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ABSTRACT2

The common cold is a frequent disease in humans and can be caused by a multitude of3
different viruses. Despite its typically mild nature, the high prevalence of the common cold causes4
significant human suffering and economic costs. Oftentimes, strategies to reduce contacts are5
used in order to prevent infection. To better understand the dynamics of this ubiquitous ailment,6
we develop two novel mathematical models: the common cold ordinary differential equation7
(CC-ODE) model at the population level, and the common cold individual-based (CC-IB) model8
at the individual level. Our study aims to investigate whether the frequency of population /9
individual exposure to an exemplary common cold pathogen influences the average disease10
burden associated with this virus.11

On the one hand, the CC-ODE model captures the dynamics of the common cold within a12
population, considering factors such as infectivity and contact rates, as well as development of13
specific immunity in the population. On the other hand, the CC-IB model provides a granular14
perspective by simulating individual-level interactions and infection dynamics, incorporating15
heterogeneity in contact rates.16

By employing these models, we explore the impact of exposure frequencies upon the net17
disease burden of common cold infections in theoretical settings. In both modeling approaches,18
we show that under specific parameter configurations (i.e., characteristics of the virus and the19
population), increased exposure can result in a lower average disease burden. While increasing20
contact rates may be ethically justifiable for low-mortality common cold pathogens, we explicitly do21
not advocate for such measures in severe illnesses. The mathematical approaches we introduce22
are simple yet powerful and can be taken as a starting point for the investigation of specific23
common cold pathogens and scenarios.24

Keywords: common cold, reinfection, mathematical model, infectious disease, SIR model, disease burden, contact pattern, waning of25
immunity26
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1 INTRODUCTION

1.1 Biological background27

The common cold is a frequent disease in humans and is generally caused by viral infection of the upper28
respiratory tract (Thomas and Bomar, 2022). Although mild in most cases, it poses a significant disease29
burden on individuals and societies, both in terms of human suffering and economic loss. The common cold30
is the most frequent illness in the US with approximately 25 million documented cases per year (Passioti31
et al., 2014). It is estimated that in the US alone, the economic cost of the common cold is approximately32
$25 billion per year (Bramley et al., 2002). Despite the large number of cases and the great associated33
disease and economic burden the common cold is currently not a prioritized research topic. A thorough34
and precise understanding of the disease dynamics both an a societal and an individual level are lacking35
today, but might pave the way to better prevention and treatment strategies.36

The most frequent causative viral agents are rhino viruses (approx. 30% to 50%), corona viruses (approx.37
10% to 15%, not including SARS-CoV-1, SARS-CoV-2 and MERS), influenza viruses (approx. 5% to38
15%), respiratory syncytial viruses (approx. 5%), parainfluenza viruses (approx. 5%), adeno viruses (less39
than 5%), entero viruses (less than 5%), and further unknown viruses (approx. 20% to 30%) (Heikkinen40
and Järvinen, 2003). Of these viruses, different strains are circulating and they are constantly subjected to41
genetic shift and drift.42

The immune system is generally capable of clearing a common cold without additional treatment. In43
healthy individuals the symptoms are often relatively mild (including sneezing, stuffy nose, runny nose,44
sore throat, coughing, post-nasal drip, watery eyes, fever). Most often, the intensity of symptoms peaks45
around day 3 or 4 and around day 7 recovery begins (Heikkinen and Järvinen, 2003). The median duration46
of symptoms of a common cold has been estimated to be approximately 11 days (Arruda et al., 1997).47

In fighting a common cold, different components of the immune system are involved (Murphy et al.,48
2022). Generally, the infectious agent enters via the mucous membranes. Here, both specific and unspecific49
components of the immune system can often already eliminate the infectious agent. In this case, the50
exposure may result in an asymptomatic course, however, possibly involving training of the immune51
system. If the infectious agent settles and proliferates, typical symptoms of a common cold may develop.52
Over time, more powerful components of the specific immune system come into play. In particular,53
the specific immune system continuously improves its ability to recognize the pathogen and efficiently54
eliminates it.55

After the infection has subsided, the immune system usually retains the ability to recognize the respective56
pathogen for a while. Hence, after immediate reexposure, it is unlikely that another symptomatic infection57
occurs. However, with time the newly acquired specific immunity generally deteriorates and may even58
revert to the baseline level. Furthermore, it is important to note that there is significant cross-reactivity59
between different virus strains, e.g. in the case of rhinoviruses (Glanville et al., 2013), and possibly even60
between different viruses. Therefore, a symptomatic infection may be alleviated or prevented after exposure61
to a virus, if an infection with a similar virus or virus strain has occurred previously (see figure 1).62

