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Abstract: Whole tissue transcriptomic analyses have been helpful to characterize molecular subtypes of hepatocellular 
carcinoma (HCC). Metabolic subtypes of human HCC have been defined, yet whether these different metabolic classes 
are clinically relevant or derive in actionable cancer vulnerabilities is still an unanswered question. Publicly available gene 
sets or gene signatures have been used to infer functional changes through gene set enrichment methods. However, 
metabolism-related gene signatures are poorly coexpressed when applied to a biological context. Here, we apply a simple 
method to infer highly consistent signatures using graph models. Using The Cancer Genome Atlas Liver Hepatocellular 
cohort (LIHC), we describe the main metabolic clusters and their relationship with commonly used molecular classes, and 
with the presence of TP53 or CTNNB1 driver mutations. We find similar results in our validation cohort, the LIRI-JP cohort. 
We describe how previously described metabolic subtypes could not have therapeutic relevance due to their overall 
downregulation when compared to non-tumoral liver, and identify N-Glycan, Mevalonate and Sphingolipid biosynthetic 
pathways as the hallmark of the oncogenic shift of the use of Acetyl-coenzyme A in HCC metabolism. Finally, using 
DepMap data, we demonstrate metabolic vulnerabilities in HCC cell lines. 

Keywords: Hepatocellular carcinoma, RNA sequencing, metabolism, signature, graph, gene set enrichment analysis, 
gene set variation analysis. 

 

1. Introduction 

Gene Set Enrichment (GSE) methods have been widely used to facilitate the functional interpretation of 
transcriptomic data using sets of selected genes that are assigned to a specific biological context (1). GSE 
methods such as Gene Set Variation Analysis (GSVA) have enabled the interpretation of thousands of gene 
expression changes between conditions or groups of patient samples by integrating statistical post hoc 
analysis into pathway-centric models (2). However, the functional diversity between species, organs, tissues, 
and cell types as well as the heterogeneity of human cohorts weakens the generalization capabilities of most 
published signatures and gene sets, which were likely generated in highly controlled in vitro experiments on 
cell types and organs not related to the conditions under investigation. Similarly, some public gene sets have 
been curated by experts using knowledge about a specific pathway or biological process. For instance, the 
Metabolic atlas (MetAtlas) repository was created from genome-scale metabolic models based on multi-omics 
and specific tissue subsystems (3). In the Molecular Signature Database (MSigDB) hundreds of gene set 
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collections are obtained largely from perturbation experiments (4), limiting their use in other, less controlled, 
transcriptomic analyses. A generalized method to adapt the available signatures to the biological context 
under study is thus warranted.  

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide (5,6). Hepatocyte 
differentiation is one of the most important prognostic factors in HCC (7), as exemplified by the histological 
classification first proposed by Edmondson and Steiner (8). High degree HCCs -grades II and IV of 
Edmonson- behave aggressively with easily distinguishable atypical cell shape. As a highly proliferative 
cancer the metabolism of high-histological grade HCC shifts towards a more glycolytic phenotype, with more 
oxidative stress and glutathione usage, and activation of the pentose phosphate pathway for the synthesis of 
purines and pyrimidines (9). In recent years, the availability of transcriptomic data from human HCC has 
allowed the application of machine learning approaches for inferring metabolic classification with prognostic 
value (10–13). These works have tried to understand the metabolic underpinnings of HCC in an unbiased 
manner, generating de novo signatures, mostly based only in cancer samples. Despite these analytic efforts, 
targeting cancer metabolic reprogramming is still an unmet objective. The performance of GSVA or other GSE 
methods using publicly available metabolic signatures has not been yet explored to define HCC metabolism, 
most probably because of the above-mentioned limitations. 

In this work, to find metabolic vulnerabilities in human HCC, we developed a simple method to adapt 
published signatures by applying graph models to filter off-the-shelf gene sets before performing GSVA. We 
used the two largest available cohorts of sequenced HCC samples (TCGA-LIHC and ICGC-LIRI-JP) and 
showed the poor coexpression of published metabolic signatures present in MetAtlas and MSigDB.  

The application of graph models led to the identification of metabolic clusters, with increased coexpression. 
We describe the association of newly generated metabolic signatures to other well-known transcriptomics 
HCC subclasses such as those of Hoshida (14), Chiang (15) and to the presence of TP53 or CTNNB1 driver 
mutations. We focus our study on signatures found to be enriched in tumors when compared to non-tumoral 
tissue, namely N-Glycan, Mevalonate and Sphingolipid biosynthetic pathways. Finally, we show the genetic 
vulnerabilities within these pathways using DepMap initiative (https://depmap.org/portal/) and suggest future 
avenues to target oncometabolic pathways in HCC. 

2. Materials and Methods 

2.1 Data collection 

Raw transcriptomic counts and clinical information of TCGA-LIHC cohort were obtained from Xenabrowser 
platform of University of California Santa Cruz (UCSC) (https://xenabrowser.net/datapages/). Japanese raw 
RNA sequencing counts belonging to ICGC-LIRI-JP cohort were downloaded from ICGC Portal 
(https://dcc.icgc.org/projects) with its corresponding clinical information. Clinical data from the TCGA-LIHC and 
the ICGC-LIRI-JP cohorts are summarized in Suppl. Table 1. Human molecular signatures tested in this 
article were obtained from Metabolic Atlas repository (https://metabolicatlas.org/explore/Human-GEM/gem-
browser) and Molecular Signature Database (https://www.gsea-msigdb.org/gsea/msigdb/). Cell lines used for 
dependency and gene effect analyses were collected from DepMap portal (https://depmap.org/portal/).  

