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19 Abstract

20 The Black Sea basin has a strategic geographical location bridging Asia and Europe and 

21 depends on traditional livestock practices. Anthrax, a zoonotic bacterial disease caused 

22 by Bacillus anthracis, poses a significant global threat impacting public health, food 

23 security, pastoralist communities, and national economies. The disease is endemic or 

24 sporadic in the Black Sea basin, however, the study of its distribution has seldom been 

25 addressed, despite its burden and the presence of historical B. anthracis burial sites in the 

26 region. The viability of B. anthracis in a particular region is going to be influenced by 

27 multiple environmental factors, such as soil composition, climate, vegetation, and host 

28 abundance. To characterize the potential distribution of B. anthracis in the Black Sea 

29 basin, and therefore, the potential for anthrax outbreaks, we applied an ecological niche 

30 modelling framework using the Maxent algorithm, analyzing multiple variable 

31 combinations, and proposing a novel approach for interpreting in-risk anthrax areas. Our 

32 findings underscored the importance of host abundance to the anthrax dynamics in the 

33 region. We identified anthrax-suitable areas spanning central and eastern Türkiye, 

34 Armenia, southern Georgia, southern Russia, Bulgaria, southern and eastern Romania, 

35 Hungary, Moldova, and southern Ukraine, which align with findings from previous global 

36 and regional studies on the potential suitability of anthrax. The insights gained from our 

37 research might facilitate the development of targeted interventions and policies to 

38 mitigate the spread of this disease in pastoralist communities in the Black Sea basin. 
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39 Introduction

40 Anthrax, a zoonotic bacterial disease, is caused by Bacillus anthracis, a spore-forming, 

41 Gram-positive, and rod-shaped bacterium [1]. While wild and domestic ungulates are the 

42 primary hosts of B. anthracis, it can also affect other mammals, including humans [2,3]. 

43 Ruminants are typically infected through environmental exposure by ingesting the 

44 pathogen’s spores when grazing or browsing. In humans, the most common route of 

45 transmission occurs through occupational exposure to infected animal carcasses or animal 

46 products [1]. 

47 Anthrax is present in all continents, causing high yearly mortality in domestic livestock 

48 and wild animals, along with high morbidity in humans. As a result, this disease threatens 

49 worldwide public health, food security, the livelihoods of pastoralist communities, and 

50 national economies [1]. B. anthracis is endemic in areas of Sub-Saharan Africa, central 

51 and southwestern Asia, Central and South America, and limited regions within the United 

52 States (US). In Europe, the disease is sporadic in animals, with a higher prevalence in 

53 southern Europe, and linked to historical foci in northern areas [2]. Across the Black Sea 

54 basin, as of 2023, anthrax remained endemic in Türkiye, Azerbaijan, Georgia, and 

55 Moldova, and it was reported sporadically in Bulgaria, Romania, Ukraine, Belarus [4], 

56 and the Russian Federation [5]. Even in endemic countries, surveillance systems for 

57 anthrax are limited, contributing to underreporting and gaps in understanding its 

58 geographic extent [6]. More importantly, organic matter, calcium richness, and a neutral 

59 to alkaline pH, characteristic of black steppe soils found in central Europe, are favourable 

60 for the viability of B. anthracis spores in the environment [7,8]. As the environmental 

61 availability of spores is a hallmark of B. anthracis exposure to hosts, characterizing its 

62 ecological niche has been proposed as a way to understand its distribution [9]. The 
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63 concept of the ecological niche was first introduced by Grinnell [10] as a “limited range 

64 of ecological variables that could maintain a population without immigration” exclusive 

65 to a single species. This concept was later developed by Hutchinson [11] as a quantifiable 

66 ecological area that determines species fitness and survivorship [12]. By studying the B. 

67 anthracis ecological niche, we aim to describe the environmental patterns that support 

68 anthrax spores’ survival which eventually leads to hosts’ exposure in the Black Sea basin 

69 [7,13]. 

