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Abstract 
Social Determinants of Health (SDoH) are an important part of the exposome and are known to have a large impact 
on variation in health outcomes. In particular, housing stability is known to be intricately linked to a patient’s health 
status, and pregnant women experiencing housing instability (HI) are known to have worse health outcomes. Most 
SDoH information is stored in electronic health records (EHRs) as free text (unstructured) clinical notes, which 
traditionally required natural language processing (NLP) for automatic identification of relevant text or keywords. A 
patient’s housing status can be ambiguous or subjective, and can change from note to note or within the same note, 
making it difficult to use existing NLP solutions. New developments in NLP allow researchers to prompt LLMs to 
perform complex, subjective annotation tasks that require reasoning that previously could only be attempted by 
human annotators. For example, large language models (LLMs) such as GPT (Generative Pre-trained Transformer) 
enable researchers to analyze complex, unstructured data using simple prompts. We used a secure platform within a 
large healthcare system to compare the ability of GPT-3.5 and GPT-4 to identify instances of both current and past 
housing instability, as well as general housing status, from 25,217 notes from 795 pregnant women. Results from 
these LLMs were compared with results from manual annotation, a named entity recognition (NER) model, and 
regular expressions (RegEx). We developed a chain-of-thought prompt requiring evidence and justification for each 
note from the LLMs, to help maximize the chances of finding relevant text related to HI while minimizing 
hallucinations and false positives. Compared with GPT-3.5 and the NER model, GPT-4 had the highest performance 
and had a much higher recall (0.924) than human annotators (0.702) in identifying patients experiencing current or 
past housing instability, although precision was lower (0.850) compared with human annotators (0.971). In most 
cases, the evidence output by GPT-4 was similar or identical to that of human annotators, and there was no evidence 
of hallucinations in any of the outputs from GPT-4. Most cases where the annotators and GPT-4 differed were 
ambiguous or subjective, such as “living in an apartment with too many people”. We also looked at GPT-4 
performance on de-identified versions of the same notes and found that precision improved slightly (0.936 original, 
0.939 de-identified), while recall dropped (0.781 original, 0.704 de-identified). This work demonstrates that, while 
manual annotation is likely to yield slightly more accurate results overall, LLMs, when compared with manual 
annotation, provide a scalable, cost-effective solution with the advantage of greater recall. At the same time, further 
evaluation is needed to address the risk of missed cases and bias in the initial selection of housing-related notes. 
Additionally, while it was possible to reduce confabulation, signs of unusual justifications remained. Given these 
factors, together with changes in both LLMs and charting over time, this approach is not yet appropriate for use as a 
fully-automated process. However, these results demonstrate the potential for using LLMs for computer-assisted 
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annotation with human review, reducing cost and increasing recall. More efficient methods for obtaining structured 
SDoH data can help accelerate inclusion of exposome variables in biomedical research, and support healthcare 
systems in identifying patients who could benefit from proactive outreach. 
 

Introduction 
The overwhelming majority of patients in the US have their data stored in electronic health records (EHRs). 
Information regarding a patient’s exposure to social determinants of health (SDoH), such as housing status, 
employment status, education, and quality of domestic life, provides relevant information that informs patient care 
and provides valuable avenues for intervention and treatment1. It has been estimated that SDoH can affect almost 
50% of country-level variation in health outcomes, while clinical care impacts as little as 20%2. Housing data in 
particular, including a patient’s recent housing status, is known to be intricately linked to their health status3–5. 
Therefore, gaining insight into a patient’s current and past living situation is essential to providing more complete 
and equitable care. It is also important for research, where capturing longitudinal exposome data is essential for 
analysis of health outcomes. 
 
Housing stability is known to exist on a continuum, from complete stability (access to housing of reasonable quality 
in the absence of threats) to complete instability (no access to housing of reasonable quality)6. It is well known that 
people who are experiencing housing instability (HI) are at greater risk for other health issues, including substance 
use, comorbidities, and mental illness3,7,8.  People facing HI are also at an increased risk for homelessness5,9,10, 
which is associated with increased risk of morbidity and mortality7. Patients experiencing homelessness are also 
more likely to end up in the emergency department, have longer hospital stays than low-income housed persons, and 
are less likely to use preventive services3,10. Women who are experiencing HI while pregnant face additional 
challenges, as they usually require consistent access to care throughout their pregnancy. Adverse exposures prior to 
and during pregnancy can put a child at increased risk of both short- and long-term health consequences, and it is 
known that women who experience housing instability during pregnancy are at higher risk of adverse pregnancy 
outcomes, including preeclampsia, preterm birth, neonatal intensive care unit admission, and maternal morbidity11–

14.   
 
SDoH are rarely well documented in structured EHR data15–17. This leads to access barriers for researchers and 
caregivers. In addition, manually identifying SDoH, for example through chart abstraction, can be time-consuming 
and expensive, and infeasible to do at scale. Because structured data has often been optimized for purposes other 
than individual care or research, free-text descriptions capture greater breadth and complexity of a patient’s social 
and behavioral history. Existing projects, such as PRAPARE18 and emerging national interoperability plans19 are 
providing paths for clinicians to better capture SDoH data in structured fields, but widespread data standards for data 
harmonization are still in early development20.  
 