2.2. Normalization and filtering method 

Raw counts from both cohorts were normalized using edgeR (version: 4.0.16) (16). From differential gene 
expression list, those genes with less expression than 1 in more than 30% of samples were removed 
considering as non-expressed features. Then, library size and normalization were performed by function 
calcNormFactors performing TMM methodology. Subsequently, counts per million (CPM) were computed from 
resulting normalized library sizes and used for downstream analyses. 

2.3. Gene set adaptation based on graph models 

Graph models were developed using igraph package (version: 2.0.2) (17). Using CPM from normalized 
cohorts and retrieved metabolic gene sets, gene-gene coexpression was calculated using Spearman 
correlation after noticing extreme values in some observations. Correlation matrixes were filtered removing 
reciprocal values contained in diagonal and selecting highly correlated genes applying different correlation 
cutoffs called as Correlation Cutoff of Input Matrix (CCIM). Then, filtered matrixes were used as input for graph 
development. In these graphs, median, variance, gene set size, centrality and Louvain communities were 
examined in each gene set tested. We considered eigenvalue centrality as our preferential metric for 
estimating the centrality of each gene in the graph in a range between 0 (isolated gene) and 1 (central gene). 
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We further included community and membership studies to evaluate if the same gene set clustered into two or 
more different subsets with different biological interpretation. Therefore, we established the resolution filter 
from Louvain function indicating that those communities with at least 20% of the total size should be included 
in the output file. Additionally, for each gene set central gene and core genes with the best centrality 
(eigenvalue ≥ 0.9) were collected. Successively, central gene renamed the resultant adapted gene sets 
compiling single or multiple gene set with the same core genes considered as a gold standard.  

Next, it was indispensable to test whether adapted gene sets reflect the original biological collection. 
Therefore, each gene set was assessed with clusterProfiler package (version: 4.10.1) (18) performing 
hypergeometric test. Any adapted gene set that was first-ranked in hypergeometric test was included as it 
indicated that biological information was maintained, otherwise it was removed. Finally, a set of selected and 
enriched gene sets were collected for downstream analyses. 

2.4. Sample enrichment with ssGSEA 

Single sample Gene Set Enrichment algorithm (ssGSEA) from corto package (version: 1.2.4) (19) was 
performed to estimate the enrichment of each gene set across non tumor and tumor samples. Those ones 
with less than 2 genes where removed from ssGSEA enrichment. 

2.5. Statistical analysis based on ssGSEA score 

Molecular and metabolic HCC subgroups obtained from previous works (10,14,15) and sample information 
presented in clinical data were evaluated considering the score of ssGSEA algorithm. Those samples whose 
initial diagnosis was not related to Hepatocellular carcinoma were removed. From TCGA-LIHC, a total of 359 
tumor samples and 49 non-tumor samples with transcriptomic and metadata information were used for 
statistical analyses. Mean, standard deviation and statistical test were performed and retrieved for posterior 
visualization. 

2.6. Ridgeplot and heatmap visualization 

Statistically significant gene sets found in molecular and clinical categories were plotted with pheatmap 
(version: 1.0.12) (20), ggplot2 (version: 3.5.0), ggridges (version: 0.5.6) and ggthemes (version: 5.1.0) (21). 
When analysing differences of gene set enrichments between non-tumor and tumor samples, only paired 
samples were selected. Hoshida, Chiang, iHCC and main mutations (TP53 and CTNNB1) where compared 
with non-tumor samples. Samples without information in any category were removed from the analyses. 

2.7. Survival analysis 

TCGA patients were previously divided into two partitions (training and validation subsets) with 50:50 
proportion assuming the presence of overfitting phenomenon. For both subsets, survival analysis was 
performed taking median ssGSEA score as numerical discriminator between High and Low-expressed groups. 
Median survival of both groups was estimated using survival (version: 3.5-5) and survminer (version: 0.4.9) 
packages (22,23). In addition, Median Survival Difference (MSD) was computed subtracting Low to High-
expressed samples.  

2.8. Validation 

For ICGC-LIRI-JP samples, adapted gene sets obtained from TCGA-LIHC samples were validated. Following 
methodology of previous sections (2.4 to 2.7), it was evaluated the similarity between TCGA and LIRI 
samples. Only those samples reported as Hepatocellular Carcinoma were selected for downstream analysis 
compelling 172 non-tumor and 200 tumor samples. ICGC-LIRI-JP was considered as test subset in survival 
analyses.  

2.9. Estimation of gene dependency and gene effect with DepMap Portal 

Cell lines from HCC (Suppl. Table 2)  were in silico tested using our metabolic gene collection to estimate 
gene effect and gene dependency in each cell line. To this end, we downloaded the CRIPR-Cas9 screen 
database from DepMap portal (29083409, 31068700). Null score leads to minimal dependency effect on cell 
line whereas positive score indicated cell dependency. Regarding gene effect score, null score represented no 
cell dependency while negative scores indicated deleterious effect on the cell line. 

2.10. Statistical analysis 
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Shapiro-Wilk test was used to test the normality of each distribution. For variables with two groups, T-test or 
Wilcoxon test was performed according to normality test. For three or more groups, parametric ANOVA or 
Kruskal Wallis tests were performed and each individual comparison two by two were also evaluated. Log-
rank test was used for survival analyses. In boxplots, median and interquartile range were displayed. Only 
those p values less than 0.05 were considered statistically significant. 

