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Abstract

Associations between blood urate levels, blood pressure (BP), and kidney function have previously

been reported in observational studies. However, causal inference between these three traits is

challenging due to potentially bidirectional relationships. We applied bidirectional univariable

Mendelian randomization (UVMR) to assess the causal relationships between urate levels, BP,

and kidney function, proxied by estimated glomerular filtration rate (eGFR), by using genetic

associations from both UK Biobank and CKDGen. We performed multivariable MR (MVMR) to

assess the independent effects of urate and BP on eGFR. Effect estimates are presented as standard

deviation (SD) change in outcome per SD increase in exposure [95% confidence interval]. UVMR

analysis suggested a bidirectional causal effect between urate and eGFR (urate on log(eGFR):

beta=-0.10 [-0.22 to 0.02]; log(eGFR) on urate: beta=-0.11 [-0.17 to -0.04]). There was strong

evidence of bidirectional causal effects between urate and SBP (urate on SBP: beta=0.08 [0.04 to

0.11]; SBP on urate: beta=0.13 [0.08 to 0.18]). Similar bidirectional causal effects were identified

between urate and DBP (urate on DBP: beta=0.09 [0.05 to 0.14]; DBP on urate: beta=0.13 [0.08

to 0.18]). However, there was weak evidence of a causal effect between BP and eGFR. MVMR

results suggested the causal effect of urate on eGFR was independent of BP. Our results provide

evidence for bidirectional causal effects between urate and both eGFR and BP, suggesting urate

control as a potential intervention to reduce BP and decline in kidney function in the general

population, but little evidence of a causal relationship between BP and eGFR.

Introduction

Hyperuricemia, defined as an elevated urate level in the serum, is a common disorder affecting

about 20.1% of people in the United States.1 Hyperuricemia is associated with several differ-

ent disorders, including gout, hypertension, and chronic kidney disease (CKD).2 CKD is an irre-
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versible and progressive disease, which can lead to end-stage renal disease requiring expensive

treatments, such as dialysis or kidney transplantation. Elevated urate levels have been associated

with a substantial positive risk of CKD in numerous epidemiological studies, and are a poten-

tial risk factor for the development and progression of renal disease in the general population.3–6

However, urate, as the byproduct of purine metabolism, is primarily excreted via the kidneys. The

natural relationship between urate and kidney function makes it difficult to identify whether the

association between urate and CKD is causal, and if so, in which direction.

It has also been reported that higher urate levels are associated with an elevated risk of hyperten-

sion.7–9 Primary hypertension patients commonly have hyperuricemia, which is more prevalent

in patients with accelerated hypertension.10 Hypertension and CKD are interlinked and represent

huge global public health burdens, affecting around 31%11 and 10%12 of adults respectively. Renal

function deteriorates with sustained hypertension, and blood pressure (BP) regulation deteriorates

with progressive renal function loss.13 Furthermore, the mouse uricase-knockout model has in-

dicated higher urate levels affect the progression of hypertension and reduce kidney function.14

Understanding the causal relationships between serum urate, BP, and kidney function might help

reveal the underlying pathophysiological mechanisms and provide new evidence for clinical and

lifestyle intervention.

Utilizing genetic variants as instrumental variables for exposure, Mendelian randomization (MR)

can address some of the limitations of observational research including confounding and reserve

causation, to evaluate causal inference. MR method relies upon the principle that alleles randomly

segregate from parents to offspring, according to Mendel’s Laws of Inheritance. Consequently,

it is unlikely that offspring genotypes will be linked to population confounders, such as behav-

ioral and environmental factors. Furthermore, issues with reverse causation are avoided because

germline genetic variants are established at conception and temporally precede the risk factors
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being researched.15, 16

Our project aims were to assess the causal relationship between urate, BP, and kidney function in

the general population by conducting bidirectional univariable MR (UVMR) and multivariable MR

(MVMR) analyses. Kidney function was proxied by estimated glomerular filtration rate (eGFR;

derived using serum creatinine). In addition, to examine how the effect of urate on hypertension

differs during the life course, we assessed the effects of urate on early-, late-onset, and overall

hypertension.