Traditional NLP extraction of SDoH information from free-text notes has relied heavily on identification of 
keywords or phrases, using either manual or semi-automated lexicon curation, rule-based methods, or word 
embeddings21–24. However, most of these models are vulnerable to false positives and can only capture simplified 
concepts related to SDoH. In addition, previous research to identify housing instability from the EHR has focused 
primarily on homelessness or simplified housing-related concepts 24–26. However, because HI is heterogeneous with 
many intersecting dimensions, classifying a patient experiencing housing instability can be more complex than some 
aspects of social history and exposures, such as smoking. By contrast, large language models (LLMs) such as 
OpenAI’s GPT (Generative Pre-trained Transformer) models can handle large quantities of complex, unstructured 
data using only simple prompts. Research using LLMs on EHR data is still in its early stages, and most work has 
focused on either fine-tuning models for medical relevance27,28, comparing model performance to identify the 
presence or absence of SDoH statements29, or using LLMs for disease diagnosis or phenotyping30,31. In addition, it 
has not been made clear whether the quality of note text flagged as relevant by GPT is similar to that of a human 
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annotator, and whether or not it is likely to contain hallucinatory text. LLMs such as GPT could also perpetuate 
health inequity if they perform differently for different patient populations. It is therefore important to test for bias in 
these models to inform future decisions regarding the use of LLMs in the healthcare setting. In addition, the 
possibility of using de-identified clinical notes for abstraction is an appealing for further supporting patient privacy. 
However, de-identification processes involve obfuscation of important details, including dates and locations. This 
may alter the semantic underpinnings of a given text, making it difficult for a LLM to accurately identify and label 
SDoH within a given note.  
 
We examined whether LLMs were able to identify housing instability in clinical free-text notes with greater 
accuracy compared to manual annotation, regular expressions (RegEx), and a pre-trained named-entity recognition 
(NER) model for SDoH, using electronic health records for a population of pregnant women. We also examined the 
possibility of algorithmic bias in the predictions made by GPT-4 and GPT-3.5, as well as the differences in LLM 
performance on de-identified versions of patient notes.  These methods have the potential to provide greater access 
to existing SDoH data that is valuable for retrospective research, chart review for prospective trials, and population 
health interventions to identify those who might benefit from proactive outreach. 
 

Methods 
This retrospective study protocol was performed in compliance with the Health Insurance Portability and 
Accountability Act (HIPAA) Privacy Rule and was approved by the Institutional Review Board (IRB) at PSJH with 
Study Number 2020000783. Consent was waived because disclosure of protected health information for the study 
was determined to involve no more than a minimal risk to the privacy of individuals. 
  

Study setting and participants  
Providence St Joseph Health (PSJH) is an integrated U.S. community healthcare system that provides care in urban 
and rural settings across seven states: Alaska, California, Montana, Oregon, New Mexico, Texas, and Washington. 
Using the PSJH electronic health records, we identified deliveries from June 8, 2010, through May 29, 2023 
(n=595,600). We included singleton deliveries in a cohort of pregnant people aged 18-44 at the start of pregnancy 
(n=557,406) as previously described32. We limited the deliveries to records that had associated gravida, term, 
preterm, abortion, and living data (GTPAL) information, and to patients who received care in the PSJH system 
during pregnancy. For patients with more than one pregnancy episode, we randomly selected a single episode 
(n=408,158). We limited our patient cohort to those with complete Social Vulnerability Index (n=372,208) 
information as previously described32. To identify patients from our cohort who were experiencing housing 
instability (“preliminary positive class”), we searched for patients who had either a SNOMED code for housing 
instability (Supplementary Table S1) or a matching string for the word “homeless” in one or more of their free-text 
notes (n=13,024). Patients who did not meet these criteria were considered in the “preliminary negative class” 
(n=359,184) (Fig. 1).  
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Fig. 1: Cohort selection and experimental design. *Pregnant patients were selected as previously described32. 
Patients used for prompt engineering (100) and patients used for tagging (795) did not overlap. 

 
Task definition and data labeling 
We defined different instances of housing stability and instability by first carrying out interviews with various 
subject matter experts (SMEs), including clinicians, social workers, and resource specialists. We generated 
preliminary annotation guidelines which were then iteratively refined and finalized with additional input from 
SMEs. The final annotation guidelines can be found in the Appendix. These guidelines distinguish between stable 
and unstable housing versus an unknown housing status, with examples for each pulled from EHR notes. An explicit 
definition of history of housing instability was also created. If a note contained any information on housing it had to 
be labeled as either stably housed, current housing instability, or history of/past housing instability. If the note 
contained no information on housing, it was labeled as unknown. These guidelines were then used to create the 
prompt used by the LLM. The annotation was divided into two rounds, with each reviewer annotating their own set 
of notes for the first round (original label). For the second round, 25% of the notes underwent dual annotation. If 
there was any disagreement for a given note between two annotators, a third annotator was asked to make a final 
decision. All the notes were then manually compared to results from GPT-4 to identify any notes that were 
obviously missed by reviewers. After the second round, a final label was assigned to each note. Performance metrics 
for manual annotation were calculated by comparing the original and final labels for each note. After manual 
annotation from reviewers, interrater reliability was calculated using Cohen’s Kappa on the notes that underwent 
dual annotation during the second round of annotation. The average time spent manually annotating a single note 
was calculated by each reviewer timing themselves for the time spent to annotate ten notes, and then taking the 
average. The two averages for each reviewer were then averaged. 
 