The degree of persistence of specific immunity seems to differ considerably between different common63
cold pathogens (Turner, 2015). Infections with rhinoviruses and adenoviruses seem to generally result in64
long-term, protective immunity against the specific virus serotype, however, not against other serotypes65
of the virus. Infections with coronaviruses, parainfluenzaviruses, RS-viruses and multiple other common-66
cold-viruses seem to usually result in short-term immunity, that declines over time.67
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Figure 1. Schematic representation of different hypothetical scenarios for immunity upon reinfection
with an exemplary virus denoted by “X” on a time scale without units. In scenario A, upon immediate
reinfection with strain “X.1” of the exemplary virus “X”, symptoms are likely to be mild and the infection
is usually short or the infection might even be asymptomatic. In scenario B the time between infections is
long, and immunity will likely be lost for many viruses and duration of the infection would be long again
and might be associated with more severe symptoms. Scenario C considers reinfection with an exemplary
strain “X.2” of virus X. In this case there might be some cross-reactivity, which alleviates symptoms in
case of infection with the related virus strain “X.2”.

There is a large corpus of mathematical models describing the dynamics of infectious diseases in a68
population. Among these models, the classical Susceptible-Infected-Recovered (SIR) epidemic model69
introduced by (Kermack and McKendrick, 1932) holds a prominent place. It is an ordinary differential70
equation (ODE) model, in which a susceptible fraction of the population (compartment S) can get infected71
with an infectious disease and hence transition to compartment I. Finally, individuals in compartment I72
recover and hence pass into compartment R, in which they are immune to the infectious disease. There73
are numerous variants of this model. One variant that is relevant in the context of this paper is the SIRS74
model, in which immunity in compartment R is lost with a certain rate and individuals hence transition75
from compartment R back into compartment S. Another variant of the SIR model is the SIS model76
(first described by Weiss and Dishon, 1971), in which no immunity is acquired (no compartment R) and77
individuals pass directly into compartment S when recovering.78

1.2 Objectives79

The relation between disease burden per capita per time (referred to as mean/average disease burden80
from hereon) and the exposure frequency to particular viruses typically causative of common colds has81
not been explicitly studied. Exposure frequency may depend among other aspects on overall interpersonal82
contact patterns and contact reduction strategies of infected individuals. In a certain range, increased83
exposure likely increases the spread of viral disease and, thus, increases the mean disease burden for most84
viruses causing common colds. However, we want to investigate if this relation might reverse under certain85
circumstances, if a critical exposure frequency is exceeded due to increased training of the immune system.86
In other words, more contacts and hence more exposure to pathogen might strengthen the immune system87
so that for some pathogens the disease burden related to this virus might be reduced. Even though this88
seems plausible, there are neither reliable epidemiological data available demonstrating such an effect for89
the common cold, nor has this aspect been studied explicitly in a mathematical modeling framework to our90
knowledge.91

Therefore, we aim to investigate this hypothesis by applying a mathematical modeling approach.92
Mathematical models express hypotheses in formal, quantitative terms and can be used to evaluate93
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the implications of different hypotheses and design informative experiments. In the following, we present94
two novel, related mathematical models in order to address the aforementioned research question.95

In our analysis, we consider an exemplary virus that can cause an upper respiratory infection. The96
proposed methods can be applied to any real common cold pathogen by choosing appropriate parameter97
configurations or estimating them from respective data. Our goal is to find a simple and universal98
mathematical framework that describes the progression of the common cold rather than the precise99
analysis of one specific pathogen.100

The first model that we call CC-ODE model (common cold ordinary differential equation model) is an101
ODE model based on the SIRS model. A formal description of the model can be found in section 2.1 and102
analysis results in section 3.1. The second model is an individual-based model derived from the SIS model103
and is referred to as CC-IB model (common cold individual-based model). It is described in section 2.2104
and section 3.2. Individual-based models allow to follow individuals and their properties (DeAngelis105
and Grimm, 2014). Thereby, they are capable of representing stochasticity and autonomy of individuals.106
Complex, non-linear phenomena may emerge as a result of individuals that follow simple rules.107