Methods and materials

Study design and data source

We conducted genome-wide association studies (GWAS) in UK Biobank (UKB) (UKB project

15825), to obtain the summary level data for urate, both systolic and diastolic BP (SBP and DBP),

and early-onset, late-onset, and overall hypertension.17 We also obtained the summary statistics

of both urate18 and eGFR,19, 20 from the GWAS of European-ancestry participants carried out by

the Chronic Kidney Disease Genetics Consortium (the CKDGen Consortium). We differentiate

between the urate datasets from CKDGen and UKB GWAS by labeling them as "Urate (CKD-

Gen)"18 and "Urate (UKB)", and distinguish between the two eGFR datasets from CKDGen as

"eGFR (CKDGen2016)"20 and "eGFR (CKDGen2019)".19

To validate the results of our GWAS for the continuous traits urate and BP, we examined their

known causal effects on gout and stroke respectively as positive controls using UVMR. We then

performed pairwise bidirectional UVMR analyses to evaluate the relationship between urate, BP,

and eGFR in general European population samples. Next, we investigated the causal effects

of urate on early-onset, late-onset, and overall hypertension by using UVMR. Finally, we used
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MVMR to investigate the causal effects of urate and BP, independent of each other, on eGFR. All

MR analyses conducted in this study are shown in Table 1 and the details of GWAS data used for

MR analyses are in Table 2 (for positive control results, see Supplementary Materials). Our anal-

ysis code is available on GitHub (https://github.com/Haotian2020/Urate_Project2024).

GWAS in UKB

UKB, a large population-based cohort, recruited over 500,000 individuals and collected extensive

phenotypic and genotypic data.17 We used the UKB GWAS pipeline, which has been developed

by the Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), to perform our

GWAS.21 We applied the linear mixed modeling approach, BOLT-LMM, to account for population

stratification and relatedness. The covariates in the model included genotyping chip, sex, and age.

We conducted urate, SBP, and DBP GWAS using the full UKB sample. For each continuous

trait, data were cleaned by removing extreme values, defined as values more than four standard

deviations (SDs) from the mean. The urate GWAS with the UKB full sample was used as a

sensitivity analysis to avoid sample overlap as both urate18 and eGFR19 were from CKDGen, as

sample overlap can cause bias in inverse-variance weighted (IVW) MR estimates.22 Next, we

conducted early-onset, late-onset, and overall hypertension GWAS. Hypertension was defined as

participants with ICD10 codes I10 and I15 (primary and secondary hypertension respectively).

The GWAS of early- and late-onset hypertension are described in section Early- and late-onset

hypertension. Finally, we randomly divided the participants with urate data into two halves. For

both subsets, we conducted urate, SBP, and DBP GWAS. This split-sample approach provided

GWAS results in independent samples to address sample overlap concerns in the MVMR analyses.
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Instrument Selection

We selected instruments robustly associated with each phenotype at genome-wide significance (p

< 5e-8). Next, we used ieugwasr R package to perform linkage disequilibrium clumping with a

window of 10,000kb and a maximum r2 threshold of 0.001 to select independent variants.23 We

calculated F-statistics, which are derived from the variance explained by instruments and the expo-

sure sample size, to evaluate the strength of the genetic instruments for each UVMR analysis,24, 25

by using TwoSampleMR R package.26 F-statistics are typically interpreted using an arbitrary thresh-

old of 10 as an indicator for a strong instrument.

Main analyses

UVMR

To estimate the causal effects between urate, BP, and eGFR, we systematically conducted pairwise

bidirectional two-sample MR analyses using the IVW method. Both urate and eGFR GWAS

summary statistics were downloaded from the CKDGen consortium

(http://ckdgen.imbi.uni-freiburg.de/).19 GWAS summary statistics for SBP and DBP

were obtained by conducting novel GWAS in UKB.17 All GWAS details and UVMR can be found

in Table 2 and Table 1. All analyses are presented on the SD scale (see Supplementary Materials).

