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ABSTRACT  
 
As societies age, policy makers need tools to understand how demographic aging will affect 
population health and to develop programs to increase healthspan. The current metrics used 
for policy analysis do not distinguish differences caused by early-life factors, such as prenatal 
care and nutrition, from those caused by ongoing changes in people’s bodies due to aging. Here 
we introduce an adapted Pace of Aging method designed to quantify differences between 
individuals and populations in the speed of aging-related health declines. The adapted Pace of 
Aging method, implemented in data from the US Health and Retirement Study and English 
Longitudinal Study of Aging (N=21,463), integrates longitudinal data on blood biomarkers, 
physical measurements, and functional tests. It reveals stark differences in rates of aging 
between population subgroups and demonstrates strong and consistent prospective 
associations with incident morbidity, disability, and mortality. Pace of Aging can advance the 
population science of healthy longevity.  
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INTRODUCTION 

 

Population aging is the central demographic phenomenon of the century and is unprecedented 

in human history1,2. Current trends are driven primarily by gains in life expectancy for older 

adults3–5. In some places and population subgroups, these gains in life expectancy have been 

matched by gains in healthy years of life ("healthspan")6,7. However, in other cases, healthspan 

and lifespan are diverging, with potential to disrupt healthcare systems and economies3,8,9. The 

current toolkit available to demographers and public health planners allows differentiation of 

populations with more and less successful aging only in terms of completed lifespans or 

healthspans 10–12. These metrics are effective in summarizing differences between populations 

accumulated across the full life course. However, they do not distinguish deficits in health 

established early in life from the ongoing changes in people’s bodies that are the essence of 

aging13. Both are important. However, only the latter are expected to respond to healthy-

longevity interventions with midlife and older adults14. As a consequence, the metrics in our 

existing toolkit may not be adequately sensitive to the effects of such interventions. 

Measurements are needed that can distinguish ongoing aging-related changes in organs, 

tissues, and capacities from differences in health that are legacies of early life in order to 

provide optimally-sensitive metrics for population surveillance and intervention evaluation. We 

previously developed the Pace of Aging method to quantify individual differences in aging 

trajectories with the goal of informing design and evaluation of clinical interventions 15,16. Here 

we adapt this methodology with the goal of informing evaluations programs and policies for 

aging societies.  

 

Our original Pace of Aging method was developed from analysis of health changes from young 

adulthood to midlife in the Dunedin Study 1972-73 birth cohort15. To be most useful for 

comparative biodemographic analysis used by planners to evaluate efforts to promote healthy 

longevity, the Pace of Aging method needs to be adapted to a different context: samples of 

individuals representing a wide range of birth cohorts for whom follow-up begins later in the 

life course. In addition, whereas the Dunedin Study collected extensive biochemical and 
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physical examination data from participants, the studies used by planners typically have access 

to much sparser measurement panels.  

 

Here, we introduce an adapted method for calculation of Pace of Aging in a sample composed 

of a wide range of birth cohorts with follow-up in midlife and older age and a sparse panel of 

biomarkers. Our adapted method is designed to generalize across the Gateway to Global Aging 

family of harmonized cohort studies17, which comprises cohorts across Europe, Asia, and 

Central and South America that are routinely cited in planning and policy analysis. We 

implement the method and test proof of concept using data from the US Health and 

Retirement Study (HRS). As the other cohorts extend their biomarker follow-up, the method 

introduced here can be applied to conduct cross-national comparative analysis.  

 

We compiled data from dried-blood spot, physical exam, and functional test protocols 

conducted by the HRS during 2006-2016 (six assessment waves). We identified nine parameters 

measured at all six waves that met criteria for inclusion in the Pace of Aging analysis: C-reactive 

protein (CRP), Cystatin-C, glycated hemoglobin (HbA1C), diastolic blood pressure, waist 

circumference, lung capacity (peak flow), tandem balance, grip strength, and gait speed. A total 

of 13,573 individuals provided data on at least six of these nine biomarkers across at least two 

of the follow-up assessments. We modeled longitudinal change in these biomarkers to estimate 

person-specific slopes for each of them. Then we combined slope information across 

biomarkers to compute each participants’ Pace of Aging. Our validation analyses tested 

associations of Pace of Aging with measures of morbidity, disability, and survival through 2021. 