Our work is based on the prototypical SIR model family, which allows for an easy connection and108
integration into the current scientific discourse. In case of the ODE approach, the plain SIR model cannot109
account for loss of immunity, which is essential to the goals of the work presented in this paper. Therefore,110
we choose the slightly more complex SIRS model, in which immunity can be lost. In case of the individual-111
based approach, complex phenomena can be represented by individual states of immunity. Hence, the112
explicit modeling of the R compartment is not necessary and the SIS model is sufficient as a basis. The113
two chosen modeling approaches shall complement each other, the CC-ODE model being better suited for114
deriving analytical results in closed form and deriving population-centered results, while the CC-IB model115
inherently allows to represent heterogeneity among individuals, stochasticity and tracking of individual116
fates.117

2 METHODS

2.1 CC-ODE model118

In this section, the CC-ODE model (common cold ordinary differential equation model) is presented119
and described. It is an ODE model based on the SIRS model, a classical model describing the dynamics120
of an infectious disease on a population level. In the SIRS model, individuals can switch between three121
different compartments. First, the susceptible individuals are in compartment S. They do not carry the122
disease and can potentially get infected. The number of individuals in this compartment at time t is given123
by S = S(t). Second, the infected individuals are in compartment I and can spread the disease. The124
number of individuals in this compartment at time t is denoted by I = I(t). Third, the recovered (and125
immune) individuals are in compartment R. They can neither acquire nor spread the disease and the126
number of individuals at time t reads R = R(t). The total number of individuals N(t) = S+ I+R is fixed127
(phenomena such as birth, death and migration are not included in the model). For reasons of simplicity,128
we assume N = 1 so that S, I and R can be interpreted as proportions of a population that is constant in129
size. The model equations read130
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dS

dt
= −βIS + δR

dI

dt
= βIS − γI

dR

dt
= γI − δR

(1)

with initial conditions S(0), I(0) and R(0). The model parameters are131

• β ≥ 0: infection rate (influenced by contact rate and infectivity of the pathogen),132
• γ ≥ 0: recovery rate,133
• δ ≥ 0: immunity loss rate.134

Note that by setting δ = 0 we obtain the basic SIR model. This model describes the dynamics of a135
population exposed to one single virus without interaction to other pathogens or concurrent virus strains.136
An infection with this virus (strain) can lead to immunity that eventually subsides, which holds true for137
most common cold pathogens.138

To investigate if a higher contact rate can eventually lead to a reduced overall disease burden, we introduce139
some amendments of the equations and parameters leading to an ODE model, which we call CC-ODE140
model. We assume that an increase of the contact rate leads to shorter (or less intense) infections due to141
development of specific immunity. Hence, the higher the contact rate, the higher also the recovery rate.142
However, there is no evidence that the infectivity of the pathogen should also affect the recovery rate. This143
is why we split the infection rate β into two independent factors that describe the infection rate by a contact144
rate (β2) and a measure of infectivity (β1), which can be interpreted as the probability of infection upon145
exposure:146

β = β1 · β2.

In order to represent the possibility of development of specific immunity to the pathogen (= habituation147
effect), we introduce the parameter α representing the immunogenicity of the virus, giving rise to an148
additional term αβ2I in the model equations:149

dS

dt
= −β1β2IS + δR

dI

dt
= β1β2IS − (γ + αβ2)I

dR

dt
= (γ + αβ2)I − δR

(2)

with the additional model parameters150

• β1 ≥ 0: infectivity,151
• β2 ≥ 0: contact rate,152
• α ≥ 0: immunogenicity, i. e. a measure of the degree of development of specific immunity to the153

pathogen in the population upon exposure.154
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β1 depicts the infectivity of the pathogen. Large values of β1 correspond to highly contagious diseases.155
The contact rate β2 describes the number of contacts per individual in society, with high values indicating a156
very active population with many contacts. In this way, the higher both of these parameters, the higher the157
total infection rate. If β1 = 0 (non-contagious disease) or β2 = 0 (absolute isolation), there is no spread of158
the disease. The parameter α describes the immunogenicity of the virus, i. e. the immunological habituation159
effect of the specific immune system against the virus in question. For α = 0, there is no development of160
specific immunity at all and we obtain the classical SIRS model. For α → +∞ and β2 > 0, development161
of specific immunity is so effective that infections are eliminated immediately.162