3. Results 

 

3.1. Graph models generate highly compacted metabolic signatures 

Considering metabolism as a crucial hallmark of HCC development, we first investigated how co-expressed 
curated signatures from Hallmark collection of MSigDB are in the context of the HCC transcriptome (Fig 1A). 
As expected, genes belonging to proliferative signatures such as E2F_TARGETS, describing the high protein 
translation rate, or MYC_TARGETS -60% of HCCs in TCGA overexpress MYC oncogene- have high median 
gene to gene correlation (MGGC). Metabolic signatures presented moderate to low co-expression, with 
MGGC values closer to non-hepatic non-cancer signatures, which presented the lowest co-expression. When 
the Metabolic Atlas (MetAtlas) repository was tested, similarly low levels of MGGC were found (Fig 1B), with 
higher values in signatures related to oxidative phosphorylation or beta-oxidation of fatty acids when 
compared to others such as acylglycerides metabolism or cytosolic carnitine shuttle. These data confirmed the 
specificity of the biological context of HCC and suggest that enrichment scores based on these signatures 
could be affected by low signal to noise ratio. 

We thus designed a pipeline to derive highly coexpressed signatures from public gene sets, using graph 
models, aiming at identifying networks of genes based on co-expression matrices from human HCC 
transcriptomic data (see Methods). To pursue this, we retrieved 130 metabolic signatures from Metabolic Atlas 
and 315 Hallmark (H) and canonical pathways from curated gene sets (C2-CP), from MSigDB (Fig 1C). A total 
of 445 metabolic signatures were analyzed with 1684 genes shared in both databases, 2105 uniquely present 
in MetAtlas and 717 specific of the MSigDB. As expected, globally, adapted gene sets obtained from 
bioinformatic pipeline presented better MGGC compared to their original counterparts (Fig 1D). 

Next, TCGA-LIHC samples were randomly clustered into training and validation sets, while ICGC-LIRI-JP 
composed the test set. Graphs generated with higher correlation thresholds generated less populated graphs 
and smaller Louvain communities (Fig 1E-F). Testing all possible correlation thresholds, we detected that a 
range between 0.2 and 0.5 generated the highest number of communities with the highest number of 
coexpressed genes, with a considerable increase in MGGC and decrease in median gene-gene variance 
(MGGV), at expenses of a limited reduction of the gene set size to between 40 and 30% of its original size, 
indicating that a significant number of genes in the original public signature in MetAtlas or MSigDB was 
preserved (Suppl. Fig 1A-D). We also confirmed that all newly generated signatures were ranked first after a 
hypergeometric test was done against the universe of all available gene signatures (all GSEA H and C2 
collections plus MetAtlas signatures). The final collection of gene signatures was named after its central gene 
(eigenvalue of 1 or the highest eigenvalue in the case of one original signature generating two or more new 
Louvain communities, see Methods). Finally, those signatures with the same central gene, some of them from 
different signatures representing similar metabolic pathways were merged.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2024. ; https://doi.org/10.1101/2024.04.30.24306608doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.30.24306608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 1. Using graph models to adapt public signatures. (A) Violin plot showing the median gene to gene correlation 
(MGGC) of selected Hallmark signatures in the LIHC HCC cohort, including those related with proliferation (green), 
metabolism (light blue) and unrelated to liver or liver cancer (dark blue). (B) MGGC of signatures from The Metabolic Atlas 
(MetAtlas). (C) Scheme of the method of adaptation of public signatures from Molecular Signature Database (MSigDB) 
and MetAtlas to identify centric nodes and metabolic clusters using graph models. (D) Effect of the method on the MGGC 
of metabolic signatures from MSigDB and MetAtlas in LIHC. (E) An example of a non-filtered coexpression matrix of 
“Xenobiotic Metabolism” Signature of the MetAtlas in the LIHC cohort, were all genes (nodes) are connected by apparently 
equal relationship (edge). (F) An example of a Louvain cluster obtained by after graph model was applied to “Xenobiotic 
Metabolism” signature.  

 

3.2. Metabolic clusters are tumor-specific and associated with molecular subtypes in the TCGA LIHC cohort 

The intermediate metabolism is one of the most important functions of the normal hepatocytes. We 
hypothesized that tumor communities could not be entirely coincident with non-tumor ones, regarding both the 
number and size of the gene sets and the specific central genes. It was found that non-tumor communities 
presented higher number of clusters, unique genes per cluster, unique core genes and unique central genes 
when compared to tumor ones (Fig 2A-B), and that the central genes defining clusters were mostly divergent 
(Fig 2C-F). After applying gene set adaptation and selecting enriched gene sets, 74 different signatures were 
obtained conforming different metabolic signatures, of which only 17 were found also in non-tumor samples 
(Fig. 2F, Suppl Table 3). 

