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Tweet: AI-based estimation of the GLS from ECG is a practical alternative to the LVGLS on 
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ABSTRACT 

Background: Despite the versatility of the left ventricular (LV) global longitudinal strain 
(LVGLS), its complex measurement and interpretation make it difficult to use. An artificial 
intelligence (AI)-generated electrocardiography (ECG) score for LVGLS estimation (ECG-
GLS score) may offer a cost-effective alternative. 

Objectives: We evaluated the potential of an AI-generated ECG-GLS score to diagnose LV 
systolic dysfunction and predict the prognosis of patients with heart failure (HF). 

Methods: A convolutional neural network-based deep-learning algorithm was trained to 
estimate the echocardiography-derived GLS (LVGLS) using retrospective ECG data from a 
tertiary hospital (n=2,882). ECG-GLS score performance was evaluated using data from an 
acute HF registry at another tertiary hospital (n=1,186). 

Results: In the validation cohort, the ECG-GLS score could identify patients with impaired 
LVGLS (≤12%) (area under the receiver-operating characteristic curve [AUROC], 0.82; 
sensitivity, 85%; specificity, 59%). ECG-GLS performance in identifying patients with an LV 
ejection fraction (LVEF) of <40% (AUROC, 0.85) was comparable to that for LVGLS 
(AUROC, 0.83) (p=0.08). Five-year outcomes (all-cause death; composite of all-cause death 
and hospitalization for HF) occurred significantly more frequently in patients with low ECG-
GLS scores. Low ECG-GLS score was a significant risk factor for these outcomes after 
adjustment for other clinical risk factors and LVEF. The prognostic performance of the ECG-
GLS score was comparable to that of the LVGLS. 

Conclusions: The ECG-GLS score demonstrates a strong correlation with the LVGLS and is 
effective in risk stratification for the long-term prognosis after acute HF, suggesting its 
potential role as a practical alternative to the LVGLS. 

 

Condensed abstract: This study is the first to attempt to estimate the left ventricular global 
longitudinal strain (LVGLS) from electrocardiography (ECG) data using an artificial 
intelligence-based algorithm (ECG-GLS score). The ECG-GLS score was correlated with 
the LVGLS and performed as well as the LVGLS in predicting the long-term prognosis of 
patients with heart failure. Thus, the ECG-GLS score has potential as practical alternative 
to the LVGLS on echocardiography, with reductions in time and effort.  

 

Keywords: Artificial intelligence; Electrocardiography; Global longitudinal strain; Heart 
failure; Prognosis  
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ABBREVIATIONS 

ACD = all-cause death  

AI = artificial intelligence 

AUROC = area under the receiver-operating characteristic curve 

ECG = electrocardiography 

EF = ejection fraction  

GLS = global longitudinal strain  

HCM = hypertrophic cardiomyopathy 

HF = heart failure 

HFrEF = heart failure with reduced ejection fraction 

HHF = hospitalization for heart failure 

LV = left ventricle 

LVEF = left ventricular ejection fraction 

LVGLS = left ventricular global longitudinal strain 
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INTRODUCTION 

Recent developments in echocardiography have emphasized the significance of the 

left ventricular (LV) global longitudinal strain (GLS; LVGLS) as a prognosticator of various 

heart diseases,1 including heart failure (HF),2 valvular heart diseases,3-5 and 

cardiomyopathies.6  Despite its vast clinical utility, there are barriers to the widespread use 

of LVGLS. For instance, the measurement and interpretation of the LVGLS are time-

consuming and complex compared to the ejection fraction; specific machines, software, and 

skilled personnel are required.  