This model is applied to describe the dynamics of the common cold on a population level. We aim to163
investigate the disease dynamics in the CC-ODE model by introducing an infection into a small proportion164
of a population without prior immunity . Thus, the initial conditions read S(0) = 0.99, I(0) = 0.01 and165
R(0) = 0 for all our simulations of the CC-ODE model. In the following section, we present a novel166
agent-based model focusing on the individual level.167

2.2 CC-IB model168

The CC-IB model (common cold individual-based model) is derived from the SIS model, in which the169
compartment with recovered individuals is omitted. In order to facilitate a translation into a corresponding170
individual-based model, the number of individuals N is not set to 1 as in the previous section. Instead, we171
are dealing with a fixed number N > 1 of individuals. The dynamics of the SIS model are described by the172
following equations:173

dS

dt
= −βS

I

N
+ γI

dI

dt
= βS

I

N
− γI

(3)

As in the SIR model, the parameter β determines infection rate (composed of number of contacts per174
person per time and the contagion infectivity), while the parameter γ determines the recovery rate.175

The CC-IB model is derived from this model by assuming a population of N individuals, which can176
switch between S and I according to probabilistic rules. Each individual can have an individual value for177
the infection rate β, the value of the i-th individual denoted βi (i = 1, 2, 3, ..., N ). Since the infectivity of a178
virus is an inherent, non-changing property of a specific virus, modulations of βi directly represent changes179
in the contact rate in the model. The model operates on a discrete time-scale. Each timestep, an individual180
in S acquires an infection (and hence switches to I) with probability βiI/N :181

A diseased individual currently residing in I recovers (and hence switches to S) with a probability that182
is given by a transition function f(θi) per timestep, where θi denotes the time since the last recovery of183
the i-th individual. f(θi) is defined as the sum of a term representing the ability of the untrained immune184
system to clear an infection (c) and a term representing immunity due to previous exposure to the virus.185
The term representing specific immunity decays exponentially with rate dθi, where d defines the timescale186
of the immunological memory:187

f(θi) = a exp(−dθi) + c
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Figure 2. Transition function for the chosen scenarios that are analyzed subsequently. In the first scenario,
no training of the immune system is assumed (red line). In the second scenario, it is assumed that an
infection results in a mild immunity, which is decaying with time (green line). In the third scenario, it is
assumed that infection results in a strong immunity, which, however, is also decaying with time (blue line).

Hence, in summary for each individual identified by index i, the probabilities to switch from one state to188
the other read as follows:189

pS→I = βi/N

pI→S = f(θi)

= a exp(−dθi) + c

(4)

In the simulations, three different parameterizations of f(θi), i. e. three different sets of values for a,190
d and c, are considered, corresponding to scenarios denoted “No specific immunity” (a = 0, d = 0.01,191
c = 0), “Medium specific immunity” (a = 0.49, d = 0.1, c = 0.01) and “Strong specific immunity”192
(a = 0.99, d = 0.05, c = 0.01). The resulting transition functions are visualized in figure 2 .193

The CC-IB model is simulated 10,000 timesteps via Monte Carlo simulations. The population is comprised194
of 50 “test individuals”, whose trajectory is followed individually in graphical representations, and 950195
additional individuals ensuring a sufficient population size. In the test individuals, βi ranges from 0.001 to196
0.5 equally spaced on a log scale. In the additional individuals, βi is sampled from a log-normal distribution197
with µ = -4 and σ = 1. Initially, without loss of generality, 10 randomly chosen individuals are infected198
(I(0) = 10), the other individuals are susceptible (S(0) = 990). It is assumed that none of the individuals199
have been exposed to the virus before (θi = ∞ for all individuals initially).200

A graphical overview of the two presented models and their underlying variants can be found in figure 3.201

3 RESULTS

3.1 CC-ODE model202

The model dynamics for some parameter choices of α and β2 are shown in figure 4. The parameters α203
and β2 are of primary interest in this study and are varied systematically in the following. The parameters204
β1, γ and δ are held constant (β1 = 0.7, γ = 0.1 and δ = 0.1) in the presented analysis in order to reduce205
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Figure 3. Overview of the underlying standard SIRS model (upper left corner) and standard SIS model
(upper right corner), as well as the novel developed CC-ODE model (lower left corner) and CC-IB model
(lower right corner). The complete model equations can be found in equation 1 (SIRS model), equation 2
(CC-ODE model), equation 3 (SIS model) and equation 4 (CC-IB model).