Models 
Data processing was accomplished using the Azure AI Services API's for GPT-4 and GPT-3.5 within the secure 
Providence cloud environment. GPT-4 version 0613 had a 32K token window, while GPT-3.5 Turbo version 0613 
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had a 16K token window. Both GPT models were run using LangChain and OpenAI libraries. The John Snow Labs 
(JSL) NER model (ner_sdoh_en_4.4.3_3.0_1686654976160, 
https://nlp.johnsnowlabs.com/2023/06/13/ner_sdoh_en.html) is a state-of-the-art SDoH model designed to detect 
and label SDoH entities within text data. The housing-specific label includes entities related to the conditions of the 
patient’s living spaces, for example: homeless, housing, small apartment, etc. JSL was run using 
sparknlp_jsl.version 5.0.0. To determine whether a RegEx search would identify relevant patient notes related to 
housing, we generated a preliminary list of keywords and phrases related to housing instability, which was then 
reviewed by SMEs to generate a final list (Supplementary Table S2). 
 
Prompt engineering 
Our prompt was developed using chain-of-thought (CoT) prompting, where the problem/question description is 
initially stated and the LLM is asked to identify relevant evidence first, and then provide an answer. This method has 
been shown to be more accurate than asking the LLM to only provide an answer33. GPT-4 and GPT-3.5 were asked 
to first identify chunks of evidence verbatim from the text (evidence). The model was then asked to go through each 
of the four labels: housing noted, housing instability current, housing stability current and housing instability 
history and provide an answer for each. The model was then asked to provide a justification explaining why it chose 
a specific label and the LLMs were explicitly asked not to make up any information. GPT-3.5 was not used in the 
prompt engineering phase, and the prompt developed for GPT-4 was also used for GPT-3.5. The final prompt can be 
found in the Appendix. 
 
For prompt engineering, we randomly selected 100 patients from the preliminary positive class and extracted all 
patient notes within one year of a patient’s conception date. Of the 100 patients, 51 of them had at least one note 
within one year of conception date, for a total of 1,569 notes (Fig. 1). Of those 51 patients, we used the JSL model to 
identify 70 notes from 16 patients related to housing. The 70 notes were then manually annotated by two 
independent researchers and the answers were compared. Any disagreement between the annotators was discussed 
and a final decision was made. From our annotation guidelines we developed an initial prompt for GPT-4 that 
contained definitions of housing instability as stated in the annotation guidelines, as well as examples of housing 
instability from samples found in the patient notes. This prompt was then run through GPT-4 on the 70 notes and the 
results were compared to the manually annotated results. All of the results were then compared, and the prompt was 
updated again based on results from GPT-4. For example, GPT-4 initially misclassified several cases of past housing 
instability as current housing instability. We then updated the prompt to specify that “a patient can only experience a 
'history' of housing instability if they had housing instability in the past, then were stably housed, then experienced 
housing instability again. If the note refers to past housing instability, for example, ‘the patient was homeless in the 
past’, then this can be treated as a ‘history of housing instability’”. 
 

Model testing and evaluation 
Overall, the four methods flagged 25,217 notes from 795 patients from the preliminary positive class as being 
related to housing and/or housing instability past or present. If a given method flagged more than one note for a 
specific patient, only the most recent note in relation to the conception date was used for annotation. For example, if 
GPT-4 flagged two notes dated Jan 1st, 2019 and May 1st, 2019, reviewers only annotated the note dated May 1st, 
2019. This ensures that a maximum of four notes per patient were used for annotation. Model performance was 
measured by examining accuracy, recall, precision, and F1 score using the Scikit-Learn library. 
 
Because it was initially uncertain how many notes would be flagged by the models for a given number of patients, 
we initially selected 500 patients from the preliminary positive class. Out of those 500 patients, 295 patients had one 
or more notes within a 12 month period prior to pregnancy, for a total of 9,451 notes. Of those notes, 511 notes from 
139 patients were tagged as either containing information on housing status by the JSL model or information on 
housing instability past or present by GPT-4, GPT-3.5, and Regex. 204 of the 511 notes were selected as being the 
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most recently note tagged by any of the models for each patient, and all 204 notes were manually annotated. For the 
second round of model tagging and annotation, 500 patients who had one or more notes within a 12 month period 
prior to conception were randomly selected from the preliminary positive class. After model tagging, 900 notes from 
216 patients were tagged as either containing information on housing status by the JSL model or information on 
housing instability past or present by GPT-4, GPT-3.5, and Regex. 335 of the 900 notes were selected as being the 
most recently note tagged by any of the models for each patient, and all 335 notes were manually annotated (positive 
class). A full breakdown of the number of patients and notes used in each round of model tagging and annotation 
can be found in Supplementary Table S3.  
 
To identify notes related to housing and/or housing instability past or present from patients in the preliminary 
negative class, we first selected a random sample of 500 patients from the preliminary negative class. Of those 500 
patients, only 348 patients had one or more notes within a 12 month period of their conception date, for a total of 
5,455 notes. GPT-4, GPT-3.5, Regex, and JSL were run on all 5,455 notes using the same method as the notes from 
patients in the positive class. Of the 5,455 notes, a total of 79 notes from 50 patients were flagged by one or more of 
the four methods. Out of the 79 notes, a total of 59 notes were tagged as being the most recent note tagged by one or 
more of the models for a given patient. See Supplementary Table S3. 
 

GPT bias evaluation 
FPR (False Positive Rate) and FNR (False Negative Rate) were calculated using FP (false positives), FN (false 

negatives), TP (true positives), and TN (true negatives), derived from the confusion matrix. FPR: FP/FP+TN. 