 Electrocardiography (ECG) is a simple, cost-effective, and well-established method 

for heart-disease screening. Advances in artificial intelligence (AI) have expanded the 

capabilities of ECG, enhancing its diagnostic scope in the cardiovascular field.7 AI can also 

assist in the diagnosis of subclinical atrial fibrillation, HF, hypertrophic cardiomyopathy 

(HCM), and valvular heart diseases.8 Previous studies indicate potential in AI-assisted 

analysis of ECG patterns and features  for not only the detection of certain diseases, but also 

for the estimation of LV function. For example, AI-enabled ECG analysis can distinguish ST-

segment elevation myocardial infarction or LV systolic dysfunction among patients who visit 

the emergency department.9,10  

Given the expanding clinical utility of LVGLS, with its superior sensitivity over that 

of the LV ejection fraction (LVEF) and robust prognostic value across various heart diseases, 

leveraging AI technology to estimate the LVGLS from ECG features has merit, as this could 

enhance its clinical efficacy and cost-effectiveness. In the present study, we generated an 

ECG-derived GLS (ECG-GLS) score using an AI deep-learning algorithm and evaluated its 

potential in diagnosing LV systolic dysfunction and predicting the prognosis of patients with 

HF. 
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METHODS 

Study population and data management 

This multicenter retrospective cohort study involved two tertiary hospitals (Hospitals 

A and B). ECG and echocardiographic data were obtained from the following four registries: 

1) the STRATS-AHF cohort, which included patients who were admitted for acute HF with a 

range of ejection fractions from June 2009 to June 2015 (n=1608);2 2) ARNI baseline cohort, 

which included patients with HF with reduced ejection fraction (HFrEF) who were prescribed 

ARNI from September 2015 to April 2020 (n=409); 3) ARNI follow-up cohort from 

December 2020 to January 2021 (n=409);11 and 4) three-chamber strain cohort, which 

included patients who underwent echocardiography with GLS data from February 2020 to 

November 2022, irrespective of diagnosis (n=984). The validation cohort comprised patients 

in the STRATS-AHF registry from Hospital B.2 A total of 2,882 and 1,186 echocardiography 

and ECG pairs were included in the training and validation cohorts, respectively (Figure 1). 

Echocardiography and 12-lead ECG pairs performed within a 7-day interval were included in 

the analysis.  

Clinical data were collected by reviewing electronic medical records. The study 

outcomes were the 5-year all-cause death (ACD) and a composite of the 5-year ACD and 

hospitalization for HF (HHF).2  

This study was approved by the Institutional Review Board of each hospital (hospital 

A, B-2212-801-102; hospital B, J-2302-117-1407). The requirement for informed consent 

was waived due to the retrospective nature of the study. 
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AI algorithm 

The AI algorithm was developed using a transfer-learning approach that leveraged 

the encoder component from an existing deep-learning system. This system, designed to 

classify cardiac rhythms and provide various risk scores for emergency conditions, utilizes a 

common ECG encoder based on a modified ResNet architecture and has received approval 

from the Korean Food and Drug Administration as a medical device.9,12 We extracted the 

encoder portion from the system and integrated it with two fully connected layers to generate 

a single numerical output for predicting the GLS. This integrated model was fine-tuned using 

an ADAM optimizer to minimize the mean squared error between the predicted and measured 

GLS values in the training dataset.  

 

Echocardiography and strain analysis 

Echocardiographic images were obtained using comprehensive echocardiography in 

accordance with the guidelines of the American Society of Echocardiography.13 LVEF was 

measured from apical four- and two-chamber views using the Modified Simpson’s method. 

LVGLS was measured using a built-in software of each echocardiography machines. For the 

training cohort 2 and 3, Image-Arena system (TomTec Imaging Systems, Munich, Germany) 

was utilized to measure LVGLS. For strain analysis, the endocardial borders were traced on 

the end-systolic frame defined by the QRS complex. The software tracked speckles along the 

endocardial border and myocardium throughout the cardiac cycle. The peak longitudinal 

strain was automatically computed by averaging regional strain values. The LVGLS was 

obtained from apical three-, four-, and two-chamber views. Because the LVGLS values are 

expressed as absolute values to avoid confusion, higher values represent better function. For 

patients with sinus rhythm, analyses were performed on a single cardiac cycle. For patients 
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with atrial fibrillation, strain values were calculated as the average of three cardiac cycles. 