Finally, we evaluated socioeconomic and demographic disparities in the Pace of Aging among 

US older adults. We conducted parallel analysis to develop and validate a Pace of Aging 

phenotype in the English Longitudinal Study of Aging (ELSA).  
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METHODS 

  

Sample  

  

The Health and Retirement Study (HRS) is a nationally representative longitudinal survey of US 

residents ≥50 years of age and their spouses. The HRS has been fielded every two years since 

1992. Participants are asked about four broad areas: income and wealth; health, cognition, and 

use of healthcare services; work and retirement; and family connections. A new cohort of 51–

56-year-olds and their spouses is enrolled every six years to maintain representativeness of the 

U.S. population over 50 years of age. Response rates over all waves of the HRS range from 81- 

91%. As of the most recent data release, HRS included data collected from 42,515 individuals in 

26,600 households. We linked HRS data curated by RAND Corporation18 with dried-blood-spot 

biomarker data collected during 2006-201619.   

 

English Longitudinal Study of Aging (ELSA) is a nationally representative longitudinal survey of 

residents ≥50 years of age and their cohabitating spouses in private households of England. 

ELSA has been fielded every two years since 2002-2003.  ELSA was modelled after the HRS in 

the US, and asked participants about their health, economic position, and quality of life. New 

cohorts of age >50 was added from Wave 3 (2006-07) to maintain representativeness of the 

English population over 50 years of age. Response rates of the ELSA ranges 55-82%. with the 

original sample consisting of 11,391 individuals. We linked ELSA data curated by USC Gateway 

to Global Aging (Reference added in Zotero) with blood -biomarker data collected during nurse 

home visits to participants over the period 2004-2012 (Reference).   

 

Measures  

  

Pace of Aging. We measured Pace of Aging from blood biomarker, physical assessment, and 

functional test performance data collected during home visits to participants during 2006-2016. 

Biomarkers were included in Pace of Aging analysis based on known connections with processes 
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of aging and expectation of monotonic change across the age range included in the HRS. Three 

blood biomarkers (HbA1c, C-reactive protein, cystatin-C), three physical assessments (diastolic 

blood pressure, peak-flow lung-function testing, waist circumference), and three functional 

tests (gait speed, balance, grip strength) were included in analysis. (We selected diastolic blood 

pressure as the blood pressure parameter for Pace of Aging analysis because it is expected to 

decline with aging and therefore its expected trajectory would not be reversed by 

antihypertensive therapy. We excluded three lipid measures, total cholesterol, high-density 

lipoprotein cholesterol, and low-density lipoprotein cholesterol, because these biomarkers are 

under routine medical management in older people and are known to exhibit nonlinear 

changes with aging across the age-range of our cohorts.) Participants received home visits at 4-

year intervals (2006, 2010, and 2014 or 2008, 2012 and 2016). We measured Pace of Aging 

using data from participants with at least 2 repeated measures of at least six of the nine 

biomarkers representing all three types of data and who were younger than age 90 at the time 

of their first biomarker measurement (N=13,573). Baseline observations were recorded in 2006 

for 39% of the sample, in 2008 for 34%, in 2010 for 14% and in 2012 for 13%. Three repeated 

measures were available for 55% of the sample. Characteristics of each of these groups of 

participants are reported in Supplemental Table 1.  Biomarker measurements are described in 

detail in Supplemental Table 2 and Supplemental Figure 1. Biomarker summary statistics are 

reported in Supplemental Table 3.  