We then decided to explore whether the relative increase or decrease of the global expression of a specific 
community defined a particular biology or associated with a previously described HCC subtype. We thus 
interrogated the enrichment of the new graph-identified signatures using ssGSEA in the HCC samples of the 
TCGA-LIHC cohort (Fig 2G-K). The hierarchical clustering of the signatures led to four main groups of 
pathways (Fig2G, Table1), which are described in what follows.  
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Figure 2. Identification of Metabolic Clusters in HCC and their association with transcriptomic classes. (A) LIHC 
was used as the training cohort, where tumor (HCC, n = 359) and non-tumor (NT, n= 49) samples were analyzed (B) From 
the original MSigDB and MetAtlas signatures, unrestricted coexpression matrix (r threshold 0.05), led to the identification 
of only 148 metabolic clusters in HCC and 183 in NT, which increased to 261 and 454 in HCC and NT respectively, with r 
threshold 0.4, used in downstream analyses. These clusters included 1182 and 1785 unique genes, 369 and 445 core 
genes and 143 and 273 central genes in HCC and NT respectively (see method section). (C-F) Overlap between 
signatures (C), unique genes (D), unique core genes (E) and unique central genes (F) found in HCC and NT. (G) Heatmap 
of ssGSEA scores using newly identified metabolic clusters and its association with Hoshida classes S1, S2 and S3. (H-J) 
Ridge plots showing the expression of signatures belonging to group 1, 2 and 3 by Hoshida Class S1, S2 and S3. 

Table 1. Main metabolic signatures upon hierarchical clustering of TCGA-LIHC cohort 

Hierarchical cluster Signature name Function 

Group 1 
Liver-specific 

CYP4A22, CPT2 Fatty acid metabolism and transport 
GCDH Lysine, hydroxylysine and tryptophan metabolism 
SARDH 
AASS 
MCCC2 

Glycine cleavage 
Lysine catabolism 
Leucine catabolism 
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SDHA, SDHB 
CYP3A4, AOX1 

Respiratory chain reaction 
Detoxification and metabolism of xenobiotics 

Group 2 
ECM metabolism 

LUM, DCN, VCAN, THBS2, COL3A1 Extracellular matrix, organization and cell adhesion 
ALOXAP5 
CHST3, B3GALT5 

Leukotriene metabolism 
Modification of glucosamine glycans 

Group 3 
Proliferation 

NME1 Nucleotide metabolism 
RPL37A Protein synthesis 
COX5B Oxidative phosphorylation 
GPX4 
GMPPA 

Glutathione management 
Cytoplasmic glycosylation 

Group 4 
Cholesterol IDI1, FDPS, DHCR7, EBP Mevalonate and cholesterol biosynthesis 

Group 5 
EP300 
PIK3C2A 

Nuclear factors 
Inositol phosphate metabolism 

Unclustered 

DLD 
SPTLC1 
ABCC2 
NAT2 

Glycolysis 
Sphingolipid metabolism 
Glucuronidation and transport of bilirubin 
Metabolism of drugs 

   

 

• The largest group of pathways included a varied array of typically hepatic metabolic functions: some 
related to fatty acid metabolism and transport, such as Cytochrome P450 Family 4 Subfamily A Member 22 
(CYP4A22) or Carnitine Palmitoyltransferase 2 (CPT2) involved in mitochondrial long-chain fatty acids 
transport. Other related to the catabolism of aminoacids, such as Glutaryl-CoA Dehydrogenase (GCDH), an 
important enzyme in the degradation of lysine, hydroxylysine, and tryptophan, Sarcosine Dehydrogenase 
(SARDH) involved in glycine cleavage, Alpha-Aminoadipic Semialdehyde Synthase (AASS), in charge of 
lysine degradation, and the Methylcrotonoyl-CoA Carboxylase 2 (MCCC2), involved in the catabolism of 
leucine. Some additional pathways related to this group included those centered in enzymes of the respiratory 
chain, such as the subunits of the Succinate Dehydrogenase (SDHA and B), and enzymes and transporters 
involved in the processing of drugs and xenobiotics (CYP3A4, AOX1, NAT2 and ABCC2).  

• The second largest group of pathways included functions related to metabolic aspects of extracellular 
matrix (ECM) organization and cell adhesion, such as signatures centered in Lumican (LUM), Decorin (DCN), 
Versican (VCAN), thrombospondin 2 (THBS2) and Collagen Type III Alpha 1 Chain (COL3A1); pathways 
related to inflammation including the leukotriene biosynthesis pathway centered in Arachidonate 5-
Lipoxygenase Activating Protein (ALOXAP5); and pathways related to the modification of glucosamine 
glycans such as those centered in the Carbohydrate Sulfotransferase 3 (CHST3) and the Beta-1,3-
Galactosyltransferase 5 (B3GALT5) genes.  

• A third group was composed of signatures related to nucleotide synthesis such as Nucleoside 
Diphosphate Kinase 1 (NME1), protein synthesis (RPL17A-driven signature), mitochondrial function (COX5B), 
glutathione (GPX4) and cytoplasmic glycosylation pathways (GMPPA).  

• The fourth group included gene sets related to mevalonate and cholesterol biosynthesis, such as 
Isopentenyl-diphosphate Delta Isomerase 1 (IDI1), Farnesyl Diphosphate Synthase (FDPS), 7-
Dehydrocholesterol Reductase (DHCR7) and the Emopamil-Binding Protein (EBP).  

• Interestingly, a residual group with ssGSEA values unrelated to any of the four mentioned groups 
encompassed transcriptional regulators and nuclear factors such as the ones included in the mediator 
complex and nuclear correpressors included in the EP300 community, and a PIK3C2A-centered signature, 
with genes involved in the inositol-phosphate metabolism.  