70 Traditional ecological niche modelling (ENM) relies on abiotic predictors (e.g., climate) 

71 to characterize a species distribution and considers biotic interactions (e.g., host 

72 dynamics) to have negligent effects in modelling, a hypothesis called the Eltonian noise 

73 effect [14]. However, there is growing evidence that its inclusion can be crucial to 

74 describe broad-scale species distributions, especially when modelling a disease system 

75 [15]. In this study, we explored ecological niche modelling approaches based on various 

76 combinations of predictor variables, incorporating only abiotic (climate, soil, and 

77 vegetation) or introducing a biotic predictor (ruminant abundance) to assess whether the 

78 inclusion of ruminant abundance improved model performance. Additionally, we 

79 proposed a novel approach to visualize and interpret Maxent algorithm outputs by 

80 leveraging uncertainty levels to further refine the output. This allows us to suggest high-

81 risk areas of potential B. anthracis outbreaks in the Black Sea basin with higher accuracy, 

82 which can guide decision-makers to prioritize awareness campaigns, surveillance, and 

83 control activities. 
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84 Methods

85 This study explores the potential suitability of anthrax in the Black Sea basin through 

86 distribution modelling, using anthrax occurrences in domestic animals, from nine 

87 countries of the region, namely: Armenia, Azerbaijan, Belarus, Bulgaria, Georgia, 

88 Moldova, Romania, Türkiye, and Ukraine. 

89 Occurrence data and geoprocessing

90 We curated a database of B. anthracis confirmed georeferenced occurrences causing 

91 disease in domestic animal species (i.e., cattle, sheep, goats, swine, and equine) that have 

92 been reported in the participating countries between 2006 and 2021 (hereafter anthrax 

93 occurrences). The data were procured internally by FAO, sourced directly by national 

94 experts, or available online. The consolidated database included international 

95 repositories, such as EMPRES-i and the World Animal Health Information System 

96 (WAHIS), regional sources, as the Animal Disease Information System (ADIS), and 

97 national databases from Moldova and Türkiye. Finally, it includes anthrax occurrences 

98 from Deka et al. [16] (S1 File and S1 File Table 1).

99 Anthrax occurrence locations were processed in R Statistical Software (v4.2.1) [17]. We 

100 started by removing duplicates based on location and excluding records with a level of 

101 precision of less than three decimal degrees of latitude or longitude. Finally, to avoid 

102 overfitting due to spatial autocorrelation and sampling bias [16,18], we applied a spatial 

103 thinning method of 30 km [19], using the R package SpThin [20]. The resulting thinned 

104 occurrences were used to develop ENMs, the final dataset comprised 226 occurrences 

105 (Fig 1). 
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106 Fig 1: Anthrax georeferenced occurrences and calibration area (region M). Bacillus 
107 anthracis confirmed georeferenced occurrences (in dark orange) considered for the 
108 calculation of parameter M (outlined in teal). Maps were developed using R Statistical 
109 Software (v4.2.1) [17].

110

111 Calibration area 

112 The calibration region, or parameter M, is the area used to calibrate the model. The correct 

113 delimitation of M is critical as it may impact any step of an ENM, from its 

114 parameterization, validation, and model comparison [21], to the modelling outputs 

115 [22,23]. M should combine a spatial extent and environmental diversity that has been 

116 accessible to the studied species [24] during a time period that is relevant to the study 

117 [16,21]. Here, we defined M by a buffer surrounding the occurrences which distance was 

118 calculated as the mean of the distances from each occurrence to the geographic centroid 

119 [25] (Fig 1).

120

121

122 Variable selection

123 B. anthracis environmental and demographic predictors were identified based on 

124 previous literature studying anthrax spatial distribution [6,19,26]. We selected four 

125 environmental categories relating to climate (i.e., temperature and moisture), soil, and 

126 vegetation, plus one demographic variable. We included 15 bioclimatic variables for 

127 temperature and moisture extracted from the MERRAclim dataset [27] at a 5 arc-minute 

128 resolution for the period 2000 to 2010, which partially matched the timeframe of our 

129 occurrences. In this study, we excluded the variables describing interactions between 
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130 temperature and moisture—BIO8, BIO9, BIO18 and BIO19—due to known modelling 

131 artefacts [28]. MERRAclim is a high-resolution global repository of satellite-based 

132 bioclimatic variables, offering advantages over other commonly used climate data 

133 sources for ENM, specifically, MERRAclim shows less uncertainty in interpolated values 

134 when compared with WorldClim [27]. 