 

Statistical analysis 

Continuous variables are presented as means and standard deviations or medians 

with interquartile ranges and were compared using the independent two-sample t-test or 

Mann-Whitney U test. Categorical variables are presented as frequencies with percentages 

and were compared using the χ2 test. The primary measure of model performance was the 

area under the receiver operating characteristic curve (AUROC) for the prediction of LV 

systolic dysfunction estimated by the LVGLS. AUROC curves were compared using 

DeLong’s test.   

Kaplan-Meier curves for study outcomes were plotted to indicate the discrimination 

capacities of the ECG-GLS score and LVGLS, which were compared using the log-rank test. 

We used Cox proportional hazards modeling to compare the predictability for study outcomes 

between the ECG-GLS score and the echocardiography-derived GLS (LVGLS). The hazard 

ratio (HR) was adjusted for parameters that showed an association with study outcomes on 

univariate analysis (p<0.1) or had relevant clinical significance, excluding those with >10% 

missing data or multicollinearity with other variables. The Harrell’s C-index (C-index) was 

calculated to compare the predictive performance of Cox proportional hazards models using 

the bootstrapping method. A two-sample t-test was conducted on 1,000 sets of bootstrapped 

C-indices to compare the two models.  

Statistical significance was defined as a two-sided p-value <0.05. All statistical 

analyses were conducted using R software, version 4.1.2 (https://www.R-project.org).  
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RESULTS 

Baseline characteristics and echocardiographic parameters 

A total of 2,882 and 1,186 patients were included in the training and validation 

cohorts, respectively. The baseline characteristics are presented in Table 1. The training 

cohort comprised four registries containing patients with acute HF, chronic HF, various heart 

diseases, and normal heart function from Hospital A. The validation cohort was also drawn 

from one of the four registries, but the patients were from Hospital B. Age and sex were 

comparable between the training and validation cohorts; however, other features, including 

comorbidities, N-terminal pro-B-natriuretic peptide levels, and echocardiographic parameters, 

were significantly different. The mean interval between ECG and echocardiography was 

0.58±1.26 and 1.00±2.49 days in training and validation cohorts, respectively.  

 

ECG-GLS performance 

The LVGLS and ECG-GLS score were significantly correlated, with a correlation 

coefficient of 0.64 (p<0.001, Figure 2A). In the training cohort, the AUROCs of the ECG-

GLS scores for detecting LVGLS ≤16% (indicating LV systolic dysfunction) and LVGLS ≤12% 

(indicating more severe LV systolic dysfunction) were 0.93 and 0.90, respectively. In the 

validation cohort, the AUROCs of the ECG-GLS score for detecting LVGLS ≤16% and 

LVGLS <12% were 0.85 and 0.82, respectively (Figure 2B). The precision, recall, and F1 

score of the predictive model using the ECG-GLS score to identify patients with LVGLS ≤12% 

were 0.80, 0.84, and 0.82, respectively. The area under the precision-recall curve was 0.90 

(Supplementary Figure 1). The diagnostic performance of the ECG-GLS score for 

identifying HFrEF (LVEF <40%) was comparable to that for the LVGLS (AUROC, 0.85 vs. 

0.83, respectively; p=0.08; Figure 3).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.29.24306468doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.29.24306468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

 

Prediction of study outcomes 

Five-year ACD and the composite of ACD and HHF were significantly higher in 

patients with ECG-GLS scores ≤12 than in patients with ECG-GLS scores >12 (log-rank 

p=0.002 and p<0.001, respectively; Figure 4A). An analogous pattern was observed for the 

Kaplan-Meier curves using an LVGLS cutoff of 12% (log-rank p<0.001 and p=0.001, 

respectively; Figure 4B).  

LVGLS ≤12% (HR 1.41, 95% confidence interval [CI] 1.16-1.71) and ECG-GLS 

score ≤12 (HR 1.36, 95% CI 1.12-1.66) were associated with significantly higher 5-year 

ACD on univariable analysis (Supplementary Table 1). After adjustment for relevant 

clinical risk factors and echocardiographic parameters, low ECG-GLS score (≤12) was a 

significant predictor of ACD (HR 1.38, 95% CI 1.11-1.73), with comparable results to that 

for LVGLS ≤12% (HR 1.43, 95% CI 1.14-1.79; p-value for bootstrapped mean of Harrel’s C-

indices=0.109; Table 2). Similar results were observed for the composite outcome of the 5-

year ACD and HHF. LVGLS ≤12% (HR 1.29, 95% CI 1.09-1.54) and ECG-GLS score ≤12 

(HR 1.34, 95% CI 1.12-1.60) were both significant indicators of the composite outcome (p-

value for bootstrapped mean of Harrell’s C-indices=0.423; Table 3; univariable analysis 

results are provided in Supplementary Table 2).  