complexity, but could in principle be estimated from biological data, in case it is available for specific206
viruses.207

As one would expect, with an increasing value of α and constant values for all other parameters, there208
are more susceptible and less infected individuals. The dynamics for varying β2 appear to be a bit more209
complex and depend essentially on the choice of α. To further investigate this, we have a closer look on the210
steady states of the ODE system. There are two steady states of the ODE system. One of them is the trivial211
steady state (S∗, I∗, R∗) = (1, 0, 0), in which there are solely susceptible individuals in S, while there are212
neither infected nor immune individuals in the population. Hence, there is no infection at all that could be213
spread and the entire population remains susceptible and healthy. The condition214

β2(β1 − α)− γ > 0
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Figure 4. Solutions of CC-ODE model for t ∈ [0, 50] with initial conditions S(0) = 0.99, I(0) = 0.01,
R(0) = 0, parameter values β1 = 0.7, γ = δ = 0.1 and different choices for α ∈ {0, 0.1, 0.2} and
β2 ∈ {0.7, 1.0, 1.5}.

ensures instability of the trivial steady state (S∗, I∗, R∗) = (1, 0, 0) and hence the basic reproduction215
number reads216

R0 =
β2(β1 − α)

γ
.

As a consequence, there is a disease outbreak, if R0 > 1. Otherwise, an introduction of the virus to217
a small part of the population leads to the extinction of the disease. On the one hand, the higher the218
probability of infection upon exposure β1 and contact rate β2, the higher the chance that the disease is219
breaking out. On the other hand, the greater the immunogenicity of the virus α and the recovery rate γ, the220
lower the the probability that the disease is breaking out. This coincides well with the intuitive notion of221
these model parameters.222

Additionally, there is another steady state, which is non-trivial:223

S∗

I∗

R∗

 =


αβ2+γ
β1β2

−δ(αβ2−β1β2+γ)
β1β2(αβ2+γ+δ)

− (αβ2+γ)(αβ2−β1β2+)+γ
β1β2(αβ2+γ+δ)

 .

In the following, we focus on this second steady state. Thereby, we further investigate I∗ and its behavior224
depending on the parameters α and β2, see figure 5 a). I∗ can be interpreted as the proportion of infected225
individuals in the long term and is therefore a suitable representation of the mean disease burden after an226
initial period. For α > 0, we obtain curves with one single maximum at227
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Figure 5. a) Analytical solutions of steady state component I∗ (infected individuals) vs. log-scaled contact
rate β2 and β1 = 0.7. b) Maximum location of steady state β∗

2 vs. pathogen infectivity β1. The colors code
for different choices of the immunogenicity α. Other parameter values are γ = δ = 0.1.

β∗
2 =

αγ +
√
α2γδ + αβ1γ2 + αβ1γδ

αβ1 − α2
.

Hence, for β2 > β∗
2 , there is a decrease of I∗ and thus of the number of infections in the long term.228

Depending on the specific characteristics of a virus and the resulting different parameters in the ODE229
model, a higher contact rate of the individuals can lead to an overall lower disease burden. That is, having230
overall more contacts helps to reduce the average disease burden, if there is sufficient development of231
specific immunity. Interestingly, with increasing probability of infection upon exposure β1 the location232
of the maximum β∗

2 is decreasing, see figure 5 b). This means that for pathogens with higher probability233
of infection upon exposure, it might be the better strategy to have also a higher contact rate to keep the234
average disease burden lower. Note, however, that this may not be reasonable for all diseases. The stability235
analysis of the steady states can be found in the supplementary material.236

In order to shed more light on the dynamics at the individual level, we investigate the behavior of the237
individual-based model (CC-IB model) in the following.238

3.2 CC-IB model239

For the CC-IB model, we evaluate three scenarios corresponding to different patterns of immunity240
development (no specific immunity, medium specific immunity, strong specific immunity). The number241
of persons in the compartments S and I over time is depicted in figure 6. It can be seen that in all three242
scenarios, the fraction of infected individuals ( I/N ) oscillates around an equilibrium point.243