135 We selected four soil-related layers—pH, cation exchange capacity, carbon content, and 

136 nitrogen—extracted from the Global Soil Information Facilities, SoilGrids, database [29], 

137 available at https://soilgrids.org/, at a 0-5cm depth and 250m resolution. SoilGrids is a 

138 repository for chemical and physical soil properties, based on a global compilation of soil 

139 profile data sets and environmental layers. It is the result of contributions from various 

140 national and international agencies and is developed by the International Soil Reference 

141 and Information Centre (ISRIC)—World Soil Information [29,30].

142 As a measure of vegetation greenness, we used the Enhanced Vegetation Index (EVI) 

143 [31]. EVI’s version 6.1 was obtained through the 16-day composite images from the 

144 MOD13Q1 product at 250 m resolution [31] captured by the Moderate Resolution 

145 Imaging Spectroradiometer (MODIS) sensor, located in NASA’s TERRA satellite [32]. 

146 We processed satellite images to obtain the median from a composite of satellite images 

147 from 2005 to 2021 via Google Earth Engine [33]. EVI offers advantages over the 

148 Normalized Difference Vegetation Index (NDVI) in correcting atmospheric conditions 

149 and background noise [31].

150 Finally, we included a demographic variable representing ruminant abundance, resulting 

151 from the sum of three raster layers for cattle, sheep, and goats abundance sourced from 

152 the Gridded Livestock World Distribution (GLW4) and adjusted to FAOSTAT 2015 

153 country totals at 1km resolution [34–37]. All variables were resampled to 1km resolution 
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154 using the resample function and bilinear method in R. Further details on anthrax 

155 environmental predictors and data sources are detailed in S1 File Table 2.

156 To reduce high dimensionality and variable autocorrelation, we used a principal 

157 component analysis (PCA) [9,38]. We used different sets of PCAs to determine three 

158 ENM approaches. For the first approach, we calculated principal components (PCs) for 

159 the entire set of 20 environmental variables. The two other approaches comprised PCs for 

160 each environmental domain (i.e., temperature, moisture, soil, and vegetation). The third 

161 approach treated environmental domains as in the second approach, also including the 

162 ruminant abundance variable. For each of these approaches, we used the PCs retaining at 

163 least 90% of the variation in the original data [39]. PCAs were developed using the 

164 ‘kuenm_rpca’ [40] function from kuenm package in R [40].

165 Ecological Niche Modelling

166 Maximum Entropy algorithm (MaxEnt version 3.4.4) [41] was implemented to define the 

167 ENMs. For this purpose, we applied the package kuenm [40] 

168 (https://github.com/marlonecobos/kuenm) in R Statistical Software (v4.2.1) [17] to 

169 calibrate MaxEnt ENMs and select optimal parameters for each of the three combinations 

170 of PCs as described earlier. We investigated different parameters, including combinations 

171 of MaxEnt feature classes (i.e., response types: linear, linear+quadratic, 

172 linear+quadratic+product), and five regularization multipliers (i.e., 0.1, 0.5, 1, 1.5, and 

173 2). 

174 Model evaluation

175 We partitioned anthrax occurrences randomly: 70% of occurrences for model training 

176 (calibration), and 30% of occurrences for model testing (evaluation) [42,43]. Models were 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2024. ; https://doi.org/10.1101/2024.04.25.24306404doi: medRxiv preprint 

https://github.com/marlonecobos/kuenm
https://doi.org/10.1101/2024.04.25.24306404
http://creativecommons.org/licenses/by/4.0/


9

177 primarily evaluated and selected via the kuenm package [40] following a three-step 

178 approach. First, models were assessed for statistical significance (p-value<0.05) based on 

179 the partial area under the curve of the Receiver Operating Characteristic (pROC). Then, 

180 those models with a lower omission rate (OR, threshold=5%), [44], were selected. Lastly, 

181 the resulting models were further narrowed down using the Akaike information criterion 

182 corrected for sample size (AICc) [45] to ensure low model complexity and good fit to the 

183 underlying data.