Early- and late-onset hypertension

We examined the causal effects of urate on early-onset, late-onset, and overall hypertension using

UVMR. In the literature, the definition of early-onset hypertension varies from ≤ 35 to ≤ 55 years

of age.27–32 Given the UK National Institute for Health and Care Excellence (NICE) makes treat-

ment recommendations based on whether patients are above or below 55 years old,33 we defined

the threshold for early-onset and late-onset hypertension as 55 years old. To reduce misclassifica-
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tion, we set a 5-year window before and after the threshold of 55 years old. Therefore, early-onset

hypertension was defined as a diagnosis at an age of ≤ 50 years; late-onset hypertension was de-

fined as a diagnosis at an age of > 60 years. To implement the threshold, the year and month

of birth of participants, as well as the date that the ICD10 codes I10 and I15 were first reported,

were extracted from UKB. We then randomly assigned a day of birth within the birth month to

each participant and calculated the approximate age at which participants were diagnosed with

hypertension.

MVMR

To investigate whether the effects of urate on eGFR are independent of BP, we applied MVMR

using summary level urate genetic associations18 from CKDGen and BP genetic associations from

UKB as exposure, with eGFR19 from CKDGen as the outcome. Genetic instruments in MVMR

still need to adhere to the instrumental variable assumptions and must be related to at least one

exposure. MVMR allows for the inclusion of multiple exposures and separates the direct causal

effects of each exposure in the model.34 To determine whether the genetic instruments effectively

predict each exposure while considering the presence of the other exposure within the MVMR

model, we calculated the conditional F-statistic for each exposure.35 A conditional F-statistic

larger than the arbitrary threshold of 10 indicates that the genetic instruments for MVMR are

likely to be strong.

Sensitivity analyses

Sensitivity analyses for UVMR

By assuming that all exposure SNPs are valid instrumental variables, the IVW method combines

the effects of all these SNPs to obtain an overall weighted effect.36 However, the validity of MR

estimates depends on three assumptions (Figure S1). To evaluate the robustness of our findings,15
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we performed different sensitivity analyses, including MR-Egger,37 weighted median,38 weighted

mode, simple mode39 and Steiger filtering.40 When balanced pleiotropic effects are present, the

MR-Egger method exhibits resilience by permitting the intercept in the regression of the SNP-

outcome association against the SNP-exposure association to be non-zero. The intercept term in

the MR-Egger result can be used as an assessment of directional pleiotropy, with the intercept term

being interpreted as a measure of the directional pleiotropy present (pleiotropy tests).37 MR-Egger

makes the ‘NO Measurement Error’ (NOME) assumption.41, 42 We calculated the IGX
2 statistics to

assess any violation of the NOME assumption. When taken as an estimate of the attenuation bias,

an IGX
2 statistic higher than 90% corresponds to less than 10% relative bias towards the null.41

The weighted median method can provide reliable results even when a maximum of 50% of the

instruments are not valid.38 The mode method assumes that instruments from the largest subset

are valid and identify the same true causal effect.39 Finally, we applied Steiger filtering to ensure

that each genetic instrument had a stronger association with the exposure than with the outcome,

which minimized the risk of reverse causation in bidirectional MR.40

We applied Cochran’s Q-test to assess heterogeneity in each MR analysis by examining the vari-

ability in the causal effects of each genetic instrument. When Q significantly exceeds its degrees

of freedom (which is calculated as the number of SNPs minus 1), it indicates the presence of

heterogeneity.43, 44

To address the sample overlap issue that both the urate and eGFR GWAS from CKDGen used

many of the same individuals, we performed a urate GWAS using UKB data and repeated our

UVMR analyses to assess the causal relationship between urate and eGFR in non-overlapping

samples.

Additionally, to assess the reliability of the instruments for urate, SBP, and DBP, we performed

three positive control MR analyses. These were urate on gout, SBP on stroke, and DBP on stroke
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(see Supplementary Materials).

Sensitivity analyses for eGFR GWAS

Multiple eGFR GWAS datasets are available from CKDGen.19, 20, 45 To confirm the causal rela-

tionship between BP and eGFR as well as address the sample overlap problem in MR analyses, we

used eGFR GWAS20 (OpenGWAS46 ID: ieu-a-1105) for sensitivity analyses between eGFR and

BP. Additionally, we used BP instruments to compare their SNP effect on log(eGFR) from two

eGFR GWAS19, 20 (see Supplementary Method).