Interestingly, some of the Hoshida subtypes, originally not defined based on the metabolic characteristics (14), 
clustered according to some of the new graph-based metabolic signatures (Fig 2G, top). For example, while 
Hoshida S1 class was enriched in group 2 signatures (Metabolism of ECM related proteins), S3 class had 
higher scores of group 1 (Liver-specific). Both signatures are present in the non-tumoral tissue, which 
suggests that in S1 tumors, there is a specific downregulation of group 1 signatures, such as CYP3A4 and 
SDHA (Fig 2H), and in S3 tumors there is a downregulation of group 2, such as VCAN or B3GALT5 (Fig 2I). 
As expected, the intensity of liver-specific signatures was higher in non-tumoral liver than in S3 tumors 
(Fig2H). On the other hand, the intensity of ECM signatures was slightly higher in S1 tumors than in non-
tumors (Fig2I). Hoshida class S2 has lower expression of both group 1 and group 2 signatures when 
compared to non-tumor samples (Fig 2G-I). Whether group 1 and group 2 signatures reflect two differentiation 
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states is unknown. Two groups of metabolic signatures (group 3, “proliferation” and group 4, “cholesterol”) had 
increased ssGSEA scores in tumor samples when compared to non-tumoral livers, indicating potential 
metabolic targets. Samples with high scores in group 3 and 4 signatures were distributed among Hoshida S1, 
S2 and S3 classes. This could indicate that while liver differentiation and ECM define one layer of metabolic 
subtype, the proliferation rate – in terms of protein synthesis and nucleotide and mitochondrial metabolism- 
and the induction of the mevalonate pathway could define a second perhaps more dynamic onco-metabolic 
shape (Fig 2J-K). Interestingly, not all tumors with high group 3 had increased group 4 signature scores, 
indicating different regulatory control.  

We then analyzed Chiang transcriptomic classes (15) in the context of the newly generated metabolic 
signatures. As with Hoshida subclasses, there were metabolic differences between Chiang subclasses. For 
example, proliferative subgroup presented the lowest levels of expression of group 1 signatures, whereas 
CTNNB1, Polysomy 7 and Interferon classes presented higher expression of these signatures (Suppl. Fig. 
2A). Conversely, when interrogating group 2 signatures, CTNNB1 and Polysomy 7 seven, but not the 
Interferon class had the lowest level of expression (Suppl. Fig. 2B). These results indicated the relationship 
between a specific molecular subtype and the metabolic status of the cell. 

Finally, the metabolic landscape of HCC as inferred by the generated signatures matched with previously 
described metabolic classes. Bidkhori metabolic class iHCC1 (10) was enriched with liver-specific (group 1) 
signatures (Suppl. Fig. 2C and D), while iHCC3 tumors had the lowest levels of these signatures but highest 
of metabolism of ECM (Suppl. Fig. 2C and E). As described, iHCC2 metabolic subgroup had an intermediate 
score in group 1 signatures when compared to iHCC1 and 3. Some signatures such as those related to drug 
and xenobiotic metabolism (NAT2, UGT1A4) and those related to steroid metabolism (HSD17B4) (Suppl. Fig. 
2C and F). 

3.3. TP53 and CTNNB1 mutant tumors are metabolically diverse 

HCC main driver mutations include deleterious TP53 variants, activating N terminal CTNNB1 mutations and 
activating variants of TERT gene promoter. Among them, TP53 and CTNNB1 mutations are mutually 
exclusive in most HCC patients, which allow for the comparative analysis of their specific biologic behavior. 
With newly adapted signatures, we could define a specific metabolic shape for TP53 and CTNNB1 mutated 
tumors. Tumors bearing TP53-null mutations presented overexpression of NME1 signature, related with 
purine metabolism. On the other hand, CTNNB1-mutated patients presented an enrichment in metabolic 
signatures such as MAT1A and CYP3A4, when compared to TP53-null. Conversely tumors with wild type 
TP53 presented higher metabolic enrichment of MAT1A and CYP3A4. These data suggest that CTNNB1 
mutation supports the maintenance of a liver metabolic-like phenotype in HCC, while TP53 mutant tumors are 
more de-differentiated and highly proliferative (Suppl. Fig. 3). 

3.4. The survival of patients with low metabolic tumors is worse in the LIHC and LIRI cohorts 

It was previously observed that Bidkhori iHCC1 class determined survival prognosis (10). We therefore used 
the training, validation, and test cohorts to verify the prognostic significance of our derived metabolic 
signatures (Fig 3A). Only liver-specific metabolic signatures (group 1) such as ABAT, DMGDH and GLYAT, 
which were downregulated in tumors (Fig 3B) were associated with prognosis in all three cohorts. Patients 
with tumors having higher expression of these metabolic signatures, had increased overall survival (Fig 3C). 
This result indicates the validity of the signatures found in LIHC cohort to interrogate the metabolic phenotype 
of unseen data, such as the LIRI-JP cohort. The median survival difference was lower in the LIRI-JP, perhaps 
due to the better global survival in the cohort. 
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Figure 3. Validation of the method for prognostic prediction in patients with HCC. (A) Random 50:50 split of the 
LIHC led to the training (n=180) and validation (n=179) cohorts for prognostic analyses, while LIRI-JP cohort (n=200) was 
used as test cohort. (B-C) Overall ssGSEA scores of prognostic signatures ABAT, DMGDH and GLYAT when comparing 
tumor vs non-tumor in LIHC (C) and LIRI-JP (D). (E-F) Survival analyses of patients in LIHC-training, LIHC-validation and 
LIRI-JP-testing cohorts when dividing the population in high and low ssGSEA scores for ABAT (E), DMGDH (F) and 
GLYAT (G) signatures. 