  

We modeled Pace of Aging in 4 steps. First, we standardized biomarkers to a common 

distribution by centering values on the sex-specific mean for participants aged <65 years of age 

(the mean age of participants in our sample) and dividing the centered values by the sex-

specific standard deviation of that group (Gait speed was measured in participants aged 65 and 

older; we standardized values based on distributions for participants aged 65-75). Age-group 

specific means and standard deviations for men and women included in the analysis are 

reporting in Supplemental Table 3. For biomarkers that decline with aging (diastolic blood 

pressure, peak flow, balance, and grip strength), standardized values were reversed so that 
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higher values corresponded to poorer organ-system function. Gait speed was measured as the 

natural log of time to complete the walk test and so did not need to be reversed.  

  

Second, we modeled change over time in each biomarker using linear mixed-effects regression 

models with participant-specific random intercepts and slopes. Models included baseline year 

of biomarker measurement, follow-up time, chronological age at baseline (modeled as a 3rd 

degree B-spline) and an interaction between age at baseline and follow-up time as 

covariates.  Interactions between baseline-age terms and time were included to allow for 

variation in slopes of change depending on participants’ ages at baseline. Models were fitted 

separately for men and women.    

 

Third, for each biomarker, we measured pace of change for each participant by combining fixed 

and random slope components.   

  

Finally, we computed each participant’s Pace of Aging as the average pace of change across the 

nine biomarkers. We scaled Pace of Aging based on the sex-specific average of participants 

under age 65. For the resulting measure, a value of 1 represents average biomarker change per 

chronological year in HRS participants aged <65. A value of 1.5 would indicate a Pace of Aging 

50% faster relative to this average. A value of 0.5 would indicate a Pace of Aging 50% slower 

relative to the average.   

 

We followed a parallel analysis plan to develop a Pace of Aging measurement in ELSA. Details 

are reported in Figure 1 and Supplemental Tables 2 and 4, and Supplemental Figure 1. 

 

Mortality, morbidity, disability and cognitive impairment. We evaluated criterion validity of 

the Pace of Aging by testing associations with four components of healthy lifespan: survival, 

incidence of chronic disease, incidence of disability and decline in cognition. Survival was 

measured by HRS through the 2020 follow-up assessment. We analyzed survival from the 

baseline biomarker measurement. Chronic disease incidence was measured from participant 

reports of physician diagnosed chronic disease. Disability incidence was measured from 
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participant reports about Activities of Daily Living (ADL) limitations and Instrumental Activity of 

Daily Living (IADL) limitations. Cognitive decline and incident cognitive impairment were 

measured according to the Langa-Weir approach 21 from cognitive-test and interview data. 

Survival, chronic disease, disability, and cognition measures are described in detail in 

Supplemental Table 4. All outcomes other than mortality were measured at the 2020 

measurement wave or the last wave a participant contributed data subsequent to the end of 

follow-up for pace of aging measurement.  

 

The ELSA study has so far released data only through 2018 and not yet released data files with 

measurements of survival and dementia classification. Therefore, the parallel measurement 

battery in ELSA included only chronic disease incidence, ADLs, IADLs, and cognitive test 

performance through 2018. Details are reported in Supplemental Table 4. 

  

Analysis  

  

We used regression analysis to test Pace of Aging associations with healthspan phenotypes. We 

fit Cox proportional hazard models to estimate hazard ratios (HRs) and 95% CIs for mortality. 

We fit Poisson regression models to estimate incidence rate ratios (IRRs) and 95% confidence 

intervals (CIs) for incident chronic disease and limitations to activities of daily living (ADLs) and 

instrumental activities of daily living (IADLs). We use multinomial logit models to estimate odds-

ratios (OR) for incident cognitive impairment and dementia. We use linear regression models to 

estimate change in cognitive-function scores between baseline and follow-up and to test 

differences in Pace of Aging between population sub-groups. Models included participants aged 

50-90 years with measured Pace of Aging and the outcome or exposure of interest (maximum 

HRS N=13,317; maximum ELSA N=7,890). All models were adjusted for sex, race/ethnicity, age, 

age-squared, and a set of terms encoding baseline measurement year and whether the 

participant contributed two or three repeated measures of biomarker data.  Models of 

healthspan outcomes other than mortality included an offset variable for follow-up time.  
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RESULTS  

  

We analyzed data from US Health and Retirement Study (HRS) participants aged 40 or older at 

the time of their first biomarker measurement who contributed at least two repeated measures 

of six or more biomarkers over 2006-2016 (N=13,573 41% male, mean age at baseline=65, 

SD=10). This analysis sample was slightly younger and better educated in comparison to the 

overall HRS sample (Supplemental Table 1). Baseline observations were recorded in 2006 for 

39% of the sample, in 2008 for 34%, in 2010 for 14% and in 2012 for 13%. Three repeated 

measures were available for 55% of the sample. Summary statistics for biomarker 

measurements at baseline are reported in Supplemental Table 3.   