184 Final Model

185 Final models were generated with the function ‘kuenm_mod’ from kuenm [40]. For the 

186 three modelling approaches, we specified the output format as logistic, with a continuous 

187 scale from 0 (non-suitable) to 1 (suitable). Additionally, we used 50 bootstrap replicates 

188 to calculate the median and assess model uncertainty, i.e., the difference between the 

189 rasters with maximum and minimum values. Final model outputs were categorized (i.e.,  

190 suitable vs. non-suitable) considering the suitability value from the 95% of the calibration 

191 points (E=5%) as threshold for binarizing the model [46]. 

192 From the three modelling approaches, we selected the best model based on the following 

193 criteria: lowest OR, lowest number of parameters, larger predicted area, and lowest 

194 uncertainty. Finally, to interpret the final model, we overlapped the best binarized model 

195 (i.e., suitable/unsuitable) with the uncertainty raster and considered highly suitable areas 

196 to those with less than the third quartile of uncertainty values. 
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197 Results

198 A total of 1182 raw anthrax outbreak occurrences in domestic livestock, spanning from 

199 2006 to 2021, were collated from various sources and used in the current study (S1 File. 

200 Table 1). Cattle, sheep, and goats outbreaks accounted for 80.7%, 14%, and 4% 

201 respectively, representing the majority of studied outbreaks (98.7%). The remaining 

202 occurrences represented outbreaks attributed to horses and swine (1.3%).  Over the 

203 studied period, the cumulative frequency of anthrax occurrences started increasing in 

204 July, peaked in September (n=193) at three times the mean for the first six months of the 

205 year (n=65), and gradually decreased until December (n=62, S2 Fig). 

206 Each of the three explored approaches resulted in 15 candidate models, reflecting 

207 combinations of three feature classes and five regularization multiplier values. The three 

208 best-fitting models were identified through the described three-step framework (Table 1). 

209

210 Table 1. Parameters of ecological niche models categorized by principal component 
211 analysis (PCA) approach. 

212 The best model for each approach was selected using a three-step selection framework 
213 (i.e., pROC, omission rates, and AICc). AICc: Akaike information criterion corrected for 
214 sample; dem variable: demographic variable; Features: L=linear, LQ=linear+quadratic, 
215 LQP=linear+quadratic+product; PCA: principal component analysis; pROC: partial area 
216 under the Receiver Operating Characteristic; OR: omission rate; RM: regularization 
217 multiplier. 

Approach
Selected 

features

Selected 

RM

 No. 

Predicted

pixels

pROC 

significance
OR-5% AICc

No. of 

parameters

Approach 1: 

All variables 

PCA

LQP 0.1 34,917 <0.05 0.0294 4,732.26 20

Approach 2: 

PCA by domain

(env only)

LQP 0.5 25,895 <0.05 0.0441 4,634.63 41
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218

219 The model output for B. anthracis developed using a PCA per environmental domain plus 

220 the variable representing ruminant abundance in the studied area were selected as the best 

221 overall model (i.e., approach 3; Table 1). This model yielded a wider prediction with 

222 lower uncertainty and presented a lower OR with a lower number of parameters than the 

223 two other approaches (Table 1). To generate this ENM approach, we retained the first 

224 three PCs for temperature and soil, explaining 98.83% and 95.77% of their respective 

225 domains, the first two PCs explaining 99.44% of the moisture domain, and one PC each 

226 for EVI and ruminant abundance. Models’ median, uncertainty, and areas suitable and 

227 non-suitable for B. anthracis at 5% threshold are illustrated in Fig 2. Outputs for the other 

228 two approaches can be found in the S2 File Fig 1. We highlight that the temperature and 

229 soil domains had the highest contribution to the final selected model accounting for 38.2 

230 and 32.9%, whereas similar contributions were attributed to EVI and ruminant 

231 abundance, at 10.3% and 9.9%, respectively (S2 File Table1).