FNR: FN/TP+FN. 95% confidence intervals for a population proportion were calculated using the following 

formula: CI=p̂±z*SE, where z= 1.96 for a 95% confidence level. SE (standard error) was calculated using SE = 

√(p̂*(1-p̂)/n), where p̂ = FPR or FNR, and n = sample size. 

 
De-identification of patient notes 
PSJH has an existing corpora of de-identified notes that were created using a sequence of operations performed on 
text data to remove PHI (protected health information)34. These operations included multiple pre-trained ML models 
and/or regular expressions. Two versions of de-identified notes were used: complete de-id in which all PHI was 
obfuscated and all dates were shifted or masked if shifting was not possible, and de-id except date, in which all PHI 
was obfuscated but the dates were not shifted. All notes remained within the secure PSJH cloud environment. 
 

Results 
Manual annotation of EHR notes  
From the 25,217 notes from the 795 patients, the four automated methods flagged a total of 1,411 notes 
(Supplementary Table S3). Given how the models were designed, JSL was only able to flag notes related to housing 
in general (housing noted), while Regex could not distinguish between current and past housing instability. Both 
GPT-4 and GPT-3.5 were able to flag notes related to general housing status, housing instability current, and 
housing instability past. After the models were run on the 25,217 notes, we selected notes that were flagged as 
housing noted for JSL, housing instability current or past for Regex, and housing instability current or housing 
instability past for GPT-4 and GPT-3.5. 
 
The most commonly flagged note types were assessments, plan of care, OB Triage, History and Physical (H&P), 
consults, discharge summary, and ED (emergency department) notes, indicating that these types of notes are most 
likely to provide relevant information related to housing and/or housing instability (Supplementary Table S4). We 
selected the 539 most recent notes from 355 patients for manual annotation. Demographic characteristics of the 355 
patients can be found in Supplementary Table S5. Of the 539 manually annotated notes, the most common type of 
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note were progress notes (216) followed by ED provider notes (102) and telephone encounters (38) (Supplementary 
Table S6).  
 
Of the 182 patients that were identified as having current or past housing instability, only 18% (33 patients) had a 
structured SNOMED code related to housing instability in their chart (Table 1). Although the percentage of patients 
with structured codes for HI is low, it is higher than what has been previously reported, and it is well known that 
structured fields do not adequately capture a patient’s housing status29,35. These results could reflect the fact that 
these notes were selected from patients flagged for HI, or that healthcare teams are more likely to ask about and 
document housing instability when a patient is pregnant. A total of 10% of patients that were labeled as stably 
housed and 11% of patients labeled unknown had a SNOMED code related to housing instability (Table 1). This is 
likely because researchers only analyzed notes within one year of pregnancy, while the SNOMED code could have 
been added to a patient’s chart at any time before pregnancy.  
 
Two annotators manually annotated the 539 notes and flagged 415 as related to housing. Of those 415, 164 were 
labeled as stably housed 223 were labeled as current housing instability, 28 were labeled as a history of housing 
instability, and 124 were labeled unknown (Table 2). 25% of the notes underwent dual annotation. Before 
adjudication, dually-annotated notes had a Cohen’s kappa coefficient of 0.589, which reflects moderate agreement36, 
and highlights the ambiguity and subjectivity of annotating complex concepts such as housing instability. 
 
Table 1: Number of patients in each housing category who either did or did not have a SNOMED code related to 
housing instability in their chart. SNOMED codes used to identify housing instability can be found in 
Supplementary Table S1. 

 SNOMED Code for Homelessness 

Housing Label Yes No 

Stably Housed 11 98 

Current Housing Instability 32 131 

Past Housing Instability 1 18 

Unknown 7 57 

 
Table 2: Percentage of manually annotated notes by housing label. 

Housing Label Number of Notes Percentage of Total 
Notes 

Current Housing Instability 223 41.4 

Stably Housed 164 30.4 

Unknown 124 23.0 

History of Housing Instability 28 5.20 

 

Identification of Current and Past Housing Instability 
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Because housing status can change over time, it’s important to be able to distinguish between current and past 
housing instability. This may be especially important for certain groups of patients, such as pregnant women, where 
housing instability during pregnancy may have different implications than prior housing instability. Figs. 2 and 3 
and Supplementary Tables S7 and S8 illustrate the differences in performance metrics between GPT-4, GPT-3.5, 
RegEx and manual annotation in identifying notes related to current or past housing instability, measured against 
final adjudicated labels. For current and past housing instability, the recall of GPT-4 was higher (0.924) compared 
with GPT-3.5 (0.717), RegEx (0.649), and manual annotation (0.702). However, manual annotation had the highest 
precision amongst the four methods (0.971), compared with GPT-4 (0.850), GPT-3.5 (0.759), and Regex (0.632). 
The low performance of RegEx was due, in part, to the fact that several acronyms related to housing, such as SLS 
and RV, also serve as equivalent medical shorthand for terms such as single limb support and review. This highlights 
the shortcomings of using a RegEx-based approach when attempting to identify a complex concept such as housing 
instability. For identifying current housing instability, GPT-4 still had higher recall than both GPT-3.5 and manual 
annotation, but both LLMs had lower precision than manual annotation. The recall for GPT-3.5 was higher for 
current housing instability alone, indicating that this model struggled to identify notes where past housing instability 
was mentioned, further evidenced in Fig. 5B. This demonstrates that while LLMs have the ability to identify past or 
current instances of an event such as housing instability, specific models should be tested for their performance in 
each category individually. 
 