  

Older adults showed signs of correlated decline in multiple indicators of system integrity over 

4-8 years of follow-up. Of the nine biomarkers included in HRS analysis, eight showed the 

expected pattern of change: Gait speed, grip strength, balance, diastolic blood pressure, and 

peak-flow declined; cystatin-C, HbA1c, and waist circumference increased. For CRP, change was 

in the expected positive direction for men, but declined slightly for women. Slopes of aging-

related decline were steepest for the functional test biomarkers. Results were similar in ELSA. 

Biomarker slopes of change are reported in Supplemental Table 5 and are plotted in 

Supplemental Figure 2.   

 

Participants who were older at baseline showed steeper slopes of change in most biomarkers. 

Exceptions were HbA1c and waist circumference, possibly reflecting declining weight gain in 

later life.  Slopes of change were positively correlated across biomarkers, again with the 

exceptions of HbA1c and waist circumference. Correlations among slopes of change are 

reported in Supplemental Figure 3. In the next step, we composited slopes of change across 

biomarkers to quantify the overall rate of decline in system integrity.  

  

Pace of Aging. We computed each participant’s Pace of Aging as the average pace of change 

across the nine biomarkers. We scaled Pace of Aging based on the sex-specific average value for 
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participants under age 65. Resulting values can be interpreted as years of biological change per 

calendar year relative to the reference group. HRS Pace of Aging values were approximately 

normally distributed and indicated faster aging in men as compared to women and older as 

compared to younger participants (Pace of Aging mean=1.33 (SD=0.68); correlation with 

chronological age at baseline r=0.61; male-female difference Cohen’s d=0.21, 95% CI [0.19-

0.24]). We followed the same procedure in ELSA. Results were similar, although correlation 

with chronological age was somewhat stronger and sex differences were smaller. Age and sex 

differences in Pace of Aging values are illustrated in Supplemental Figure 4. Contributions of 

slopes within each of the three biomarker categories to Pace of Aging and intercorrelations of 

slopes across biomarker categories are shown in Supplemental Figure 5. Individual participant 

Pace of Aging slopes are plotted in Figure 2.  

 

In the United States, in addition to age and sex, healthy aging trajectories differ by 

race/ethnicity. In HRS, we compared Pace of Aging between participants identifying as White 

(n=9,301), Black (n=2,269), Hispanic (n=1,674), and Other (n=377) race/ethnicity. Compared to 

White-identifying participants, Black- and Hispanic identifying participants had faster Pace of 

Aging (for Black, Cohen’s d=0.18, 95% CI [0.16-0.21]; for Hispanic, Cohen’s d=0.06, 95% CI [0.03-

0.10]; Figure 3; Supplemental Table 6). Subsequent analyses included participants’ sex, age 

and, in the HRS, race/ethnicity as covariates.   

  

Participants with faster Pace of Aging were at increased risk of cognitive impairment, incident 

chronic disease, disability, and mortality. We conducted criterion validity analysis by testing if 

participants with faster Pace of Aging were more likely to die or more often developed new 

chronic disease, disability, and cognitive impairment over follow up. We conducted analysis of 

mortality in HRS using follow-up data accumulated through 2021. We included data on all 

deaths occurring subsequent to a participants’ second biomarker data collection (i.e. after the 

minimum follow-up required to compute Pace of Aging). Analysis included N=13,573 

participants who contributed mean follow-up time of 10 years (SD=2) over which 3,124 deaths 

were recorded. Participants with faster Pace of Aging were at increased risk of mortality 
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(HR=1.73 [1.66-1.81], p<0.001; Figure 4). We measured chronic disease and disability from 

participant reports of physician-diagnosed conditions and limitations to activities of daily living 