232

233

234

235 Fig 2: Ecological niche model outputs for Bacillus anthracis in the Black Sea basin.

236 Model outputs for the selected best model for B. anthracis using principal components 
237 (PCs) by domain plus the demographic variable based on ruminant abundance (i.e., 
238 approach 3; Table 1). Maps depict (A) continuous suitability, (B) uncertainty, and (C) a 
239 binary map of suitability using a 5% threshold. Maps were developed using R Statistical 
240 Software (v4.2.1) [17].

Approach 3: 

PCA by 

domain + dem. 

variable

LQ 0.5 34,323 <0.05 0.0147 4,715.51 18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2024. ; https://doi.org/10.1101/2024.04.25.24306404doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.25.24306404
http://creativecommons.org/licenses/by/4.0/


12

241

242 We contrasted suitable areas for anthrax in the overall best model binary map with 

243 varying levels of model uncertainty. Low uncertainty was defined here as those pixels 

244 with values below the third quartile of the uncertainty range (i.e., Q3= 0.23; Fig 3A). 

245 Regions identified as highly suitable with low uncertainty (Fig 3B) span western to central 

246 Armenia, extending into the southwest of Azerbaijan; they include a limited area in the 

247 northeast of Azerbaijan and the southern border region of the Russian Federation; the 

248 interior regions of the Islamic Republic of Iran and southern Russian Federation; as well 

249 as the interior eastern, central and central-south areas of Türkiye (Fig 3B). Additionally, 

250 anthrax suitability is also observed in centre south and north Bulgaria and south and east 

251 Romania, centre east of North Macedonia, north of Serbia, southeast of Hungary, centre 

252 to south of Moldova, and the south coast of Ukraine with the Black Sea (Fig 3B). 

253 Regions with high suitability with low uncertainty where no anthrax occurrences have 

254 been reported (Fig 1 and Fig 3B) can be found in the southern interior of the Russian 

255 Federation, the interior of the Islamic Republic of Iran, the central southern region of 

256 Bulgaria, central-east of North Macedonia, northern Serbia and centre to east of Hungary. 

257 Conversely, regions where anthrax cases have been reported, yet are depicted in our 

258 models as areas of low anthrax suitability, are primarily seen in central to northern regions 

259 of Ukraine and southern regions of Belarus. High suitability areas with high uncertainty 

260 are observed along the coast of southern Türkiye with the Black Sea, the west coastal area 

261 of Türkiye with the Mediterranean Sea, and the southern-east region of Türkiye along the 

262 border of the Republic of Iraq and the Islamic Republic of Iran.

263

264 Fig 3. Suitability versus uncertainty regions for the best-selected model of the 
265 potential distribution of Bacillus anthracis. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2024. ; https://doi.org/10.1101/2024.04.25.24306404doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.25.24306404
http://creativecommons.org/licenses/by/4.0/


13

266 (A) Illustrates the correlation between continuous anthrax suitability and uncertainty for 
267 the best model (Table 1, Fig 2). High uncertainty was defined by a cut-off set as the third 
268 quartile across all uncertainty values (>=0.23). (B) Depicts the 5% binary output of 
269 anthrax suitability with higher (orange) and lower (ochre) uncertainty. Graph and map 
270 were developed using R Statistical Software (v4.2.1) [16].

271

272 Discussion

273 Through the scope of distribution modelling, we found highly suitable regions for B. 

274 anthracis survival in the Black Sea basin; these areas might well benefit from investment 

275 and resource allocation for the control and prevention of anthrax outbreaks. Our model’s 

276 predictions agreed with findings from previous studies conducted at various geographical 

277 scales. Suitable areas identified for anthrax spanned from central to eastern Türkiye, 

278 Armenia, southern Georgia, the southern Russian Federation, Bulgaria, southern and 

279 eastern Romania, Hungary, Moldova, and southern Ukraine. These areas are similar to 

280 those found by recent studies exploring the ecological niche of B. anthracis at a global 

281 scale [6,16], as well as a study specifically focused on northern latitudes [47]. 