The drop in recall for manual annotation highlights the high level of ambiguity associated with annotating this type 
of information, as well as the energy needed for humans to conduct manual annotation for extended periods of time. 
Examples of relevant notes, along with the housing labels and justifications from GPT-4 and GPT-3.5 can be found 
in Table 3. There were several ambiguous cases related to housing in patient notes. For example, “Was in domestic 
violence. Daughters are [redacted ages] and living with parents for now”. In this example, it is not explicitly stated 
where the patient is staying, making her current housing status unknown. However, this was flagged as current 
instability by GPT-4 and stably housed by GPT-3.5. In another example, a patient was living with her family and 
their landlord was a meth dealer. However, the patient’s boyfriend was actively trying to find them a new living 
situation, which made the patient happy. While both annotators agreed that the housing situation was not stable, this 
type of instability was not explicitly mentioned in the note prompt for the LLMs. The reviewers labeled the note as 
current instability, but the note was tagged as stably housed by GPT-4 and current instability by GPT-3.5. 
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Fig. 2: Comparison of recall and precision for Regex, GPT-3.5, GPT-4, and manual annotation in identifying notes 
with current or past housing instability, measured on 539 manually annotated notes. 
 

Fig. 3: Comparison of recall and precision for GPT-3.5, GPT-4, and manual annotation in identifying notes with 
current housing instability, measured on 539 manually annotated notes. 
 
A minority of notes contained specific references to housing, such as “patient lives in the woods of [redacted 
location] with her boyfriend”. This phrase signified likely homelessness to most annotators, but one annotator 
assumed this meant a cabin in the woods. This case was caught by GPT-4 but missed by RegEx and GPT-3.5. There 
were additional cases where housing instability was explicitly mentioned and was missed by one or more reviewers. 
This most often occurred in longer notes that contained a significant amount of information, and only 1-2 sentences 
related to housing, for example “section 8 voucher” which refers to a United States program for assisting very low-
income families. This sentence was missed by GPT-3.5 and RegEx but was correctly identified by GPT-4. In 
addition, there were several notes that contained no information (“blank” notes). In several cases, GPT-3.5 used 
sentences from the prompt text as evidence and justification, and flagged the note as current or past instability. This 
did not occur with GPT-4. This is likely because the LLM was asked to provide text evidence verbatim, and GPT-
3.5 used the prompt because no relevant note text was available. However, the researchers found no instances of 
hallucinated evidence in any of the GPT-4 responses that were reviewed, suggesting that requiring verbatim 
evidence from LLMs can be a solution to hallucinated responses. 
 
Although GPT-3.5 struggled to identify several cases of housing instability, the researchers could not identify a 
consistent trend in the type or content of the false positive or false negative notes. However, there were several cases 
where GPT-3.5 listed known risk factors mentioned elsewhere in the note as evidence of housing instability. For 
example, it noted a patient’s frequent kidney surgeries or a depression diagnosis as justification for HI, although 
there was clear mention of HI elsewhere in the note (Table 3). This was not the case with GPT-4, which only used 
direct evidence from the note text that mentioned housing-related terms as justification. Although kidney disease 
and depression are associated with HI37–40, a human annotator would not use this as a justification for HI. Having an 
LLM use this as justification could be a potential concern, but could also be an opportunity for a different use case, 
where researchers ask LLMs to identify potential risk factors observed in a set of records. Those results might show 
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bias in LLMs, or highlight patterns that humans overlook. These examples also demonstrate significant differences 
between the two GPT releases, and highlight the value of providing evidence and justification for every note when 
using LLMs. In most cases, the evidence gathered by the reviewers was similar or identical, but the interpretation 
differed. Similarly, the evidence gathered by GPT-4 was similar to the reviewers in most cases (although this was 
not always the case with GPT-3.5). This indicates that, while manual annotation is likely to yield more accurate 
results, GPT-4 could be used to rapidly gather relevant note text for computer-assisted manual review, helping save 
time without losing important or relevant patient information. 

 
Table 3: Examples of relevant note text and manual annotation labels compared with GPT-4 and GPT-3.5 and 
relevant justification.  

Manual 
Annotation 

GPT-4 
Label 

GPT-3.5 
Label 

Text selected from 
longer note by human 

abstractor 

Justification GPT-4 Justification GPT-3.5 

Current 
instability 

Current 
instability 

Current 
instability 

She has been under a 
great deal of stress over 
the past year and 
recently became 
homeless. She and her 
boyfriend have moved to 
this area where she has 
family where she is now 
staying. 

The patient note 
mentions that the patient 
recently became 
homeless, indicating 
current housing 
instability. The patient is 
now staying with family, 
but this is likely a 
temporary arrangement 
given the recent 
homelessness and the 
reference to a halfway 
house, which is a form 
of transitional housing. 
There is no evidence in 
the note to suggest a 
history of housing 
instability prior to the 
current situation. 

The evidence shows that 
the patient recently 
became homeless and is 
currently facing housing 
instability. The patient's 
history of frequent 
kidney stones and recent 
surgeries for kidney 
stones further suggests a 
lack of stable housing. 

Current 
instability 

Past 
instability 

Current 
instability 

She was having many 
stressors at that time 
which included being 
kicked out of her 
mothers house and 
staying with ex BF 

The patient note 
mentions that the patient 
was kicked out of her 
mother's house and was 
staying with her ex-
boyfriend. This indicates 
a past instance of 
housing instability. 
However, the note does 
not provide current 
information about the 
patient's housing 
situation, so it is 
unknown whether the 
patient is currently 
stably housed or not. 