(ADLs) and instrumental activities of daily living (IADLs) at baseline and in 2020 (n=8,623). Those 

with faster Pace of Aging reported more new diagnoses of chronic diseases and more new ADLs 

and IADLs (chronic diseases IRR=1.08 95% CI [1.06-1.10]; ADLs IRR=1.58 [1.49-1.65]; IADLs 1.59 

[1.40-1.66]; all p-values<0.001) and were more likely to develop incident cognitive impairment 

or dementia  (IRR= 1.51 [1.40-1.64]. We conducted parallel analysis of chronic diseases, ADLs 

and IADLs in ELSA. Although cognitive impairment and dementia classifications were not 

available in ELSA, we were able to conduct analysis of a cognitive performance score parallel to 

the one used in HRS. Results were similar. Effect-sizes for all healthspan outcomes are shown in 

Figure 5 and Supplemental Table 7.  

 

To evaluate Pace of Aging in the context of existing approaches to quantification of 

biological aging, we conducted analysis comparing pace of Aging with three published metrics 

of biological age in HRS. We analyzed versions of the Homeostatic Disregulation (HD)22, 

Klemera-Doubal method Biological Age (KDM) 23, and PhenoAge 24 algorithms adapted for the 

HRS in previous work 25,26. In contrast to Pace of Aging, these three metrics are implemented in 

a single cross-section of data and attempt to represent the progress of aging rather than its 

current rate. We conducted three analyses. First, we calculated correlations among the 

measures. After residualization for chronological age, the three biological age metrics 

correlated with Pace of Aging at r=0.3-0.4. Second, we compared effect sizes with healthspan 

outcomes. Across healthspan outcomes, effect sizes for Pace of Aging were larger than effect 

sizes for the other metrics, with the exception of chronic disease incidence, for which Pace of 

Aging effect sizes and PhenoAge effect sizes were similar. Third, we tested independence of 

Pace of Aging associations with healthspan outcomes from the biological age metrics. Across 

healthspan outcomes, Pace of Aging associations were only modestly attenuated after 

covariate adjustment for biological age metrics and remained statistically different from zero at 

the p<0.05 level. The largest attenuation was for analysis of mortality. After adjustment for 
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PhenoAge, the effect size for Pace of Aging was reduced to HR=1.43 [1.31-1.56]. Results from 

comparative analysis are shown in Supplemental Figure 8. 

 

To evaluate the sensitivity of Pace of Aging associations with healthspan outcomes to 

the specific biomarker composition of the measure, we performed leave-one-out analysis. In 

this analysis, we composed Pace of Aging from subsets of eight of the total nine biomarkers and 

re-estimated associations with healthspan outcomes. Results were consistent across leave-one-

out specifications, with the exception that, in ELSA, associations with cognitive decline were 

reduced to near zero when balance-test data were removed (Supplemental Figure 7).   

 

We observed some differences in effect-sizes for associations of Pace of Aging with 

healthspan outcomes between demographic groups of participants. Effect-sizes were generally 

somewhat larger for white participants, men, and those under age 65 as compared with non-

white participants, women, and older participants. Results are reported in Supplemental Tables 

7 and 8 and Supplemental Figures 6 and 7. 

  

Pace of Aging associations with cognitive impairment, morbidity, disability, and mortality 

were independent of smoking, obesity, and education. We investigated whether Pace of Aging 

associations with cognitive impairment, morbidity, disability, and mortality were accounted for 

by baseline socio-economic and health behavior risk factors. HRS participants with lower levels 

of education, who were overweight or obese, and who were current or former smokers tended 

to have a faster Pace of Aging (Cohen’s d range 0.08 – 0.38). We therefore repeated analyses of 

cognitive function and impairment, morbidity, disability, and mortality including these risk 

factors as covariates. Adjusted results were similar to unadjusted results. Results were similar in 