 

DISCUSSION 

In the present study, we demonstrated a strong correlation between the ECG-GLS 

(estimated from ECG features using an AI-based algorithm) and the LVGLS (measured using 

echocardiography). We also found that the performance of ECG-GLS for predicting the long-

term prognosis of patients with HF and LVGLS was similar to that for the LVGLS, 
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suggesting the relevance of our AI-based algorithm for estimating GLS from ECG features 

and its potential role as a practical alternative to the LVGLS. To date, the present study is the 

first to attempt to estimate the LVGLS from ECG data using an AI-based algorithm.  

Research on AI-based algorithms that use ECG images to detect a range of heart 

diseases has been published, expanding the role of AI in cardiology.8 The utilization of AI-

based ECG algorithms has focused on the early detection of diseases that can be easily 

diagnosed using ECG but are often missed, such as atrial fibrillation14 or ST-segment 

elevation myocardial infarction.12 However, the rapid growth of AI has expanded the 

potential of ECG to an extent that rivals that of echocardiography by revealing previous 

unseen pieces of information. Acceptable AI-enabled ECG performance has been 

demonstrated in the diagnosis of various types of HF10,15,16 and myocardial diseases, such as 

HCM17 and cardiac amyloidosis.18 Moreover, AI-enabled ECG HCM scores were correlated 

with decreases in LV outflow tract gradients and N-terminal pro-B-natriuretic peptide levels 

over time in patients with obstructive HCM who were prescribed mavacamten.19 Most 

recently, Lee et al. showed improved performance in the prediction of the prognosis 

according to diastolic dysfunction with AI-enabled ECG.20 In the present study, we attempted 

to extend the capability of AI-enabled ECG to predict the LVGLS, a state-of-the-art 

technology in the echocardiography field. Using ECG features of 2,881 patients from four 

retrospective registries, our AI-based algorithm for the estimation of LVGLS produced ECG-

GLS scores that showed a good correlation with echocardiographic measurements of the 

LVGLS and were able to predict the long-term prognosis in patients who were admitted for 

HF. 

In the present study, the AUROCs of the ECG-GLS score for detecting LVGLS ≤16% 

and ≤12% were 0.85 and 0.82, respectively, which were not as high as we expected. 

Therefore, the validation cohort comprised patients admitted for HF, whereas patients with all 
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ranges of LVEF and LVGLS were included in the training cohort. In addition, the number of 

patients included in our study was smaller than that in other studies on AI-enabled ECG 

because of the limited collection of GLS data. Nonetheless, this study is the first to predict 

LVGLS using AI-enabled ECG. Our ECG-GLS score is comparable to the LVGLS in 

identifying patients with HFrEF. Furthermore, the ECG-GLS score is consistent with the 

familiar unit of the LVGLS. Thus, the ECG-GLS score is user-friendly and can be used 

interchangeably with the LVGLS in real-world settings.  

Furthermore, the ECG-GLS score was comparable to the LVGLS score in predicting 

the long-term prognosis in patients. LVGLS has been shown to be a better indicator than 

LVEF for predicting cardiovascular outcomes in hospitalized patients with acute HF.2 

Previous studies on AI-enabled ECG have predominantly emphasized its diagnostic 

capabilities, specifically for detecting various heart diseases or conditions. Although the 

diagnostic potential of AI-enabled ECG is considerable and holds significant promise for 

clinical use, augmenting the output of AI-enabled ECG algorithms with prognostic 

information can further enhance their utility. This integration of prognostic data reinforces 

and validates the diagnostic accuracy of the algorithm. Consistent with this, our findings 

indicate that AI-enabled ECG serves not only as an accurate indicator of the LVGLS, but also 

as a valuable tool for prognostication, thereby extending its role beyond mere diagnostics.  