Sensitivity analyses for MVMR

Due to the sample overlap problem in which urate18 and eGFR19 GWAS were both from CK-

DGen, we used urate from UKB as a sensitivity analysis. As mentioned before, we applied the

split-sample method for urate, SBP, and DBP to ensure non-overlapping samples in each MVMR

analysis. We then conducted MVMR analyses using each split sample, followed by a meta-analysis

using a fixed-effect model to obtain a single estimate. The conditional F-statistic of each exposure

was calculated as the mean conditional F-statistic of the meta-analyzed MR analyses.

Results

For all results, effect estimates (beta) are presented as standard deviation (SD) change in contin-

uous outcome per SD unit increase in exposure [95% confidence interval] (OR (odds ratio) for

binary outcome).
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UVMR

All the UVMR results, with and without Steiger Filtering, are provided in Supplementary Tables

(ST) 5, 6, and 7.

Association of genetically predicted urate levels with BP and eGFR

As shown in Figure 1A, genetically predicted higher urate increased SBP and DBP by 0.08 [95%

CI: 0.04 to 0.11; p=6.5e-5] and 0.09 [95% CI: 0.05 to 0.14; p=3.5e-5] SD respectively. The

evidence of the causal estimate of urate from CKDGen on eGFR was weak [beta=-0.10; 95% CI:

-0.22 to 0.02; p=0.12] while the evidence of the causal estimate of urate from UKB on eGFR was

stronger [beta=-0.17; 95% CI: -0.24 to -0.09; p=1.6e-5], with an effect size consistent with the less

precise CKDGen estimate.

Association of genetically predicted BP with urate and eGFR

As shown in Figure 1B and 1 C, genetically predicted higher BP increased urate levels [SBP:

beta= 0.13; 95% CI: 0.08 to 0.18; p=2.3e-8; DBP: beta =0.13; 95% CI: 0.08 to 0.18; p=6.5e-8].

However, there is little evidence for the effects of genetically elevated BP on log(eGFR) [SBP:

beta=-0.02; 95% CI: -0.08 to 0.04; p=0.50; DBP: beta=-0.06; 95% CI: -0.13 to 0.004; p=0.64].

Association of genetically predicted eGFR levels with urate and BP

Genetically predicted higher log(eGFR) decreased urate levels from both CKDGen [beta=-0.10;

95% CI: -0.17 to -0.04; p=1.0e-3] (Figure 1D) and UKB [beta=-0.11; 95% CI: -0.18 to -0.04;

p=1.1e-3] (ST 5). There was little evidence supporting a causal effect of genetically predicted

eGFR on SBP [beta = 0.01; 95% CI: -0.02 to 0.05; p=0.51] or DBP [beta = -0.02; 95% CI: -0.05

to 0.02; p=0.37].
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Association of genetically predicted urate levels with early-onset, late-onset, and overall hy-

pertension

As demonstrated in Figure 2, genetically increased urate levels led to a higher risk of early-onset,

late-onset, and overall hypertension. The IVW analysis revealed that for each SD increase in

genetically predicted urate, the risk of early-onset hypertension increased [OR=1.28; 95% CI:

1.07 to 1.53; p=6.1e-3], as did the risk of late-onset hypertension [OR=1.17; 95% CI: 1.10 to 1.26;

p=5.4e-6] and overall hypertension [OR=1.22; 95% CI: 1.12 to 1.32; p=2.5e-6] (ST 7).

Sensitivity analyses of UVMR

The genetic instruments used in all UVMR analyses, with their F-statistics and IGX
2 statistics, are

shown in ST 2 and 4 respectively. All instruments had F-statistics larger than 10 indicating that

they are likely strong instruments. All IGX
2 were larger than 98.64% indicating that the NOME as-

sumption is unlikely to have been violated. However, in all UVMR except urate on gout, Cochran’s

Q was much higher than its degrees of freedom, indicating the presence of heterogeneity (see ST

3).