In order to illustrate the model dynamics, relation between the infection rate and the mean residence time244
in the two compartments is visualized in figure 7. For compartment S, we can observe that individuals with245
large values for βi tend to have longer residence times. This is to be expected, as exposure to the infectious246
virus is less likely for small values of βi. The transition from S to I is identical for all three scenarios,247
so that there are no relevant differences between the three scenarios in this regard. In contrast, the mean248
residence time in I displays important differences between the three scenarios. In scenario ‘No specific249
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Figure 6. Dynamics in the compartments. The system oscillates around an infection level of about 25%
in all three scenarios. The solid line is based on locally estimated scatter plot smoothing. The qualitative
system dynamics are independent of the starting conditions, provided extinction of the disease does not
occur (simulations not shown).
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Figure 7. Mean residence times in the compartments S and I. For all individuals, the mean residence
times in S and I have been calculated and plotted as individual dots on log scale versus the infection rate
βi on log scale. The solid lines are based on locally estimated scatter plot smoothing.

immunity’, the duration of infections (= residence time in I) shows no dependence of the infection rate.250
For scenario “Medium specific immunity”, it can be seen that individuals with a higher infection rate (large251
βi) tend to have shorter infections. This relation is even more pronounced in the scenario “Strong specific252
immunity”.253

In figure 8, we show individual trajectories for the time interval from t = 9000 to t = 10000. It becomes254
clear that in all three scenarios, individuals with a small βi are rarely infected and individuals with larger βi255
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Figure 8. Trajectories of test individuals and mean disease burden. In this figure, time is plotted from
bottom to top. Each column corresponds to a simulated test-individual with a particular value for βi. At the
times marked dark gray, the individual is in I, at the times marked light gray in S. The colored dots and
the black trend lines indicate the fraction of time spent in I with respect to the entire simulation time. The
corresponding scale is on the right hand side of the figure.

have infections more frequently. In the first scenario (“No specific immunity”), the duration of infections is256
independent of βi. In the second scenario (“Medium specific immunity”), infections appear to be shorter for257
larger values of βi. In the third scenario (“Strong specific immunity”), this notion becomes more evident.258
In this scenario, the total time spent in state I first increases with increasing infection rate βi. For large259
values of βi, infections are frequent, however, tend to be short in duration.260

The fraction of time spent in I in the simulation interval (t from 0 to 10000) is chosen as a proxy for261
mean disease burden per time. The fraction of time spent in I is the product of the number of infections and262
the mean residence time divided by the total time. In the scenarios “No specific immunity” and “Medium263
specific immunity”, there is a monotonous trend to increase with greater βi (see trend line and colored dots264
in figure 8). However, in the scenario “Strong specific immunity”, the mean disease burden tends to decline265
once the infection rate βi (and hence the contact rate) surpasses a certain value of βi. Hence, we confirm266
in our model analysis that also in populations that are heterogeneous with respect to their contact rates,267
an increased exposure frequency can lead to a decreased mean disease burden for appropriate parameter268
configurations, as already examined for the CC-ODE model.269
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4 DISCUSSION

The common cold causes considerable human distress and imposes substantial economic costs. It is270
widely assumed that adopting contact reduction, physical distancing and disinfection measures can reduce271
infections and that these measures are suited to reduce associated human suffering and economic burden.272
Although this may be true in many circumstances, it is not clear if this reasoning is universally valid.273
Interestingly, the relation between exposure frequency and mean disease burden has not been studied274
explicitly from a mathematical modeling perspective before.275

In this paper, we present novel mathematical approaches that study the relation between pathogen276
exposure frequency and mean disease burden. We deliberately kept the presented approaches simplistic,277
yet they yield informative insights. Specifically, in this work we introduce an ordinary differential equation278
model derived from the SIRS model and an individual-based model derived from the SIS model. We apply279
the models to different theoretical scenarios in order to investigate this relationship.280

In both modeling approaches, we demonstrate that for appropriate parameter constellations (i. e. properties281
of the virus and the population) an increased exposure may lead to a reduced mean disease burden. This282
can be explained by an efficient training of the immune system in the case of frequent infections. On the283
contrary, by reducing the number of infections, development of adequate immunity on an individual and284
population level may be hampered. Therefore, parameter configurations with high habituation rates arise,285
for which our models predict a reduced mean symptom burden with an increased exposure to a particular286
common cold virus, both on population and individual level. It is important to note that our models rely287
on the assumption that every exposure to the virus, even if it is not linked to a symptomatic infection288
(CC-ODE model) or associated with only a very short infection (CC-IB model) leads to full immunization.289
Further modeling analyses could be targeted at investigating the effect of relaxing this assumption.290

