of 

the left internal capsule where lower GA at birth was associated with higher FA. Post-hoc 

analyses revealed a significant positive correlation between FA in this region and postnatal age 

when adjusting for sex and gestational age at scan. It is possible this reflects increased maturation 

of sensorimotor white matter pathways, however this requires further investigation. Our results 
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are also in agreement with Blesa and colleagues who identified significant correlations between 

decreasing GA at birth and increased MD, AD and RD histogram widths in a cohort of preterm 

and term infants (Blesa et al., 2020). However, in contrast to Blesa and colleagues findings, a 

wider FA histogram in the white matter skeleton was associated with decreased GA at birth in 

this term-only sample. This difference is likely explained by differences in study populations as 

Blesa and colleagues included predominantly preterm infants. Increased mean, axial and radial 

diffusivity may reflect increased membrane permeability or altered oligodendrocyte proliferation 

(Pecheva et al., 2018), while wider FA histogram widths could represent changes to coordinate 

maturation patters of white matter tracts postnatally (Ouyang et al., 2019) in infants born earlier 

in the term period, however this requires further investigation. 

It is important to note that before harmonization we identified more widespread voxel-wise 

associations with GA at birth across DTI metrics in regions that were significantly associated 

with site. Therefore, failure to appropriately remove the effect of site may introduce inflated 

associations in neonatal data, particularly if site is associated either with the variable of interest 

or necessary covariates such as GA at scan. While introducing a linear covariate may mitigate 

differences between sites, it’s important to note that within a GLM, the slope in each site is 

assumed to be equal. In our data, ComBat preserved differences in slope and data spread between 

sites when assessing the relationship between GA at birth and FA mean and histogram widths 

while linear covariates did not (as seen in Figure 4). Overall, this suggests harmonization with 

ComBat should be used to remove site effects rather than relying on adjusting for site with a 

linear covariate.  

Finally, harmonizing dMRI from multiple centres to assemble large neonatal clinical cohorts has 

the potential to inform clinical practice. Clinical practice when treating populations in the 
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neonatal intensive care unit can vary across centers. By harmonizing dMRI data from multiple 

centers to remove the effect of site but preserve the effect of clinical factors, it is possible to 

assess the effect of different clinical strategies on white matter development in neonates as well 

as disentangle the interacting effects of clinical practice and non-modifiable clinical factors. 

However, in the context of large multi-centre clinical neuroimaging research studies, it is 

necessary to ensure the definition and recording of clinical factors such as neonatal sepsis or 

decision-making regarding delivery management is harmonized too. Future multi-centre clinical 

neuroimaging research studies should engage with clinical colleagues to identify clinical 

variables of importance and ensure definitions are consistent between sites.  

Limitations and Future Directions 

The aim of the study was to characterise the effect of ComBat on skeletonized DTI metrics in 

typically developing infants, therefore we did not assess the impact of data harmonization in a 

clinical population. Future studies should investigate the effect of ComBat on multi-centre 

neonatal dMRI case-control studies. In addition, further research is needed to assess the utility of 

novel harmonization methods such as deep learning techniques (Wada et al., 2023) for neonatal 

dMRI. In this study we chose to focus on harmonization of DTI metrics as these are widely used 

in neonatal dMRI research (Pecheva et al., 2018), and can be calculated from many conventional 

clinical dMRI acquisitions. However, other advanced measures of microstructure such as 

NODDI (Zhang et al., 2012) or fixel-based metrics (Raffelt et al., 2017) provide different 

insights into the developing brain and research assessing the impact of ComBat harmonization on 

these metrics in the neonatal brain is warranted. Finally, using dMRI to assess cortical 

microstructural development have reported alterations in neonates with congenital heart disease 

(Kelly et al., 2019) and those born prematurely (Ball et al., 2013; Galdi et al., 2024) and 
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correlations with clinically relevant factors (Kelly et al., 2019; Sullivan et al., 2023). Future 

studies are required to optimize pipelines for registration and preprocessing, as well as assessing 

the utility of comBat for multi-centre cortical diffusion research in neonates.  