3.5. Mevalonate, N-Glycan and Sphingolipid biosynthesis pathways shape the tumor metabolism in human 
HCC  

We then decided to study in more detail the few signatures with increased scores in tumors when compared to 
non-tumoral livers in both cohorts LIHC and LIRI, regardless their molecular subtype (signature groups 3 and 
4). These signatures were related to the mevalonate/cholesterol biosynthetic pathway such as IDI1 signature, 
glycosylation (GMPPA signature), sphingolipid (SPTLC1) and nucleotide (NME1 signature) metabolism and 
the catabolism of the polyamines, with mostly proteasome subunit genes (PSMB3 signature). Isopentenyl-
diphosphate delta-isomerase 1 (IDI1) was the most centric gene of a Louvain community with increased 
enrichment scores (Fig. 4A) involving other cholesterol-related genes such as Squalene Epoxidase (SQLE), 
Mevalonate Diphosphate Decarboxylase (MVD) or Sterol Regulatory Element Binding Transcription Factor 2 
(SREBP2) and Farnesyl Diphosphate Synthase (FDPS), Phosphomevalonate Kinase (PMVK), all of them with 
increased expression in HCC of both the LIHC and the LIRI-JP cohorts (Fig. 4B-C).  

GDP-mannose pyrophosphorylase A, encoded by GMPPA gene, was the central gene in a signature 
associated with other enzymes related to the synthesis and ramification of N-Glycans in the cytoplasmic and 
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luminal domains of the Endoplasmic Reticulum wall, including Dolichyl-Phosphate Mannose Synthase Subunit 
3 and 8 (ALG3, ALG8), Dolichol kinase (DOLK) and the Required for FTase Activity Protein 1 (RTF1), the 
flippase that internalizes the glycans to be incorporated to nascent polypeptides inside the ER, all of these 
genes were upregulated in tumors both in LIHC and LIRI (Fig. 4D-F). 

The signature centered in the Serine Palmitoyltransferase Long Chain Base Subunit 1 (SPTLC1) also is 
upregulated in tumors of both TCGA-LIHC and ICGC-LIRI-JP cohorts (Fig. 4G). SPTLC1 is a key enzyme in 
sphingolipid biosynthesis, catalyzing the generation of ketosphingoids from Serine and Acetyl-CoA, the rate 
limiting step for the generation of ceramides. Other enzymes in the same signature belonged to the lysosomal 
pathway of ganglioside catabolism, such as Hexosaminidase Subunit Beta (HEXB) and Neuraminidase 1 
(NEU1) were also overexpressed in tumor samples of both LIHC and LIRI-JP (Fig. 4H-I).  

NME1 signature comprised nucleotide metabolism and polimerase enzymes related to DNA replication and 
transcription. As expected, tumor samples presented higher expression in comparison with non-tumor ones 
(Suppl. Fig. 4A). Among the most relevant expressed genes in this signature were Thymidine Kinase 1 (TK1), 
Uridine-Cytidine Kinase 2 (UCK2) and Deoxythymidylate Kinase (DTYMK), all involved in nucleotide 
metabolism (Suppl. Fig. 4B-C). 

Finally, overexpression of the PSMB3 signature, was related to the metabolism of polyamines but also to the 
more general proteasome function, was found differentially increase tumor samples (Suppl. Fig. 5A). Several 
components and subunits of the proteasome presented a general upregulation in tumor samples of both 
cohorts LIHC and LIRI-JP (Suppl. Fig. 5B-C).  

 

 

Figure 4. IDI1, GMPPA and SPTLC1-centered clusters are overexpressed metabolic signatures in HCC. (A) Ridge 
plots of ssGSEA scores of Isopentenyl-diphosphate delta-isomerase 1 (IDI1) in LIHC and LIRI-JP cohorts comparing it 
with paired non-tumor tissue (B-C) Box plots showing the expression levels of individual genes included in IDI1 signature 
in LIHC (B) and LIRI-JP (C) cohorts. (D) Ridge plots of ssGSEA scores of GDP-mannose pyrophosphorylase A (GMPPA) 
in LIHC and LIRI-JP cohorts comparing it with paired non-tumor tissue (E-F) Box plots showing the expression levels of 
individual genes included in GMPPA signature in LIHC (E) and LIRI-JP (F) cohorts. (G) Ridge plots of ssGSEA scores of 
Serine Palmitoyltransferase Long Chain Base Subunit 1 (SPTLC1) in LIHC and LIRI-JP cohorts comparing it with paired 
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non-tumor tissue (H-I) Box plots showing the expression levels of individual genes included in GMPPA signature in LIHC 
(H) and LIRI-JP (I) cohorts. 