The results of pleiotropy tests of UVMR without Steiger filtering are shown in ST 4. There

was directional pleiotropy in the analysis of urate on early-onset hypertension [intercept=0.016;

p=2.2e-3]. There was negligible directional pleiotropy in the analysis of urate from CKDGen on

SBP [intercept=0.003; p=1.4e-3] and DBP [intercept=0.005; p=4.1e-5], urate from UKB on eGFR

[intercept=-0.004; p=6.7e-3], SBP on urate from CKDGen [intercept=0.003; p=4.0e-3], urate on

late-onset hypertension [intercept=0.005; p=1.0e-2] and overall hypertension [intercept=0.008;

p=1.0e-3]. There was limited evidence of directional pleiotropy for the rest of the main analyses.

The weighted median results indicated a similar signal from the pleiotropy tests with evidence of

pleiotropy affecting the causal estimate of urate on early-onset hypertension [OR=1.13; 95% CI:

10
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0.91 to 1.40; p=0.26]. Other weighted median results showed consistent evidence with the IVW

results, consistent with the negligible pleiotropy effect found using MR-Egger, with the exception

of urate (CKDGen) on eGFR [weighted median: beta=-0.06; 95% CI: -0.10 to -0.02; p=5e-3]. All

positive control MR results are shown in Supplementary Materials and Figure S2.

Although Steiger filtering removed between 0 and 52 SNPs in the bidirectional UVMR analyses,

the causal estimates from IVW remained consistent with the results of the main analyses.

Sensitivity analyses for eGFR GWAS

The results of bidirectional UVMR between eGFR (CKDGen2016) and BP were consistent with

the main analyses involving eGFR (CKDGen2019) and BP, indicating weak evidence of causal

effects between eGFR (CKDGen2016) and BP (see Supplementary Materials).

MVMR: Independent association of genetically predicted urate and BP levels

with eGFR

The conditional F-statistics of instruments of each exposure were greater than 10, indicating the

genetic instruments in MVMR were strong (ST 8). The MVMR provided evidence that increased

urate has a causal effect on decreased eGFR, independent of SBP (Figure 3A), and DBP (Figure

3B). Changes in SD log(eGFR) per SD increase in genetically predicted urate were -0.10 [adjusted

with SBP; 95% CI: -0.18 to -0.02; p = 1.2e-2] and -0.12 [adjusted with DBP; 95% CI: -0.20

to -0.04; p=4.1e-3]. There was little evidence of a causal effect of genetically predicted higher

SBP or DBP on eGFR, independent of urate [SBP: beta = -0.03; 95% CI: -0.13 to 0.07; p=0.58;

DBP: beta=-0.09; 95% CI: -0.19 to 0.01; p=6.8e-2]. All these independent causal estimates were

consistent with the MVMR results using the split-sample method (Figure S3).
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Discussion

We examined the causal relationships between urate, BP, and eGFR by conducting pairwise UVMR

and MVMR of urate and BP on eGFR. The UVMR results indicated strong evidence of bidirec-

tional causal effects between urate and BP (both SBP and DBP) and between urate and eGFR.

There was also evidence of causal effects of urate on early-onset, late-onset, and overall hyperten-

sion, but we could not distinguish whether urate has a larger effect on early-onset hypertension.

However, we find inconclusive evidence of causal effects between BP and eGFR. MVMR results

indicated that the causal effects of urate on eGFR were independent of BP.

Previously, a bidirectional MR found strong evidence of the causal effect of higher eGFR on lower

SBP and DBP, but not vice versa.47 This study used eGFR and blood urea nitrogen (BUN) sum-

mary statistics to select genetic instruments for eGFR. Given that higher eGFR results in lower

BUN, they assumed eGFR instruments relevant to kidney function, for example, with a positive

association with eGFR, should correspondingly have a negative association with BUN. They con-

cluded that better eGFR is causal to lower BP. However, our study does not support the evidence

of a causal effect of eGFR on BP. This could be due to the differences in the instrument selection

approach or because the BP GWAS used in the previous study was additionally adjusted for body

mass index,48 while we conducted our BP GWAS only adjusting for genotyping chip, sex, and

age in UKB. Numerous epidemiological studies have reported that evaluated blood pressure is a

risk factor for both the onset and progression of CKD49–53 and CKD can also arise as a compli-

cation of untreated high blood pressure. Several pathophysiologic mechanisms between BP and

kidney function have also been studied 1) from high blood pressure to reduced eGFR, such as

endothelial injury;54 2) from reduced eGFR to high blood pressure, such as increased activity of

the renin-angiotensin-aldosterone system and sodium dysregulation.13, 55 Conducting Two-sample