Conclusions 

ComBat data harmonization removed the effect of site from skeletonised DTI metric means and 

histogram width in two cohorts of healthy neonates who underwent brain MRI using different 

scanning hardware and sequence parameters. Harmonization removed all voxel-wise differences 

from MD maps, however small differences remained in FA, AD and RD. In the large combined 

harmonized dataset, we were able to detect significant relationships between GA at birth and 

mean and histogram widths of DTI metrics. However, when comparing single site and multi-site 

harmonized datasets of equal sample sizes, harmonized data resulted in smaller standardised 

correlation coefficients for GA at birth. Overall, ComBat will enable the scale-up of neonatal 

neuroimaging studies to unprecedented sample sizes, which offers new horizons for biomarker 

discovery and validation, understanding upstream pathways to brain health and injury in early 

life, and the use of imaging for investigating the efficacy of neuroprotective therapies.  
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Figures 

Figure 1. Voxel-wise differences between sites before and after harmonization. Mean difference

plots with dashed lines representing mean difference and dotted lines representing 95%

confidence intervals without adjusting for gestational age at birth, gestational age at scan and sex.

ce 

% 

ex. 
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Voxel percentages and results displayed on mean FA images represent voxels significantly 

different between sites after adjusting for sex, gestational age at birth and gestational age at scan. 
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Figure 2. Voxel-wise correlations with GA at birth across the whole sample before and after 

harmonization. Results displayed on mean FA images represent voxels significantly positively 

(blue) and negatively (yellow) associated with gestational age at birth adjusting for sex and 

gestational age at scan. 

Figure 3. Mean and range of t-statistics for voxel-wise relationships between DTI metrics and 

GA at birth in Theirworld Edinburgh Birth Cohort (n=86; red), five subsamples of developing 

human connectome project (n=86 in each; blue) and five subsamples of combined cohort with 

ComBat harmonization (n=86 in each; purple). 
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Figure 4. Voxels significantly associated with GA at birth across five subsets of dHCP and harmonized dHCP and TEBC. Results displa

on mean FA images represent number of times a voxel was associated with GA at birth in each subset (0-5 times) when adjusting for sex 

gestational age at sc

played 

ex and 

scan.
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Figure 5 Relationship between GA at birth in Theirworld Edinburgh Birth Cohort (TEBC), 

developing human connectome project (dHCP) and combined cohort with ComBat 

harmonization and site as a linear covariate. Blue- TEBC; Red- dHCP. 

Tables  

Table 1. Demographics and Characteristics of dHCP and TEBC 

 

Developing Human 

Connectome Project 

(n=287) 

Theirworld 

Edinburgh Birth 

Cohort (n=86) 

Differences between 

sites 

Gestational age at 

birth, median (IQR) 
40.14 (39.00-40.86) 39.71 (39.00-40.43) p=0.076 

GA at scan, median 

(IQR) 
40.86 (39.81-42.14) 42.00 (41.29-43.00) p<0.001 

Female, n (%) 134 (46.7) 40 (46.5) X2=0 p=1.0 

results in bold are significant 
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Table 2. Mean and histogram widths for each site before and after harmonization 

Diffusion 

metric 

 

Measure, 

mean (SD) 

Before Harmonization After Harmonization 

TEBC (n=86) dHCP (n=287) TEBC (n=86) dHCP (n=287) 

Fractional 

anisotropy 

Mean 0.265 (0.014) 0.254 (0.019) 0.265 (0.014) 0.255 (0.019) 

Histogram 

width 

0.323 (0.016) 0.345 (0.022) 0.343 (0.017) 0.338 (0.022) 

Mean 

Diffusivity 

Mean 3.79 (0.114) 3.65 (0.156) 3.64 (0.119) 3.69 (0.155) 

Histogram 

Width 

1.49 (0.160) 1.57 (0.188) 1.54 (0.168) 1.55 (0.186) 