282 Additionally, our model found anthrax-suitable areas with low uncertainty in northeast 

283 Azerbaijan, consistent with anthrax spatial clusters observed between 2000 and 2010 

284 [48]; and the Odesa region in Ukraine, converging with a publication reporting B. 

285 anthracis in environmental samples and animal anthrax cases in this area [49]. Finally, 

286 we should highlight that although our model did not include anthrax occurrences from 

287 Georgia, it accurately predicted the southeastern region of this country as suitable for 

288 anthrax, corroborating previous reports (Pers. Comm. T. Chaligava). However, it was 

289 unable to predict similar suitability in central to northern regions of Georgia, where both 

290 livestock (Pers. Comm. T. Chaligava) and human anthrax cases [50] have been 

291 documented. 
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292 There is a well-established spatio-temporal link between human and livestock anthrax 

293 cases due to the high occupational nature of anthrax in humans [1]. In this regard, our 

294 model corroborates the high incidence of human and livestock anthrax cases found in 

295 eastern provinces of Türkiye, clustering around animal trade centres and large 

296 international commercial roads [51,52] and linked with livestock trade routes between 

297 eastern and western Türkiye and from the centre Anatolia to the southern and northern 

298 parts of the country [52].  

299 Upon comparing Maxent ENMs assessing various variable combinations, we found that 

300 the inclusion of the ruminant abundance (biotic variable)—which PC ranked fourth in the 

301 final model (S2 File Table 1)—improved model performance and was an important 

302 parameter in selecting the best overall model of anthrax suitability in this region. 

303 Livestock’s abundance has previously been explored and seen as influential in anthrax 

304 distribution studies [26,47,53–56]. These results emphasize the importance of biotic 

305 interactions for disease systems [15]; ruminants are the most susceptible hosts to B. 

306 anthracis and play a key role in the maintenance and transmission of anthrax [57]. It is 

307 worth noting that ruminant production is a critical livestock subsector in the majority of 

308 the studied countries [58–67]. In addition, areas found as suitable for anthrax by our 

309 model largely match rural settings where pastoralism is widely practiced [68], and 

310 livestock is the main source of subsistence for these populations [4,68]. Similarly, Carlson 

311 et al [6] suggested higher human anthrax risk in rural areas, and observed increased 

312 human and livestock anthrax vulnerability in rainfed systems across arid and temperate 

313 landscapes in the same region (Eurasia).

314 Soils and temperature had the highest contribution percentage to our model (S2 File Table 

315 1). Chernozem or black steppe-type soils, prevalent in eastern Europe [69] and partly 

316 covering our M region, are known to create favourable conditions for anthrax sporulation 
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317 [70] and have been associated with anthrax epidemics [7]. At the same time, the southern 

318 part of the M region, where the mean annual temperature is higher, was identified as 

319 suitable for anthrax by our model. This result aligns with established knowledge 

320 regarding favourable conditions for anthrax viability in areas with temperatures 

321 exceeding 15 ⁰C [3] and is further supported by results from Carlson et al. and Walsh et 

322 al. [6,47]. Furthermore, cumulative anthrax occurrences were higher between July and 

323 October. This period corresponds to high temperatures and dry conditions across the 

324 region [71], which facilitate the mechanical dispersion of anthrax spores [8]. 

325 Additionally, this period coincides with the time when ruminants graze in local pastures 

326 or migrate to summer pastures. As the grass gradually becomes shorter during this season, 

327 ruminants tend to graze closer to the soil, heightening their risk of exposure to the B. 