ELSA, with the exception that covariate adjustment for BMI attenuated association with 

cognitive function below the level of statistical significance. Full results are reported in 

Supplemental Tables 7 and 8. 
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DISCUSSION  

 

The Pace of Aging method remains an understudied approach to quantification of biological 

aging. The method was first proposed in the Dunedin Longitudinal Study16, which has followed 

a single-year birth cohort over five decades27. The Dunedin analysis included individuals all born 

in the same year and followed-up at the same ages from young adulthood to midlife. Here, we 

show that Pace of Aging can be modeled in the very different setting of a national-population-

representative cohort of older adults followed-up at ages ranging from the sixth through ninth 

decades of life. This contribution advances translation of the geroscience hypothesis into the 

domain of population science. Omics-based measurements are not yet available in most 

national cohorts or, as in the case of the HRS, are available for only a select subsample of 

participants. Existing methods for quantification of biological aging from data routinely 

collected in national studies measure the progress of aging, not its current rate. The adapted 

Pace of Aging method introduced here allows for measurement of the aging rate in the context 

of national cohorts, providing planners and policy makers with a new tool to understand 

population aging and promote healthy longevity. In addition, we report three key findings that 

advance knowledge of Pace of Aging.   

 

First, Pace of Aging accelerates at more advanced ages. HRS participants who were older at 

their baseline biomarker assessment showed more rapid change across subsequent follow-ups 

as compared to those who were younger. This observation is consistent with biodemographic 

data showing that mortality risk accelerates at older ages28, with biomarker analysis in the 

Baltimore Longitudinal Study on Aging29 and the Cardiovascular Health Study30, and with 

analysis of the Pace of Aging epigenetic clock, DunedinPACE16,31, and advances the hypothesis 

that the pace of aging accelerates later in life.   

 

Second, Pace of Aging is faster in sociodemographic groups characterized by shorter lifespan. 

Men tended to experience faster Pace of Aging as compared with women. Those with less 

education tended to experience faster Pace of Aging as compared to those with more 
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education, consistent with observations of a socioeconomic gradient in the pace of aging from 

the Dunedin Cohort and a Swiss cohort32,33. In addition, we observed a faster Pace of Aging in 

Black- and Hispanic-identifying as compared to White-identifying Americans. While race/ethnic 

disparities in healthy aging outcomes are well established34, our observation of faster Pace of 

Aging in Black as compared to White Americans indicates healthy-aging disparities continue to 

accumulate into later life. This finding suggests that intervention/prevention in this older-aged 

group has the potential to reduce aging-related health disparities.   

 

Third, midlife and older adults with faster Pace of Aging were at increased risk of incident 

chronic disease, disability, and mortality. In the Dunedin Study, where we first introduced Pace 

of Aging, participants are still middle aged; it is not yet possible to test associations with aging-

related health problems and mortality. In HRS, older adults with faster Pace of Aging more 

often developed new chronic diseases and disabilities and were at increased risk of death. 

Moreover, these associations were independent of smoking, obesity, and educational 

attainment. These findings contribute evidence that the adapted Pace of Aging method 

introduced here captures differences in aging processes that are important to healthspan and 

lifespan. The variation observed across social and demographic groups suggests potential to 

modify pace of aging through changes in the organization of aging societies and in the 

environment and behavior of older adults.   

 

These findings have implications for future research. Pace of Aging summarizes changes 

occurring across multiple systems in the body to provide a dynamic measure of a person’s 

healthy aging trajectory. The availability of a Pace of Aging measure within the HRS can inform 

research in the fields of Sociology and Economics to understand how social transitions such as 

retirement, spousal loss, and caregiving responsibilities affect trajectories of healthy aging. In 

medicine and gerontology, Pace of Aging measures can help reveal how health shocks such as 

new diagnoses, accidents, or elective surgeries modify aging trajectories. In life-course 

epidemiology, Pace of Aging measures can help differentiate effects of early-life exposures on 

aging-related health decline from health deficits established earlier in life. In health equity 
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research, Pace of Aging measures can be used to quantify disparities across population 

subgroups in health aging trajectories and illuminate how economic and health shocks 

contribute to inequalities35. These lines of research, in turn, can deliver new knowledge critical 

to the development of policies and programs to promote healthy longevity, consistent with the 

priorities of World Health Organization14 and other public health actors36–38.  