Axial 

Diffusivity 

Mean  1.63 (0.031) 1.55 (0.041) 1.56 (0.031) 1.57 (0.041) 

Histogram 

Width 

0.702 (0.037) 0.656 (0.048) 0.668 (0.034) 0.660 (0.048) 

Radial 

Diffusivity 

Mean 1.08 (0.043) 1.05 (0.059) 1.04 (0.044) 1.06 (0.058) 

Histogram 

Width 

0.603 (0.058) 0.649 (0.066) 0.634 (0.061) 0.637 (0.065) 
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Table 3. Effect of site on dMRI metrics before and after harmonization 

Diffusion metric 

 

Measure 

 

Effect of site before 

harmonization 

Effect of site after 

harmonization 

Fractional anisotropy 

Mean 
β (SE)= -0.056 

(0.037) p=0.128a 

β (SE)= -0.032 

(0.037) p=0.378a 

Histogram width 
β (SE)= -0.568 

(0.048) p<0.001a 

β (SE)= 0.063 (0.054) 

p=0.243 

Mean Diffusivity 

 

 

 

Mean 

 

β (SE)= -0.485 

(0.040) p<0.001 

β (SE)= 0.039 (0.043) 

 p=0.360 

Histogram Width 
β (SE)= 0.171 (0.052) 

p=0.001 

β (SE)= 0.014 (0.053) 

p=0.788 

Axial Diffusivity 

Mean 
β (SE)= -0.684 (0.037) 

p<0.001 

β (SE)= 0.048 (0.049) 

 p=0.328 

Histogram Width 
β (SE)= -0.376 

(0.052) p<0.001a 

β (SE)=-0.006 (0.057) 

p=0.921a 

Radial Diffusivity 

Mean 
β (SE)= -0.370 (0.040) 

p<0.001 

β (SE)= 0.035 (0.041) 

p=0.389 

Histogram Width 
β (SE)= 0.284 (0.049) 

p<0.001 

β (SE)= 0.020 (0.051) 

 p=0.692 

adjusted for GA at birth, GA at scan and sex; results in bold are significant, aRobust regression 
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Table 4. Effect of GA of birth on dMRI metrics before and after harmonization 

Diffusion metric Measure Gestational age at 

birth in TEBC 

(n=86) 

Gestational age at 

birth in dHCP 

(n=287) 

Gestational age at 

birth with no 

correction 

(n=373) 

Gestational age 

at birth with site 

as a covariate 

(n=373) 

Gestational age 

at birth after 

harmonization 

(n=373) 

Fractional 

Anisotropy  

 

Mean β (SE)= 0.084 

(0.092) p=0.363 

β (SE)= 0.088 

(0.057) p=0.125 

β (SE)= 0.068 

(0.044) p=0.127a 

β (SE)= -0.094 

(0.047) p=0.047a 

β (SE)= 0.08 

(0.044) p=0.072a 

Histogram width β (SE)= -0.383 

 (0.130) p=0.004 

β (SE)= -0.248 

(0.081) p=0.002 

β (SE)= -0.001 

(0.068) p=0.985 

β (SE)= -0.258 

(0.062) p<0.001a 

β (SE)= -0.251 

 (0.064) p<0.001 

Mean Diffusivity Mean 

 

β (SE)= -0.195 

(0.109) p=0.077 

β (SE)= -0.243 

(0.064) p<0.001 

β (SE)= -0.465 

(0.066) p<0.001a 

β (SE)= -0.184 

(0.015) p<0.001 

Β (SE)= -0.212 

(0.051) p<0.001 

Histogram Width 

 