ECG has many advantages: it is ubiquitous, inexpensive, rapid, and does not require 

special training. Recently, AI researchers have expanded the role of ECG in the diagnosis of 

various heart diseases.8 Although the LVGLS has recently been recognized as a valuable tool, 

echocardiographic LVGLS measurements require additional time and effort from experts, as 

well as dedicated software or machines. The LVGLS also has the troublesome issue of 

between-vendor variability.21 Moreover, measuring the LVGLS using echocardiography may 

be limited in patients with poor echocardiographic windows, atrial fibrillation, and videos 
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with low frame rates.22 In contrast, the ECG-GLS score is free from almost all of these 

limitations. Using the ECG-GLS score, non-experts can also predict the value of the LVGLS, 

diagnose LV systolic dysfunction, and forecast the outcome of patients easily, making it 

usable outside the echocardiography laboratory and significantly reducing time and costs. 

Integrating AI in interpreting ECG results could potentially improve the cardiac diagnostic 

process, making it more accessible and less reliant on specialized training and equipment. 

 

Limitations 

This study has several limitations. First, the ECG and echocardiography pairs used in this 

study were insufficient to provide better prediction. However, the registries used in the 

training process have been shown to be useful in predicting the prognosis of patients with HF 

in previous studies. Moreover, the addition of more patients to the training cohort would 

require additional resources. Second, although various vendors were used in the measurement 

of the LVGLS, the number of ECG-echocardiography pairs used in the training cohort 

significantly differed among vendors. Hence, the generalization of our ECG-GLS score 

prediction to all strain vendors requires further investigation. Finally, the validation cohort 

included patients with HF, which made the predictive ability of our ECG-GLS score lower 

than expected. Further studies are needed to demonstrate the utility of the ECG-GLS score in 

various populations.  

 

Conclusions 

The ECG-GLS score, estimated from ECG features using an AI-based algorithm, shows a 

strong correlation with the LVGLS measured on echocardiography and is effective in risk 

stratification for the long-term prognosis after acute HF. These findings suggest the potential 
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role of the AI-based ECG algorithm as a practical alternative to the LVGLS on 

echocardiography. 
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CLINICAL PERSPECTIVES 

Competency in Patient Care and Procedural Skills: The ECG-GLS score can be used to 
predict the value of the LVGLS, diagnose LV systolic dysfunction, and forecast the outcome 
of patients with heart failure more easily, reducing time and costs. 

Translational Outlook: AI can be used to expand the capabilities of ECG to rival state-of-
the-art technology in other modalities, such as the LVGLS on echocardiography. 
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FIGURE LEGENDS  

Figure 1. Composition of the training and validation cohorts. Echocardiography and 12-lead 

electrocardiography (ECG) pairs performed within a 7-day interval were included in the 

analysis. 

Figure 2. ECG-GLS evaluations. (A) The LVGLS and ECG-GLS score were significantly 

correlated (correlation coefficient=0.64, p<0.001). (B) Receiver-operating characteristic 

curves of the ECG-GLS score for the prediction of LVGLS ≤12% in the training cohort (blue) 

and validation cohort (red) are shown.  

Abbreviations: AUROC, area under the receiver operating characteristic curve; ECG-GLS, 

electrocardiography-derived global longitudinal strain; LVGLS, left ventricular global 

longitudinal strain on echocardiography 

Figure 3. Receiver-operating characteristic curves. The performance of the ECG-GLS score 

(solid line) and LVGLS (dashed line) for the prediction of heart failure with reduced ejection 

fraction are shown.  

Abbreviations: AUROC, area under the receiver operating characteristic curve; ECG-GLS, 

electrocardiography-derived global longitudinal strain; LVGLS, left ventricular global 

longitudinal strain on echocardiography 

Figure 4. Survival curve comparisons. (A) Event-free survival curves for all-cause death and 

the composite outcome of all-cause death and HHF according to an ECG-GLS score >12 

(blue) and ≤12 (red). (B) Event-free survival curves for all-cause death and the composite 

outcome of all-cause death and HHF according to an LVGLS >12% (green) and ≤12% 

(purple). 