The patient note 
mentions that the patient 
was kicked out of her 
mother's house and was 
staying with her ex-
boyfriend, which 
indicates current housing 
instability. Additionally, 
the patient's active 
problem list includes 
depression, which can be 
associated with housing 
instability. However, 
there is no explicit 
evidence or mention of 
past housing instability, 
so it is unknown if the 
patient has a history of 
housing instability. 

Current 
instability 

Current 
instability 

No housing 
noted, 
Current 
instability 

She said she is staying at 
a motel 

The patient note 
mentions that the patient 
is currently staying at a 
motel, which indicates a 

There is no explicit 
evidence or mention of 
the patient's housing 
status in the note. The 
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unknown form of housing 
instability. There is no 
evidence in the note to 
suggest that the patient 
has faced housing 
instability in the past. 

patient mentions staying 
at a motel, but it is 
unclear if this is a 
temporary situation or a 
stable housing 
arrangement. Therefore, 
the current housing 
stability is unknown. 

Current 
instability 

Stably 
housed 

Current 
instability 

Pt reports she is living 
w/[redacted]; they are 
renting a house from 
[redacted]; he is a meth 
dealer. [Bf] has made 
arrangements to get 
them into a new living 
situation. She is very 
happy about this. 

The patient is currently 
living with [redacted], in 
a house they are renting. 
There is no evidence of 
housing instability at the 
moment. The boyfriend 
has made arrangements 
for a new living 
situation, which the 
patient is happy about. 
There is no mention of 
past housing instability. 

The evidence from the 
patient note indicates 
that [the patient] is 
currently facing housing 
instability. She is living 
in a rented house with 
[redacted], but the house 
is owned by [redacted] 
who is a meth dealer. 
Additionally, the note 
mentions that [the 
patient] is in the process 
of moving to [recacted] 
and has been applying 
for jobs. This indicates 
that her current housing 
situation is unstable. 
There is no evidence of 
past housing instability 
mentioned in the note. 

Unknown Current 
instability 

Stably 
housed 

States lots of changes 
lately. Was in domestic 
violence. Daughters are 
[redacted] and living 
with parents for now. 

The patient note 
mentions that the 
patient's daughters are 
currently living with her 
parents, which suggests 
that the patient is 
temporarily staying with 
family members. This is 
an indication of current 
housing instability. 
There is no evidence in 
the note to suggest a 
history of housing 
instability. 

The patient's housing 
status is noted in the 
evidence. The patient is 
currently stably housed 
as she is living with her 
parents. There is no 
evidence of current or 
past housing instability. 

Note: Certain sections of note text and evidence from GPT have been removed to protect patient privacy. 
 

Identification of General Housing Status 
Fig. 4 and Supplementary Table S9 shows the performance of GPT-3.5 and GPT-4 compared to JSL and manual 
annotation in identifying notes where housing was mentioned. GPT-4 outperformed both GPT-3.5 and JSL across all 
four metrics but had a slightly worse precision compared to manual annotation (0.936 compared with 0.952), 
although recall was higher (0.781 compared with 0.720). Interestingly, the majority of cases that were missed by 
GPT-4 were instances where housing was stable, for example, “she lives at home with her children”, or “patient was 
requesting to go home”. This is likely because the prompt was heavily focused on identifying cases of housing 
instability, and little guidance was provided on identifying housing status overall. Prompt engineering focused on 
different proportions of relevant information might yield different and more accurate results. 
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Fig. 4: Comparison of recall and precision for JSL, GPT-3.5, GPT-4, and manual annotation in identifying notes 
where housing was noted, measured on 539 manually annotated notes. 
 
LLM performance by housing category 
Fig. 5 and Supplementary Tables S10 and S11 show the differences in performance for GPT-4 and GPT-3.5 in 
identifying notes across the different housing categories: stable housing, current housing instability, past housing 
instability, or unknown. GPT-3.5 performed worse than GPT-4 across all categories and had particularly low recall 
for notes labeled as past instability compared with GPT-4, which had a higher recall than precision in this category. 
Both GPT-4 and GPT-3.5 demonstrated poor recall for stable housing notes; this was likely because the prompt 
focused more heavily on housing instability compared with stable housing. These data indicate a performance 
improvement for the GPT-4 release and demonstrate the effects of prompt engineering on the model outcome. 
 

Fig. 5: Recall and precision metrics for A) GPT-4 and B) GPT-3.5 for each housing label measured on 539 
manually annotated notes.  
 
LLM bias evaluation 
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To test for bias in the LLMs, we used the fairness criteria of separation41 to examine the false positive rates (FPR) 
and false negative rates (FNR) between GPT-4 and GPT-3.5 across three different housing labels (housing noted, 
housing instability past or current, and housing instability current) across the age (18-30 and 31-44), race (White, 
Black, Asian, AIAN (American Indian & Alaska Native), NHPI (Native Hawaiian and other Pacific Islander), 
Unknown or Declined, and Other) and ethnic (Hispanic or Latino, not Hispanic or Latino, and Unknown or 
Declined) demographic groupings. We then examined the 95% confidence intervals of the FPR and FNR for each 
group (Supplementary Tables S12-S17 and Supplementary Figs. S1-S3). According to the fairness criteria of 
separation, any difference in FPR and FNR between groups suggests potential algorithmic bias. We did observe 
differences in FPR and FNR between all of the groups within the three demographic categories. However, when we 
examined the overlap of the 95% confidence intervals between groups, we found that in all cases, except in cases 
where the sample sizes were extremely small (n <5), there was overlap between confidence intervals for all the 
groups, suggesting that the differences between groups are not significant. However, further work with a larger 
sample population is needed. 
 