For the novel CC-ODE model, the resulting properties and overall model behavior can be calculated291
analytically for given parameter configurations as demonstrated in section 3.1. While an absolute isolation292
of contagious individuals always leads to zero infections, this radical strategy is connected to great economic293
cost and personal restrictions. For rather harmless diseases such as common colds, this strategy is certainly294
not practicable. On the contrary, the better option could be to increase the contact rate in order to reduce the295
overall disease burden (if practically feasible). We can observe a decreasing mean disease burden with a296
larger overall contact rate after a certain threshold for most parameter configurations. The optimal strategy297
highly depends on this threshold and is probably different for each pathogen and considered population.298
For most people, the number of contacts of each individual is limited by external circumstances in practice299
such as occupation and lifestyle and can only be manipulated at a certain cost to the individual. This has to300
be evaluated carefully for the specific scenario. It should be noted here that the increase in contact is only301
ethically justifiable if the death rate is close to zero. In the case of common cold pathogens this should302
usually hold true. However, we definitely do not want to recommend increasing the contact rate for serious303
illnesses, even if this could lead to fewer infections.304

The CC-IB model allows for studying the effects of heterogeneity, e. g. regarding contact behavior and /305
or development of immunity after exposure. In the current approach presented in section 3.2, we introduce306
heterogeneity exclusively with respect to the contact rate. For reasons of simplicity, the development of307
immunity and the resulting recovery dynamics are assumed to be identical for all individuals. A further level308
of heterogeneity with regard to the recovery dynamics could be introduced in the model, but that was not309
necessary for the investigation of the hypothesis examined in this paper. Furthermore, the individual-based310
approach adds stochastic aspects, both for infection and recovery. Analogous to the CC-ODE model, the311
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results hint at the possibility that there might be constellations in which an increased exposure leads to a312
reduced mean disease burden with respect to specific viruses.313

The parameters of the two models are related in a qualitative way. The infection rate β is described by314
infectivity β1 and the contact rate β2 in the CC-ODE model and by βi in the CC-IB model. The specific315
immunogenicity is given by α and a, respectively. The parameter γ in the CC-ODE model and the parameter316
c in the CC-IB model correspond to the unspecific immunity. The time scale / duration of the immunity is317
modeled by the rate δ in the population-based approach and by d in the individual-based approach.318

In conclusion, the CC-ODE model is more targeted at global decision-making issues, that might arise319
in public health politics. This approach is more suited to derive public health strategies to reduce the320
average disease burden. On the contrary, if the concern is to give specific advice to patients, the CC-IB321
model can give more insightful recommendations. Furthermore, the individual-based model allows to study322
the dynamics of populations with heterogeneous contact rates, which is not possible with the ordinary323
differential equation approach presented in this paper. However, both models capture the notion that an324
increased exposure frequency leads to a reduced disease burden for certain parameter constellations. The325
models are rather simplistic in design and do not implement all possible facets of interaction between326
individuals and common cold viruses.327

Up to this point, we have chosen illustrative model parameters for some generic common cold virus. In328
reality, there is a large diversity of the circulating virus. Furthermore, the ensemble of circulating viruses329
is not static but underlies constant development, in particular as a consequence of mutations of existing330
viruses and appearance of new viruses and virus variants from other species. The immunological memory331
within individuals and also within a population is shaped by the exposure to this multitude of different332
viruses. Furthermore, cross-immunity between different viruses and strains of viruses causing common333
colds may have a significant impact on disease patterns. These levels of complexity are currently not334
included in the presented modeling approaches. However, it is possible to make use of our models as a335
starting point and extend them to include multiple virus strains and interactions, for instance.336

In case of the CC-ODE model, with knowledge of the average time of infection an estimate for the337
recovery rate γ can be provided, while the average time between infections determines the immunity loss338
rate δ. The population numbers for the three different states over time and the basic reproduction number339
can help to determine the other parameters. Thereby, the parameter estimation also highly depends on340
the available data and the framework and one also has to consider the time scale and population size. In341
this way, a realistic scenario for an existing pathogen can be evaluated by fitting the model parameters.342
As a consequence, the model predictions could be challenged, in particular the hypothesis that a higher343
frequency of exposure can lead to a lower mean disease burden.344