 

We acknowledge limitations. The HRS measurement battery available to measure Pace of Aging 

is more limited as compared with the Dunedin Study. Some parameters are measured with 

lower precision instruments (e.g. peak flow meters as compared to spirometry for assessment 

of lung function). In other cases, measurements available the in Dunedin Study were not 

collected by HRS (e.g. periodontal health, cardiorespiratory fitness). In addition, the older ages 

of HRS participants limits utility of some biomarkers that are available. For example, medical 

management of systolic blood pressure and cholesterol levels in older adults along with non-

linearities in the patterning of these markers with aging in late life limit their utility to Pace of 

Aging analysis. Nevertheless, HRS data do provide for measurement of changes in pulmonary, 

vascular, immune, renal, endocrine, metabolic, and musculoskeletal systems and therefore 

make possible Pace of Aging analysis in a large, national sample of older adults with significant 

race/ethnic diversity.  

 

HRS biomarker data have been collected at up to only three timepoints for each participant. As 

a result, we were unable to model non-linear changes in biomarkers. Consequently, we must 

infer the acceleration in Pace of Aging at older chronological ages from comparisons of younger 

and older participants. As additional waves of biomarker data are collected, it will be possible 

to model non-linear slopes of change and more rigorously test the hypothesis that aging 

accelerates towards the end of life.  

 

Because HRS enrolls some participants in their 70s and 80s, the sample we analyzed may over-

represent those with slower Pace of Aging. If, as data reported here suggest, faster Pace of 

Aging increases risk of death, the oldest segments of the sample will tend to include those with 

slower Pace of Aging. Importantly, despite this limitation, we still observe evidence of faster 
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Pace of Aging in older as compared to younger participants. Moreover, faster Pace of Aging was 

associated with incident morbidity, disability, cognitive impairment, and mortality, in both older 

and younger segments of the sample. Further analysis in samples with large numbers of adults 

aged 80-plus followed over multiple time points is needed to establish utility of the Pace of 

Aging method in this population.  

  

Beyond the potential bias toward slower agers, our analysis sample was limited to participants 

contributing at least two repeated observations of biomarker data, requiring follow-up over at 

least four years. The subset of HRS participants meeting this requirement tended to be better 

educated, less diverse, and younger than the overall sample. This may also contribute to the 

observed distribution of the Pace of Aging being somewhat slower than in the general 

population HRS is designed to represent.   

 

Consistent with observations in the original Pace of Aging analyses15,39, we found that patterns 

of decline were correlated across biological systems although, as in the original analyses, these 

correlations were modest. Other investigators have interpreted similarly modest cross-system 

correlations as evidence of stochastic variation in aging40,41. Whether Pace of Aging reflects an 

underlying set of biological processes causing correlated change across systems or instead 

summarizes changes across systems experiencing stochastic aging trajectories is an important 

question for further research. Critically, either interpretation supports application of Pace of 

Aging within population health science to quantify trajectories of healthy aging.  

 

To summarize, we developed a measure of Pace of Aging in HRS. It is predictive of morbidity, 

disability, cognitive impairment, and mortality and reflects known social gradients in healthy 

aging. It provides a new tool for researchers seeking to understand how features of societal 

organization, built and social environments, and individual behavior contribute to healthy aging 