 

3.6. HCC metabolic vulnerabilities in mevalonate, N-glycan and sphingolipid pathays as new targets for 
therapy 

The aforementioned results pointed to a possible implication of mevalonate/cholesterol, N-glycan and 
sphingolipid metabolism in HCC biology, regardless of the molecular subtype or the driver mutation. Since 
these pathways are induced in tumor samples when compared to non-tumoral liver, we though they could 
constitute potential targets for anticancer therapy. Thus, to determine the importance of these enzymes for the 
survival of HCC cells, DepMap data was used to analyse cell viability and dependency when these genes are 
targeted. After analysing 6 tumor-specific signatures (IDI1, GMPPA, NME1, PSMB3, SPTLC1 and EBP), the 
gene effect and gene dependency were measured in different non-cancerous cell lines and liver cancer lines 
of human HCC. The genes 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 (HMGCS1), 3-Hydroxy-3-
Methylglutaryl-CoA Reductase (HMGCR), Farnesyl Diphosphate Synthase (FDPS) and Mevalonate 
Diphosphate Decarboxylase (MVD) were the most affected genes upon CRISPR-knock out, impacting on cells 
survival as exemplified by the highest gene dependency scores (Fig. 5A) and the most negative gene effect 
(Fig. 5B). Interestingly the knock down of another gene in the same community, the NAD(P)H Steroid 
Dehydrogenase-Like (NSDHL) conferred higher survival and have a positive effect in cancer cells (Fig. 5B).  

 

In the N-Glycan GMPPA signature, UDP-N-Acetylglucosaminyltransferase Subunit (ALG14) and RFT1 Gene 
(RFT1) accounted for the highest vulnerability in most HCC cell lines tested (Fig. 5 C-D). In the case of 
SPTLC1 signature, some but not all HCC cell lines were dependent on SPTLC1 and SLC33A1 genes, 
indicating a pathway less relevant for HCC survival than the previous two.   
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Figure 5. Identification of metabolic vulnerabilities in HCC cell lines using DepMap. (A) Gene Dependency scores for 
individual genes included in IDI1 signature. (B) Gene Effect scores for individual genes included in IDI1 signature. (C) 
Gene Dependency scores for individual genes included in GMPPA signature. (D) Gene Effect scores for individual genes 
included in GMPPA signature. (E) Gene Dependency scores for individual genes included in SPTLC1 signature. (F) Gene 
Effect scores for individual genes included in SPTLC1 signature. 

4. Discussion 

In the present work we implement a simple computational method for inferring metabolic pathways, using 
public signatures in MSigDB and the MetAtlas, by understanding HCC-specific gene networks using graph-
models. The newly generated gene communities are highly coexpressed and represent major metabolic 
domains of liver cancer cells. We use ssGSEA as an enrichment method to infer the activity of these pathways 
in samples of the two largest cohorts with available transcriptomic data, the TCGA-LIHC and the ICGC-LIRI-
JP, including a total of 559 HCC samples and 149 non-tumoral liver samples.  
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We show that the metabolic phenotype is only partly associated with previously described signatures such as 
Hoshida and Chiang. As expected, liver-enriched metabolic pathways were associated with Hoshida S3 
subclass and Chiang subclasses CTNNB1, Poly7, and Interferon. On the other hand, ECM metabolism was 
associated with Hoshida S1. We nevertheless describe the presence of two groups of signatures, groups 3 
“proliferation” and 4 “Mevalonate/cholesterol”, which can be increased or decreased in Hoshida subclasses 
S1, S2 and S3, indicating a level of metabolic regulation that works in asynchrony in regards to hepatocyte 
differentiation. In conclusion our work confirms and enriches previous transcriptomic classification of HCC, 
adding an important validation of the main findings in the LIRI-JP cohort which so far has not been used to 
study metabolic profiles. We show that TP53 null and CTNBB1 mutated tumors have divergent metabolic 
profiles, which is consonant with what has been previously described (24–26). 

The strength of this study is our focus on signatures enriched in tumoral samples when compared to non-
tumor tissues. Previous works (10,14,15) depicted the transcriptomic landscape of HCC, but did not consider 
the expression of metabolic signatures in non-tumoral livers. Here we show that those tumors with high liver-
specific signature enrichment are still poorly differentiated when compared to non-tumoral livers. This 
approach helps us discover metabolic pathways increased in tumors that constitute part of the hallmarks of 
liver cancer and that could be targeted by future synergistic approaches with immunotherapy.  

We confirm that metabolic pathways related to nucleotide biosynthesis such as NME1 signature, are related to 
highly proliferative tumors and have a role in HCC progression (27). We describe the mevalonate, the N-
glycan and the sphingolipid biosynthetic pathways, as induced pathways in HCC and thus potential targets for 
therapy. Although these new findings validate previous evidence of the role of these pathways in cancer cell 
survival and immune evasion (35, 37-39, 45), such data is so far scarce and fragmented in HCC literature. 

Regarding mevalonate biosynthesis, it has been shown that IDI1 promotes tumorgrowth (28). Interestingly, 
IDI1 represses CCL5 and CXCL10 expressing cells in the tumor microenvironment cells, increasing the 
capacity for immune evasion. On the other hand, EBP inhibitors have been shown to impair prostate cancer 
proliferation (29). FDPS has been largely studied in other cancers. For instance, is known its role in promoting 
glioblastoma growth, by recruiting tumor-associated macrophages through an increased expression of CCL20 
(30). This same immunosuppressive mechanism set up by cancer cells has been demonstrated in in mouse 
models of beta-catenin induced HCC (31). In osteosarcoma cell lines and HeLa cells, FDPS was also able to 
change the ECM organization and promote proliferation and DNA repair (32). Finally, FDPS has been 
proposed as a biomarker of breast cancer development (33). Squalene epoxidase (SQLE) is capable to 
promote tumor growth by inhibiting apoptosis (34) and is able to interact with TGFb-SMAD axis to promote 
EMT and metastatic capacity (35). We observed, using the DepMap data, that HMGCR, HMGCS1, FDPS, 
MVD and IDI1 confer different degrees of vulnerability when knocked out with CRISPR-Cas9 in several human 
HCC cell lines. Whether available HMGCR inhibitors such as statins could be used as repurposed drugs for 
combination with immunotherapy remains a provocative possibility.  