In the case of common cold pathogens that do not lead to protective immunity (e. g. parainfluenza viruses,345
metapneumoviruses), there is insufficient evidence and data to answer the following hypothetical question:346
Would a person exposed to a specific common cold pathogen (e. g. a particular rhinovirus) at high frequency347
(e. g. once a day / hourly) experience persistent corresponding symptoms? Furthermore, the impact of348
cross-reactivity between different virus serotypes is also not well-studied. For non-common-cold infectious349
agents, there is a small number of studies systematically investigating intensity of symptoms upon repeated350
exposure (Dittmer et al., 1995; Hattakam et al., 2021; De Angelis et al., 2021; Frumento et al., 2022).351

During the COVID-19 pandemic, many regions were subject to long-lasting, extensive contact restrictions,352
particularly in the winters of 2020/2021 and 2021/2022. As a consequence of the reduced contacts, the353
incidence of common colds has dropped during this time. This is presumably linked to a general decline in354

14

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 27, 2024. ; https://doi.org/10.1101/2024.04.26.24306416doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.26.24306416


Gerdes et al. Exposure frequency in common cold

the population’s immunity to cold viruses. In the winter 2022/2023, an increased number of sick days due355
to common colds was observed in the communities where the contact rates had been lower in the preceding356
years. This can be explained in a straight-forward manner with the presented models.357

In order to test the results derived in this analysis, different experimental strategies are conceivable. First,358
in an animal study, animals could be repeatedly infected with a typical common cold virus (e. g. a rhinovirus)359
in a controlled setting, systematically varying the time interval between subsequent infections and recording360
the intensity of the disease symptoms. Appropriate animal models have been described in the literature361
(Yin and Lomax, 1986). Second, humans could be repeatedly infected with different time intervals with a362
mild common cold virus. In an investigation studying the relation between sleep duration and intensity of363
symptoms of a common cold, the authors chose such an approach (Prather et al., 2015). From our point of364
view, however, it is questionable whether such a procedure is ethically justifiable for our research question365
for both animal and human studies, as even generally mild pathogens can lead to more severe courses366
of disease in rare cases. A third conceivable approach is to collect observational data from groups with367
different exposure rates to common cold viruses via questionnaires. The exposure frequency most likely368
varies considerably between different professions. An attempt could be made to quantify the exposure369
and symptom burden of common cold infections in a prospective longitudinal study, ideally including370
participants with a wide range of different contact behaviors. A fourth approach might be related to a more371
comprehensive surveillance of common cold pathogens by federal agencies, as is already being done (e. g.372
weekly reports by the Robert-Koch-Institut in Germany - https://influenza.rki.de/Wochenberichte.aspx).373

A general increase of contacts in order to stimulate training of the specific immunological defense seems374
neither feasible nor desirable. Foremost, there are not only mild pathogens in circulation. Viruses such375
as SARS-CoV-2 and influenza lead to severe, often life-threatening and in many cases lethal infections.376
The presence of dangerous infectious agents is prohibitive of calling for a general increase of contacts.377
Nonetheless, the considerations raised in this article raise the question of whether the repertoire of infectious378
agents to which the immune system is exposed could be specifically targeted in a novel way. In certain379
environments such as childcare facilities or schools, for example, constellations are conceivable in which380
avoiding contact (as oftentimes recommended in the cold seasons) could lead to a worsening of the381
disease burden due to common colds. Loosely speaking, an infection with a benign pathogen that can be382
successfully averted today might be the common cold of tomorrow with more severe symptoms due to a383
prospective decreased specific immunity.384

Another measure to increase specific immunity against common cold pathogens and thereby reduce the385
associated disease burden are vaccination approaches (Simancas-Racines et al., 2017). However, such386
approaches have turned out to be challenging due to the multitude and ongoing evolution of the causative387
agents. To date, there are no such vaccines available that are recommended in the relevant guidelines. As388
common cold infections are usually mild, research in this field is limited and no groundbreaking innovations389
are to be expected in the near future.390

In conclusion, a more detailed characterization of disease dynamics of the common cold seems worthwhile.391
To this end, more detailed observational and experimental data are required in order to facilitate more392
specific mathematical modeling approaches. More sophisticated mathematical models fitted to more precise393
data potentially allow to derive recommendations suited to decrease the disease burden associated with the394
common cold.395
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