MR requires the underlying assumption of a linear relationship between exposure and outcome.
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Renal autoregulatory mechanisms can protect the kidney from the influence of systemic BP and

maintain the glomerular hydrostatic pressures.56, 57 As the majority of UKB participants were rel-

atively healthy, renal autoregulation may attenuate the effects of BP on eGFR observed in MR.

Due to concerns about the reliability of non-linear MR,58 we did not apply non-linear MR to the

analyses between BP and eGFR. The weak evidence of causal effects of eGFR on BP may re-

sult from biased estimates due to eGFR overestimation compared to measured mGFR using the

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.59

A previous MR study, using 26 SNPs identified from a cohort of 110,347 individuals of European

ancestry by the Global Urate Genetics Consortium,60 found limited evidence of a causal relation-

ship between urate and either eGFR or the risk of developing CKD.61 Another MR study using a

genetic urate score indicated hyperuricemia could predict the risk of gout but did not demonstrate

predictive power for the development of hypertension or CKD.62 However, these results could

reflect the limited number of genetic instruments and outcome sample size used in these studies.

Our MR results with larger sample sizes of both urate and other traits showed consistent results

with one previous MR study,63 that found serum urate had a causal effect on increased SBP. Ad-

ditionally, we identified a bidirectional causal relationship, indicating that elevated BP also leads

to increased urate levels.

Assessing the causal role of urate on kidney function in epidemiological studies is challenging

due to the inherent relationship between urate and the kidneys. Urate is primarily excreted by the

kidneys, and if kidney function is compromised, there is compensatory but insufficient elimination

by the gut.64 Rat experiments have revealed that elevated urate levels impact the proliferation and

oxidative stress in vascular smooth muscle cells through the activation of the renin-angiotensin

system,65 and cause endothelial dysfunction,66 which contributes to the development of glomeru-

lar and systemic hypertension.67–69 However, in cases of renal disease, the importance of these
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mechanisms from experimental studies might be diminished, as systemic hypertension often oc-

curs due to sodium and water retention. This leads to the failure to predict CKD progression using

urate.70, 71 Our study provides further insight by using UVMR with and without Steiger filtering

and MVMR, which allows us to estimate the effect of urate, independent of blood pressure, on

eGFR and the effect of blood pressure, independent of urate, on eGFR.

Rat experiments indicate that the relationship of urate with hypertension may change based on

renal microvascular damage and interstitial inflammation. Early urate-lowering treatments can

reduce BP, but hypertension becomes kidney-dependent and irreversible with the progressing renal

arteriolopathy and tubulointerstitial inflammation.14, 72, 73 Moreover, the correlation between urate

levels and hypertension diminishes with increasing age and duration of hypertension, suggesting

a potential significance of urate in younger individuals with early-onset hypertension.74, 75 Thus,

we conducted a novel MR analysis of urate on early-onset, late-onset, and overall hypertension.

While we observed a causal effect of urate on all hypertension types, including some evidence

of a directional pleiotropy effect for early-onset hypertension, the wide confidence interval of the

effect of urate on early-onset hypertension precludes distinguishing its effect magnitude from that

on late-onset hypertension. This is likely due to the sample size as there were only 6,934 cases in

the early-onset hypertension GWAS.

Our study had several strengths. Firstly, we harnessed the power of large sample sizes from UKB

and CKDGen, which increased the instrument strength in both UVMR and MVMR and decreased

the probability of violation of the MR relevance assumption. Secondly, we proactively addressed

sample overlap issues in UVMR and MVMR analyses caused by the fact that both urate and eGFR

GWAS were taken from CKDGen. We addressed this by using the GWAS conducted with the full

UKB sample and the split-sample method in the UVMR and MVMR sensitivity analyses respec-

tively. Both indicated limited evidence of bias caused by the sample overlap. Thirdly, we con-
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ducted all bidirectional MR analyses with Steiger filtering to mitigate potential reverse causality

concerns between urate, BP, and eGFR. Lastly, we validated the robustness of our findings through

a comprehensive set of MR sensitivity analyses, including approaches robust to pleiotropic effects,

such as the weighted median and weighted mode methods in UVMR.