trajectories in populations around the world.  
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Figure 1. Study Design for Pace of Aging analysis in the US Health and Retirement Study and 
the English Longitudinal Study of Aging. Figure shows design of data collection in the US Health 
and Retirement Study (HRS, N=13,573) and the English Longitudinal Study of Aging (ELSA, 
N=7,890) for Pace of Aging analysis. Measurements included in Pace of Aging are illustrated 
above study timelines for HRS (top) and ELSA (bottom). Measurements of healthspan outcomes 
are illustrated on the right side of the figure. Timing of collection of Pace of Aging 
measurements is shown in blue circles. For HRS, measurements were collected on two different 
schedules, each including roughly half of the cohort. For ELSA, all measurements were taken on 
the same schedule. Timing of collection of healthspan outcomes is shown in shaded red bars 
(2016-2021 and 2018-2021 for HRS; 2014-2018 for ELSA).  
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Figure 2. Pace of Aging in the US Health and Retirement Study and the English Longitudinal 
Study of Aging. Panel A shows data from men and women in the US Health and Retirement 
Study (HRS, N=13,573). Panel B shows data from men and women in the English Longitudinal 
Study of Aging (ELSA, N=7,890). The panels show Pace of Aging data for women (pink) and men 
(blue). Pace of Aging data are graphed as trajectories of system integrity scores. Trajectories 
were defined from model-predicted intercepts and slopes for biomarkers included in Pace of 
Aging analysis. Intercepts and slopes were averaged across biomarkers to compute system 
integrity parameters.  
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Figure 3. Differences in Pace of Aging among US Older Adults by Race and Ethnicity. Figure 
shows data from non-Hispanic White (N=9,301), Black (N=2,269), and Hispanic (N=1,674) -
identifying older adults in the US Health and Retirement Study. Panel A shows the differences in 
distribution of Pace of Aging between White, Black, and Hispanic participants. Densities reflect 
distributions of Pace of Aging after adjustment for chronological age. White lines show group 
means. Panel B shows effect-size estimates for the differences in Pace of Aging relative to 
White participants. The figure illustrates overall faster pace of aging in Hispanic- and Black-
identifying older adults as compared with White-identifying older adults.  
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FIGURE 4. Association of Pace of Aging with mortality. The figure plots Kaplan-Meier curves for 
four groups of US Health and Retirement Study participants defined by Pace of Aging (slowest 
quartile graphed in dark blue, fastest quartile graphed in dark red, middle quartiles graphed in 
lighter shades). Mortality follow-up was conducted from the time of the second biomarker 
measurement through 2021. Over follow-up there were 1568 deaths in the slowest Pace of 
Aging quartile, 1990 deaths in the quartile containing the 25th-50th percentiles, 1824 deaths in 
the quartile containing the 50th-75th percentiles, and 1946 deaths in the fastest quartile. 
Numbers at risk at baseline, four, eight, and twelve years of follow-up are shown below the 
plot. 
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Figure 5. Effect sizes for associations of Pace of Aging with mortality and incident chronic 
disease, ADLs, IADLs and cognitive impairment. Panel A shows effect-sizes for associations of 
Pace of Aging with mortality (N=13,573) and with incident chronic disease (n=11,619), ADLs and 
IADLs (n=11,611), and cognitive impairment (n=10,666) among participants followed-up during 
2016-2021 in the US Health and Retirement Study. Panel B shows effect-sizes for associations of 
Pace of Aging with incident chronic disease, ADLs and IADLs (n=7,872) among 
participants followed-up during 2014-2018 in the English Longitudinal Study of Aging. 
Incident chronic disease, ADLs, IADLs, and cognitive impairment were determined by 
comparing measurements taken at participants’ biomarker baseline wave with measurements 
taken at the last measurement wave they participated in after Pace of Aging follow-up. Effect-
sizes for mortality are reported as hazard ratios (HRs) estimated from Cox regressions. Effect-
sizes for incidence of chronic disease, ADLs, and IADLs are reported as incidence rate ratios 
(IRRs) from Poisson regressions. Effect-sizes for incidence of cognitive impairment are reported 
as odds ratios (ORs) estimated from multinomial logistic regressions in which outcomes were 
normal (reference), cognitively impaired but not demented (CIND), and demented. Effect-sizes 
are reported for a one-standard-deviation difference in Pace of Aging. All regression models 
included covariate adjustment for sex, race, age, age-squared, a set of terms encoding baseline 
measurement year for Pace of Aging, follow-up time to outcome assessment, and whether the 
participant was aged 65 or older at baseline. 
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