β (SE)= -0.189 

 (0.135) p=0.166 

β (SE)= -0.321 

(0.077) p<0.001 

β (SE)= -0.211 

(0.065) p<0.001 

β (SE)= -0.287 

 (0.066) p<0.001 

β (SE)= -0.291 

 (0.063) p<0.001 

Axial Diffusivity Mean  β (SE)= -0.245 

 (0.125) p=0.053 

β (SE)= -0.320 

(0.072) p<0.001 

β (SE)= -0.569 

(0.065) p<0.001a 

β (SE)= -0.230 

 (0.047) p<0.001 

β (SE)= -0.281 

(0.058) p<0.001 

Histogram Width β (SE)= -0.026 

 (0.136) p=0.852 

β (SE)= -0.088 

(0.057) p=0.125a 

β (SE)= -0.271 

(0.066) p<0.001 

β (SE)= -0.126 

 (0.067) p=0.060a 

β (SE)= -0.155 

(0.068) p=0.023 a 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted M
ay 1, 2024. 

; 
https://doi.org/10.1101/2024.04.30.24306619

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.04.30.24306619
http://creativecommons.org/licenses/by/4.0/


 

 

47

Radial Diffusivity

    

 

Mean β (SE)= -0.172 

 (0.104) p=0.101 

β (SE)= -0.210 

(0.061) p<0.001 

β (SE)= -0.360 

 (0.053) p=0.014 

β (SE)= -0.195 

(0.051) p<0.001 

β (SE)= -0.183 

 (0.049) p<0.001 

Histogram Width β (SE)= -0.294 

(0.131) p=0.027 

β (SE)= -0.350 

(0.075) p<0.001 

β (SE)= -0.197 

(0.061) p=0.001 

β (SE)= -0.323 

(0.062) p<0.001 

β (SE)= -0.338 

 (0.061) p<0.001 

results in bold are significant, aRobust regression; adjusting for GA at scan and sex  

 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted M
ay 1, 2024. 

; 
https://doi.org/10.1101/2024.04.30.24306619

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.04.30.24306619
http://creativecommons.org/licenses/by/4.0/


 

 

48 

Table 5. Permutation testing of the relationship between GA at birth and dMRI metric means 

and histogram widths 

Diffusion 

metric   

 

Measure 

   

Effect of GA at birth 

in dHCP  

Effect of GA at birth 

in harmonized data 

T-test difference 

between regression 

coefficients 

Fractional 

Anisotropy  

β (95%CI) ± 

SD  

Mean 0.098 (0.096-0.100) 

±0.095  

0.080 (0.078-0.081) 

±0.088  

t (19998)= 13.9 

p<0.001 

Histogram 

Width 

-0.254 (-0.256- -

0.251) ±0.121  

-0.254  (-0.257- -

0.252) ±0.113  

t (19998)= 0.00 

p>0.999 

Mean 

Diffusivity  

β (95%CI) ± 

SD 

Mean -0.261 (-0.263- -

0.259) ±0.105 

-0.227 (-0.229- -

0.225) ±0.100  

t (19998)= 23.4 

p<0.001 

Histogram 

Width 

-0.341 (-0.344- -

0.339) ±0.136  

-0.309 (-0.312- -

0.306) ±0.136  

t (19998)= 16.6 

p<0.001 

Axial 

Diffusivity 

β (95%CI) ± 

SD 

Mean -0.335 (-0.337- -

0.332) ±0.115  

-0.287  (-0.289- -

0.285) ±0.112  

t (19998)= 29.9 

p<0.001 

Histogram 

Width 

-0.188 (-0.191- -

0.186) ±0.122  

-0.148 (-0.151- -

0.146) ±0.123  

t (19998)= 23.1 

p<0.001 

Radial 

Diffusivity 

β (95%CI) ± 

SD 

Mean -0.229 (-0.231- -

0.227) ±0.101  

-0.200  (-0.201- -

0.198) ±0.095  

t (19998)= 20.9 

p<0.001 

Histogram 

Width 

-0.352 (-0.354- -

0.349) ±0.134   

-0.343 (-0.346- -

0.341) ±0.132  

t (19998)= 4.78 

p<0.001 

Robust regression adjusting for gestational age at scan and sex; results in bold are significant 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.30.24306619doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.30.24306619
http://creativecommons.org/licenses/by/4.0/