Consideration of limitations is essential when interpreting our results. Although sensitivity anal-

yses have shown that most of the pleiotropy effects in our MR analyses are likely to be balanced,

the heterogeneity tests indicate a potential violation of the horizontal pleiotropy assumption. Fur-

thermore, despite a relatively large sample from UKB, the cases of early-onset hypertension were

limited because the median age at recruitment in UKB is 58 (minimum: 37; maximum: 73). Thus,

the power of our MR analysis of urate on early-onset hypertension was limited, resulting in a wide

confidence interval. Finally, we only used European-summary-level data in our analyses, which

may limit the generalizability of our findings to other ancestries.

In conclusion, we found bidirectional causal effects between urate and both BP and eGFR in the

general population. The effects of urate on eGFR were independent of BP. Our findings suggest

for the general population, controlling serum urate levels might help to reduce BP and maintain

kidney function. Implementing lifestyle modifications or treatment aimed at reducing urate serves

as a pragmatic and effective strategy for improving cardiovascular and renal health on a population

scale.
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Analysis Exposure Outcome

Univariable MR

Urate (CKDGen)

eGFR (CKDGen2019)
SBP (UKB)
DBP (UKB)
Hypertension (UKB)
Early-onset hypertension (UKB)
Late-onset hypertension (UKB)

Urate (UKB)
eGFR (CKDGen2019)
Gout

SBP (UKB)

eGFR (CKDGen2019)
eGFR (CKDGen2016)
Urate (CKDGen)
Stroke

DBP (UKB)

eGFR (CKDGen2019)
eGFR (CKDGen2016)
Urate (CKDGen)
Stroke

eGFR (CKDGen2019)

Urate (CKDGen)
Urate (UKB)
SBP (UKB)
DBP (UKB)

eGFR (CKDGen2016)
SBP (UKB)
DBP (UKB)

Multivariable MR

Urate (CKDGen) + SBP (UKB)

eGFR (CKDGen2019)
Urate (CKDGen) + DBP (UKB)
Urate (UKB Meta) + SBP (UKB Meta)
Urate (UKB Meta) + DBP (UKB Meta)

Table 1: Details of all MR analyses conducted in this study. Each trait was presented as the trait
name (its corresponding source). We denote urate data from CKDGen as "Urate (CKDGen)"18

and from UKB as "Urate (UKB)", and distinguish two eGFR GWAS from CKDGen as "eGFR
(CKDGen2019)"19 and "eGFR (CKDGen2016)".20 To avoid sample overlap between Urate and
eGFR, Urate UKB GWAS was used in UVMR while the split-sample method, where the UKB
sample was randomly divided into two to conduct GWAS, was used in MVMR. Meta indicated
that causal estimates were meta-analyzed from the causal effects of the two subsets. UVMR,
univariable Mendelian Randomization; MVMR, multivariable MR; UKB, UK Biobank; SBP and
DBP, systolic and diastolic blood pressure; eGFR, estimated glomerular filtration rate; CKDGen,
the Chronic Kidney Disease Genetics Consortium.
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Sources Trait name Sample size (% cases, if applicable) Subgroup

UKB

Urate
440,466 Full sample
220,082 Sample 1
220,081 Sample 2

SBP
432,099 Full sample
205,299 Sample 1
205,512 Sample 2

DBP
432,253 Full sample
205,238 Sample 1
205,512 Sample 2

Hypertension 462,826 (28.9%) Full sample
Early-onset hypertension 336,080 (2.1%) Full sample
Late-onset hypertension 424,729 (22.5%) Full sample

CKDGen
Urate 288,649 Full sample
log(eGFR) (CKDGen2019) 567,460 Full sample
log(eGFR) (CKDGen2016) 133,814 Full sample