Time and cost breakdown of LLMs compared with manual annotation 
To analyze text from the 25,217 notes, GPT-4 took 33 hours and 45 minutes, while GPT-3.5 took 36 hours and 36 
minutes. JSL took 40 minutes and Regex took less than one minute. For the 539 manually annotated notes, 
annotators spent an average of 1.38 minutes per note, taking approximately 12 hours and 39 minutes. This does not 
include the additional time for adjudication, which varied considerably, from less than 1 minute to more than 20 
minutes per note. It is also important to note that many of the clinical notes were very short (1-5 sentences). 
However, note length can vary, and several notes were multiple paragraphs long. Compared with LLMs, if manual 
annotators reviewed 25,217 notes, it would have taken approximately 34,800 minutes, or about 580 hours (Fig. 6).  
 
There was a substantial difference in cost between GPT-4 and GPT-3.5, as shown in Table 4, due to the increase in 
cost per 1000 tokens for notes for GPT-4 (0.06) compared with GPT-3.5 (0.003). The output cost also increased 
from 0.004 per 1000 tokens for GPT-3.5 to 0.12 for GPT-4. Interestingly, the prompt (1778.39 USD for GPT-4) cost 
more than the total for all the notes (701.72 USD for GPT-4), and this was the case for GPT-3.5 as well. This is 
because the prompt had to be included as part of each note. Because the prompt was long (1,182 tokens), this 
increased the cost substantially. Future work comparing model performance in relation to prompt length would 
provide valuable insight into this tradeoff.  
 
The cost of manual annotation varies by location, but in the United States can be estimated to be the minimum wage 
per hour for that state. As of January 2024 in the state of Washington, the minimum wage was $16.28/hr42. To 
analyze 25,217 notes would have cost approximately $9,442, substantially higher than either LLM. An analysis of 
the time and cost per note between LLMs and manual annotation can be found in Fig. 6. 
 
Table 4: Cost analysis of GPT-4 compared with GPT-3.5 for 25,217 notes from 795 patients. 

 Costs ($) 

Model Prompt Notes Output Total 

GPT-4 1788.39 701.72 181.35 2671.46 

GPT-3.5 89.42 35.09 8.89 133.40 

GPT-4 Prompt: 1182 tokens * 25217 notes * 0.06 per 1000 tokens, GPT-4 Notes: 11695270 tokens * 0.06 per 1000 
tokens, GPT-4 Output: 1511244 tokens * 0.12 per 1000 tokens, GPT-3.5 Prompt: 1182 tokens * 25217 notes * 
0.003 per 1000 tokens. GPT-3.5 Notes: 11695270 tokens * 0.003 per 1000 tokens, GPT-3.5 Output: 2223674 tokens 
* 0.004 per 1000 tokens. 
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Fig. 6: Cost and time comparison of GPT-4 and GPT-3.5 with manual annotation estimate per note.. 
 

Analysis on patients in the preliminary negative class 
To evaluate the performance of our four methods compared with patients from the preliminary positive class, we 
selected a random sample of 5,455 notes from 348 patients in the preliminary negative class. GPT-4, GPT-3.5, 
Regex, and JSL were run on all 5,455 notes using the same method as notes from patients in the preliminary positive 
class. Of the 5,455 notes, all four methods only flagged 59 of the most recent notes from 50 patients with one of the 
four housing labels (GPT-4: 12, GPT-3.5: 11, Regex: 14, JSL: 27).  
This demonstrates that, as expected, patients from the preliminary negative class had far fewer notes related to 
housing and/or housing instability compared with patients in the preliminary positive class. To generate a manually 
annotated dataset of ~500 notes to compare with the preliminary positive class, the four methods would need to 
analyze approximately 46,000 notes. However, JSL is not able to distinguish between notes related to general 
housing and housing instability, and Regex has low precision and recall for identifying notes related to housing 
instability. Therefore, the LLMs provide the best chance of finding relevant notes related to housing/housing 
instability for patients in either class. Because the number of notes flagged by GPT-4 and GPT-3.5 were very low in 
the preliminary negative class (12 and 11, respectively, out of 5,455 notes), the two models would need to analyze 
approximately 227,300 notes to find ~500 notes related to housing and/or housing instability in the preliminary 
negative class. Due to the cost restrictions of running these LLMs, we were unable to perform this analysis. 
However, future work to analyze additional notes from patients in the preliminary negative class could provide 
insight into any differences in notes between these two classes. 
 
Evaluation of GPT-4 on de-identified patient notes 
 De-identification can help mitigate privacy risks to individuals to support secondary use of data for research. In the 
US, the Health Insurance Portability and Accountability Act (HIPAA) specifies 18 categories of information that are 
protected health information (PHI) that must be removed from medical records43,44. However, while the process of 
de-identification is necessary to protect patient privacy, the information that is removed during this process, such as 
dates and locations, may result in the loss of important contextual clues needed for LLM analysis of HI. We wanted 
to examine whether LLMs performed similarly on two versions of de-identified patient notes compared with original
notes: 1) fully de-identified notes where all PHI was obfuscated and all dates were shifted or masked if shifting was 
not possible (hereafter referred to as complete de-id), and 2) patient notes where all PHI was obfuscated but the 
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dates were not shifted (hereafter referred to as de-id no date shift). All notes remained within the secure PSJH 
system and no notes were shared publicly. All data processing was conducted in PSJH’s secure cloud environment. 