328 anthracis spores [72]. Moreover, the high temperatures during this time may also lead to 

329 ruminants’ nutritional stress and compromise their immunocompetence, making them 

330 more susceptible to the disease [73]. Such temporal pattern was previously observed in 

331 Azerbaijan [74], Türkiye [75] and Kyrgyzstan [72]. 

332 Some of the few anthrax occurrences in the northern M region were missed by our final 

333 model (Fig 3). This discrepancy may be attributed to the low mean annual temperature at 

334 these latitudes, which theoretically hinders anthrax viability [3]. However, it is worth 

335 noting that during summer months, temperatures may still enable significant sporulation 

336 of B. anthracis [3]. In contrast, Deka et al. [16] showed “very high” and “high” suitability 

337 for anthrax in parts of our northern region M, diverging from our findings. Additionally, 

338 anthrax cases in Ukraine and Belarus were reported sparingly, likely due to rigorous 

339 documentation of biothermal pits and infected burial grounds [49]. These areas are subject 

340 to strict legislation prohibiting any construction as well as agricultural and pastoral 

341 practices without prior disinfection at these sites. Furthermore, the lack of cases in these 
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342 countries may be also explained by the prevalence of intensive livestock production 

343 systems where ruminants are often confined, and pastoral practices are uncommon, 

344 reducing opportunities for exposure to anthrax spores. Nevertheless, despite the current 

345 suboptimal environmental conditions for anthrax viability in this region, climate change-

346 led extreme weather events, such as warmer temperatures, high precipitation and droughts 

347 [76] are expected to increase anthrax risk in these areas [16,47]. 

348 Besides local climate, soil characteristics, host demography, and wildlife interactions, 

349 anthrax outbreaks are associated with a range of socio-economic factors. These factors 

350 encompass food security, disease awareness, cultural and religious events, as well as 

351 access to veterinary services and healthcare. These factors are directly linked with 

352 livestock production practices, including production systems, pastoralism, seasonal 

353 movements, veterinary surveillance and control capacity, vaccination use and coverage, 

354 and the application of biosecurity measures [77]. Further research into the impact of these 

355 factors on the risk of anthrax outbreaks among livestock and humans in the region would 

356 complement the findings of the current study.

357 Our regional-scale map illustrating anthrax suitability complements existing studies 

358 targeting this region at broader scales [6,16,47,56]. In our study, we explicitly 

359 incorporated uncertainty measures into our final predictions, aiming to highlight and 

360 define more accurately potential anthrax-suitable. The inclusion of uncertainty in the final 

361 outputs of ENMs is seldom implemented [6,16,19,26], and we advocate for its 

362 consideration, especially in ENM studies exploring pathogens. 

363 As an evidence-based map of anthrax distribution, the areas highlighted by our model 

364 should guide future research efforts aimed at anticipating future outbreaks. They should 

365 facilitate resource allocation to improve the cost-efficiency of surveillance and control 
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366 activities, as well as disease awareness and educational campaigns promoting appropriate 

367 quarantine, carcass handling, and disposal. For the success of such preventative measures, 

368 we stress the importance of coordinated efforts between the veterinary and public health 

369 sectors at both national and international levels.

370 Conclusions

371 Our study identified high-risk areas for anthrax across central and eastern Türkiye, 

372 Armenia, southern Georgia, southern Russia, Bulgaria, southern and eastern Romania, 

373 Hungary, Moldova, and southern Ukraine. These findings are critical for prioritizing 

374 resource allocation and implementing anthrax management interventions in the region. 

375 Leveraging uncertainty levels and explicitly including them in our modelling approach 

376 improved the reliability of the potential suitable and non-suitable regions for anthrax 

377 identified in our final maps. We believe this approach also facilitates the interpretability 

378 of our results and enhances their utility for decision-makers and stakeholders.

379 The inclusion of ruminant abundance as a biotic variable in our modelling framework 

380 significantly improved model performance, highlighting the importance of host-pathogen 

381 interactions in the study region.

382 Overall, anthrax poses a significant threat to livestock, particularly ruminants, whose 

383 production sector is essential for the economies and subsistence of rural populations in 

384 the Black Sea region. We anticipate that the risk maps generated in this work offer 

385 comprehensive insights into anthrax distribution in this region, providing valuable 

386 guidance for targeted interventions to mitigate the impacts of this disease.

387
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