Abbreviations: ECG-GLS, electrocardiography-derived global longitudinal strain; HHF, 
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hospitalization for heart failure; LVGLS, left ventricular global longitudinal strain on 

echocardiography 
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Table 1. Baseline Characteristics of Training and Validation Cohorts 

  Training 
cohort 1 

Training 
cohort 2 

Training 
cohort 3 

Training 
cohort 4 

 Training 
cohort (total) 

Validation 
cohort 

 

STRATS-AHF 
(Hospital A) 

ARNI cohort 
(initial) 

ARNI cohort 
(follow-up) 

All-comers 
cohort 

P-value 
(Training 

Cohort 1-4) 

Hospital A Hospital B 
(STRATS-

AHF) 

P-value 
(Training vs. 
Validation) 

(N=1528) (N=343) (N=334) (N=677)  (N=2882) (N=1186) 

Age (years) 72.3±13.1 64.6±13.7 64.8±14.1 68.4±14.4 <0.001 69.6±13.9 69.0±14.8 0.246 

Male sex 763 (49.9%) 252 (73.5%) 244 (73.1%) 403 (59.5%) <0.001 1662 (57.7%) 681 (57.4%) 0.912 

SBP (mmHg) 133.4±29.1 119.1±18.0 118.4±17.4 128.2±18.8 <0.001 128.8±25.3 129.0±27.4 0.826 

DBP (mmHg) 74.8±18.6 71.7±13.9 71.2±3.1 73.7±12.7 <0.001 73.8±16.3 75.9±16.6 <0.001 

DM 587 (38.4%) 118 (34.4%) 114 (34.1%) 158 (23.3%) <0.001 977 (33.9%) 346 (29.2%) 0.004 

HTN 1049 (68.7%) 110 (32.1%) 108 (32.3%) 271 (40.0%) <0.001 1538 (53.4%) 522 (44.0%) <0.001 

Prior HF 450 (29.5%) 343 
(100.0%) 

334 
(100.0%) 

225 (33.2%) <0.001 1352 (46.9%) 812 (68.5%) <0.001 

Prior CAD 523 (34.2%) 114 (33.2%) 108 (32.3%) 196 (29.0%) 0.111 941 (32.7%) 305 (25.7%) <0.001 

BUN (mg/dL) 27.6±18.0 22.3±12.7 22.2±12.6 20.6±13.3 <0.001 24.7±16.1 26.1±17.0 0.023 

Creatinine (mg/dL) 1.6±1.8 1.3±1.3 1.3±1.1 1.2±1.4 <0.001 1.5±1.6 1.7±2.0 <0.001 

LVEDD (mm) 53.0±9.2 60.5±7.7 56.4±8.8 48.6±7.3 <0.001 53.2±9.3 56.1±9.8 <0.001 

LVESD (mm) 40.3±11.3 51.1±8.7 45.3±10.3 33.4±8.9 <0.001 40.5±11.6 41.7±12.3 0.012 

LVEF (%) 41.5±15.8 27.7±6.8 38.0±11.9 56.7±12.2 <0.001 43.0±16.3 40.7±15.4 <0.001 

LVMI (g/m2) 135.0±44.2 140.5±37.8 124.6±35.1 104.8±35.3 <0.001 127.2±42.6 126.6±42.3 0.679 

LA diameter (mm) 43.7±8.9 44.2±7.8 41.8±8.6 40.3±8.1 <0.001 42.7±8.7 48.9±10.5 <0.001 

LAVI (ml/m2) 59.2±32.3 61.6±28.3 53.6±29.1 46.1±26.0 <0.001 55.8±30.6 64.0±53.8 <0.001 

E velocity (m/s) 0.9±0.4 0.8±0.3 0.7±0.3 0.8±0.3 <0.001 0.8±0.3 0.9±0.4 <0.001 
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E/e' 19.1±10.8 18.9±10.5 15.0±9.0 13.0±7.3 <0.001 17.1±10.1 19.4±11.0 <0.001 