We ran the two de-identified versions of the 539 manually annotated notes through GPT-4 and compared the 
performance metrics to the original notes to identify current or past housing instability or general housing status 
(housing noted). We found that in all cases, recall dropped but precision increased for the de-identified notes 
compared with the original notes (Fig. 7 and Supplementary Table S18). For example, for the notes labeled as 
current housing instability, the recall for GPT-4 on the original notes was 0.906, but this dropped to 0.812 and 0.834 
for the complete de-id and de-id date shifted notes, respectively. By contrast, the precision increased from 0.831 for 
the original notes compared with 0.862 and 0.849 for the complete de-id and de-id date shifted notes, respectively. 
These minor increases in precision are likely due to the fact that results from GPT-4 are slightly different each time 
the model is run, resulting in slight differences in performance. The drop in recall is not surprising given the nature 
of de-identification, in which both places and locations have been obfuscated, making it more difficult for the model 
to identify relevant notes. For example, there were several cases in the original notes where the patient was stated to 
be living in a specific location, such as a city or county, but these locations were changed to medical facilities or, in 
one instance, a jail, resulting in the model sometimes mislabeling the patient as unstably housed or missing the note 
as related to housing altogether. In other cases, when the dates were shifted, instances of past housing instability 
were made current, making it difficult for the LLM to properly identify and label these notes.  
 
 

 

 
 
Fig. 7: Comparison of GPT-4 performance in identifying A) Current or past housing instability, B) Current housing 
instability, or C) General housing status from three different versions of the same set of 539 notes. Notes were either 
complete (original) patient notes, completely de-identified notes, or de-identified notes with no date shift. 
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Discussion 
Our results demonstrate the value of using LLMs to identify instances of complex SDoH concepts in the EHR, such 
as past or current housing instability. Although manual annotation correctly classified the most notes related to HI, it 
took significantly longer and is more expensive than using LLMs, with a minimal increase in performance. GPT-4 
outperformed GPT-3.5, JSL and RegEx in identifying patients experiencing current or past housing instability. In 
most cases, the evidence from GPT-4 was similar or identical to that of the manual annotators, and there was no 
evidence of hallucinations in GPT-4 output. Our work also suggests that requiring the LLM to provide verbatim 
evidence and justification from the original text can help to reduce the risk that relevant context about housing 
information is omitted from LLM results. 

It is important to note that housing instability does not exist in a vacuum; oftentimes there are multiple compounding 
factors that either contribute to, or occur as a result of, housing instability, including domestic violence, drug abuse, 
and/or mental illness. One limitation of this study was our focus solely on HI and not an additional identification of 
these risk factors. This resulted in some cases where a patient was technically considered to have stable housing, but 
there were other risk factors in the patient note that would likely be important for users of abstraction results: case 
workers, clinicians or researchers. Expanding the prompt might improve performance and enable labeling that 
separates out multiple dimensions of housing security, including uncertainty about future housing, frequency of 
housing transitions, and risks from unsafe housing situations. Because GPT-4 and GPT-3.5 are not deterministic 
models, responses, and therefore performance, may also change if rerun on the same notes. However, the newest 
release of GPT, GPT-4 Turbo, allows researchers to add a deterministic seed parameter to ensure the model returns 
the same response every time, helping to prevent changes in performance across multiple runs.  

Because all our methods required that each note be analyzed individually, and all four methods identified 1,411 
notes out of 25,217 related to housing or HI in the preliminary positive class, and only 64 out of 5,455 notes related 
to housing or HI in the preliminary negative class, we can conclude that many notes in this study likely did not 
contain information on housing and/or housing instability. However, future work could investigate the similarities 
and differences in note content related to housing/HI between patients in both classes. In addition, because we used 
automated methods for the initial selection of relevant patient notes, we likely missed some patient notes related to 
housing or HI that were not captured with any of the four automated methods. Future work to manually annotate a 
larger corpus of patient notes related to housing and HI, as well as other SDoH categories, would prove useful in this 
regard. Another limitation is that the study was limited to the content documented in EHR notes, and a recent survey 
reported that only about 60% of patients felt comfortable sharing SDoH-related information45. Future studies would 
benefit from longitudinal confidential surveys or interviews with patients and healthcare teams. In addition, because 
the time and cost to run GPT-4 and GPT-3.5 might not be feasible across millions of patient notes, work with newly 
emerging open source language models may provide a similar performance for a much lower cost and runtime. 

In conclusion, this work demonstrates that LLMs have potential for computer-assisted annotation of social history, 
improving recall and reducing costs. This includes temporal feature engineering, such as identifying how long ago a 
patient may have experienced HI in relation to their pregnancy. Results also identified two important areas where 
further work is needed: separating out three different dimensions of housing insecurity, and advancing de-
identification methods that do not result in loss of social history. Providing greater access to existing SDoH data can 
be valuable for retrospective research, chart review for prospective trials, and population health interventions to 
identify those who might benefit from proactive outreach. 
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Results have been aggregated and reported within this paper to the extent possible while maintaining privacy from 
personal health information as required by US law. All data are archived within Providence St Joseph Health 
systems in a HIPAA-secure audited compute environment and those wishing to verify study conclusions can contact 
the Chief Data Officer. All biomedical codes used to extract data from electronic health records have been shared. 
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