Regarding glycosylation pathways, still not much has been described in HCC. An abnormal glycosylation of 
the ectonucleotidase CD73 was found in HCC samples (36) but not in adjacent livers. More broadly, 
glycosylation patterns are known to be present in a variety of cancer type and contribute to its fitness and 
evasion from the immune surveillance (37–39). Targeting ALG14 or RFT1 led to HCC cell death in a 
consistent fashion expanding a variety of cancer cell lines. To determine whether targeting these genes or 
other members of this pathway is feasible and non-toxic for non-tumoral cells, requires further preclinical work.  

Finally, for the sphingolipid biosynthesis pathway conflicting data has been reported. On one hand, SPTLC1 
gene has been found to be anti-oncogenic. In colorectal cancer, the low expression of SPTLC1 leads to worse 
prognosis (40), in renal cell carcinoma, it inhibits cell proliferation (41) and in lymphoma patients, a mutation of 
SPTLC1 increasing its enzymatic activity, sensitized BCR-ABL tumors to imatinib (42). On the other hand, 
serum ceramides and sphingolipids such as S1P and SA1P are increased in patients with HCC but not in 
cirrhotic controls (43), and the blockade of sphingolipids in Huh7 and HepG2 cell lines led to increased 
susceptibility to sorafenib (44). More broadly, it has been described that sphingolipids are produced in higher 
amounts in cancer cells and that sphingosine-1-phosphate (S1P) intermediate promotes proliferation, 
migration and EMT (45) and regulates the interphase with other cells through the inhibition of sindecan 1 (46).  

One potential unifying model to explain the relationship between the above-mentioned metabolic pathways in 
HCC could be the cancer-specific change in the use of Acetyl-CoA, the most used substrate of the cell for 
anabolic and energetic functions (Figure 6). In non-cancerous liver cells, Acetyl-CoA is a central metabolic 
intermediate and the maintenance of the Acetyl CoA pool is essential for growth, proliferation, and protein 
modification. Cancer cells have developed the capacity to capture acetate as an alternative source to glucose 
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from the circulation and even from the intestinal microbiome (47,48). In the present work, we show that in 
human HCC many of the metabolic pathways using Acetyl-CoA, such as lipid biosynthesis, are downregulated 
when compared with not-tumoral tissues. This is particularly evident in highly de-differentiated tumors, while 
the unique genuinely overexpressed metabolic signatures are the mevalonate/cholesterol, N-glycan and 
sphingolipid pathways, all three meant to deviate Acetyl-CoA precursors into pro-tumoral biosynthetic 
pathways related to protein glycosylation, turnover and ECM organization. The fact that the main transporter 
of Acetyl-CoA into the lumen of ER and lysosomes, the SLC33A1, is one of the most overexpressed genes in 
HCC, may foster its experimental evaluation as a potential target for HCC therapy.  

 

Figure 6. Theoretical model depicting the N-Glycan, Mevalonate and Sphingolipid biosynthetic pathways as the integrated 
oncometabolic responses led to the shift on Acetyl coA use in HCC. 

 

Patients with advanced HCC are currently treated with immunotherapy in first line and two combinations are 
currently approved in western countries and in Asia for this indication, namely Atezolizumab plus bevacizumab 
or Tremelimumab plus durvalumab (REFS). One of the main limitations of this work is the lack of baseline liver 
and tumor transcriptomic data from patients with advanced HCC treated with these regimens. Both TCGA-
LIHC and ICGC-LIRI-JP cohorts include mostly patients with early HCC that were treated through curative 
therapies such as resection. Whether the inhibition of the metabolic pathways found in the present work could 
impact in the response to these patients to immunotherapy is an area for further investigation. Also, the role of 
these signatures as prognostic or predictive biomarkers is yet to be explored.  

5. Conclusions 
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Utilizing computational methods to infer gene networks specific to HCC, this study identifies major metabolic 
domains in liver cancer cells, validating and enriching previous transcriptomic classifications. The metabolic 
phenotype of HCC reveals associations with known HCC subclasses, such as Hoshida and Chiang, while also 
highlighting the presence of distinct metabolic pathways in poorly differentiated tumors compared to non-
tumoral liver tissue. Mevalonate/cholesterol, N-glycan, and sphingolipid pathways emerge as potential 
therapeutic targets for HCC, with specific genes within these pathways showing promise for targeted 
therapies, potentially in combination with immunotherapy. The study also provides insights into the functional 
roles of various metabolic pathways in HCC progression, including nucleotide biosynthesis, glycosylation, and 
sphingolipid biosynthesis, shedding light on their reported involvement in tumor growth, immune evasion, and 
metastasis. The findings raise questions about the impact of targeting these metabolic pathways treating 
advanced HCC patients and suggest further investigation into the potential use of these metabolic signatures 
as prognostic or predictive biomarkers. Additionally, this study underscores the need for transcriptomic data 
from patients undergoing immunotherapy for a more comprehensive understanding of treatment responses 
when using current standard of care. 
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set adaptation in published metabolic signatures. 
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