TR Vmax (m/s) 2.8±0.6 2.7±0.6 2.5±0.5 2.5±0.5 <0.001 2.7±0.6 3.0±0.6 <0.001 

RVSP (mmHg) 38.6±13.7 36.9±15.0 31.0±11.8 31.8±11.4 <0.001 36.0±13.5 48.6±15.3 <0.001 

LV GLS (%, absolute) 10.5±4.8 10.2±3.2 12.8±4.4 16.4±4.5 <0.001 12.1±5.2 10.4±5.2 <0.001 

Vendor     <0.001   <0.001 

  GE 964 (63.3%) 0 (0.0%) 0 (0.0%) 168 (24.8%)  1132 (51.5%) 547 (46.2%)  

  Philips 167 (11.0%) 343 
(100.0%) 

334 
(100.0%) 

509 (75.2%)  676 (30.7%) 266 (22.4%)  

  Siemens 392 (25.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%)  392 (17.8%) 372 (31.4%)  

BUN = blood urea nitrogen; CAD = coronary artery disease; DBP = diastolic blood pressure; GLS = global longitudinal strain; HF = heart failure; LA = 
left atrium; LAVI = left atrial volume index; LVEDD = left ventricular end-diastolic dimension; LVEF = left ventricular ejection fraction; LVESD = left 
ventricular end-systolic dimension; LVMI = left ventricular mass index; NT-proBNP = N-terminal pro–B-type natriuretic peptide; SBP = systolic blood 
pressure; TR = tricuspid regurgitation. 
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Table 2. Multivariable Cox Proportional Hazard Regression Analysis for 5-Year All-
Cause Death 

  Model 1 (LV GLS) Model 2 (ECG-GLS) 

HR 95% CI P value HR 95% CI P value 

Age (years) 1.04 1.03-1.05 <0.001 1.04 1.03-1.05 <0.001 

Male sex 1.08 0.89-1.31 0.434 1.08 0.89-1.31 0.445 

DM 1.32 1.09-1.59 0.004 1.34 1.11-1.61 0.003 

Creatinine (mg/dL) 1.09 1.04-1.13 <0.001 1.08 1.04-1.13 <0.001 

Beta-blocker 0.70 0.57-0.84 <0.001 0.69 0.57-0.84 <0.001 

RAS blocker 0.71 0.59-0.85 <0.001 0.69 0.57-0.83 <0.001 

LVEF ≤30% 1.21 0.97-1.50 0.090 1.24 1.00-1.53 0.052 

LVGLS ≤12% 1.43 1.14-1.79 0.002    

ECG-GLS score ≤12    1.38 1.11-1.73 0.005 

CI = confidence interval; HR = hazard ratio; RAS = renin-angiotensin system; other abbreviations as 
in Table 1. 
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Table 3. Multivariable Cox Proportional Hazard Regression Analysis for 5-Year All-
Cause Death and Hospitalization for Heart Failure 

  Model 1 (LV GLS) Model 2 (ECG-GLS) 

HR 95% CI P value HR 95% CI P value 

Age (years) 1.03 1.03-1.04 <0.001 1.03 1.03-1.04 <0.001 

Male sex 1.07 0.92-1.25 0.391 1.06 0.91-1.24 0.450 

DM 1.39 1.19-1.61 <0.001 1.39 1.19-1.61 <0.001 

Creatinine (mg/dL) 1.07 1.04-1.11 <0.001 1.07 1.03-1.10 <0.001 

Beta-blocker 0.89 0.76-1.03 0.125 0.89 0.76-1.03 0.115 

RAS blocker 0.84 0.72-0.98 0.023 0.82 0.71-0.96 0.011 

LVEF ≤30% 1.08 0.90-1.28 0.409 1.08 0.91-1.29 0.360 

LVGLS ≤12% 1.29 1.09-1.54 0.003    

ECG-GLS score ≤12    1.34 1.12-1.60 0.001 

Abbreviations as in Table 1 and 2. 
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