GUGC Gout 69,374 (3.0%) Full sample
MEGASTROKE Stroke 446,696 (9.1%) Full sample

Table 2: Details of all genome-wide association studies (GWAS) used in our study. All UKB
GWAS were newly conducted; "Full sample" indicates that all participants were used; "Sample
1" and "Sample 2" indicate that the split-sample method was used (see details in Methods and
materials). UKB, UK Biobank; SBP and DBP, systolic and diastolic blood pressure; CKDGen, the
Chronic Kidney Disease Genetics Consortium; eGFR, estimated glomerular filtration rate; GUGC,
Global Urate Genetics Consortium.
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A)Expsoure
Urate (CKDGen)

Outcome
SBP (UKB)

DBP (UKB)

eGFR (CKDGen2019)

Approach
Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Number of SNPs
95

95

96

Beta
 0.077

 0.038

 0.015

−0.011

 0.051

 0.092

 0.044

 0.030

−0.037

 0.049

−0.099

−0.060

−0.055

 0.045

−0.222

95% CI
 0.039,  0.114

 0.008,  0.067

−0.009,  0.040

−0.075,  0.052

−0.011,  0.113

 0.049,  0.136

 0.017,  0.072

 0.007,  0.053

−0.108,  0.034

−0.001,  0.099

−0.222,  0.024

−0.102, −0.018

−0.092, −0.019

−0.174,  0.265

−0.350, −0.095

p−value
0.000

0.012

0.231

0.727

0.107

0.000

0.002

0.013

0.308

0.060

0.116

0.005

0.004

0.686

0.001

−0.2 −0.15 −0.1 −0.05 0 0.05 0.15 0.2
Beta (with 95% CI) for each continuous outcome per SD unit change in urate

B) Expsoure
SBP (UKB)

Outcome
Urate (CKDGen)

eGFR (CKDGen2019)

Approach
Inverse variance weighted

Weighted median
Weighted mode

MR Egger
Simple mode

Inverse variance weighted
Weighted median
Weighted mode

MR Egger
Simple mode

Number of SNPs
229

237

Beta
 0.130
 0.076
 0.030
−0.059
 0.070
−0.021
−0.043
−0.054
 0.028
−0.068

95% CI
 0.084, 0.175
 0.035, 0.117
−0.062, 0.121
−0.194, 0.076
−0.060, 0.199
−0.082, 0.040
−0.087, 0.001
−0.163, 0.056
−0.155, 0.211
−0.212, 0.076

p−value
0.000
0.000
0.529
0.392
0.296
0.498
0.057
0.337
0.766
0.358

−0.2 −0.15 −0.1 −0.05 0 0.05 0.15 0.2
Beta (with 95% CI) for each continuous outcome per SD unit change in SBP

C) Expsoure
DBP (UKB)

Outcome
Urate (CKDGen)

eGFR (CKDGen2019)

Approach
Inverse variance weighted

Weighted median
Weighted mode

MR Egger
Simple mode

Inverse variance weighted
Weighted median
Weighted mode

MR Egger
Simple mode

Number of SNPs
222

231

Beta
 0.130
 0.053
 0.007
 0.074
 0.029
−0.065
−0.004
 0.042
 0.039
 0.067

95% CI
 0.083, 0.177
 0.013, 0.093
−0.096, 0.110
−0.076, 0.225
−0.085, 0.143
−0.134, 0.004
−0.047, 0.039
−0.060, 0.144
−0.179, 0.258
−0.051, 0.186

p−value
0.000
0.009
0.889
0.334
0.620
0.064
0.858
0.416
0.726
0.267

−0.2 −0.15 −0.1 −0.05 0 0.05 0.15 0.2
Beta (with 95% CI) for each continuous outcome per SD unit change in DBP

D)Expsoure
eGFR (CKDGen2019)

Outcome
Urate (CKDGen)

SBP (UKB)

DBP (UKB)

Approach
Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Number of SNPs
196

197

197

Beta
−0.105

−0.116

−0.172

 0.000

−0.214

 0.012

 0.012

 0.027

 0.032

 0.038

−0.017

−0.004

 0.027

−0.019

 0.006

95% CI
−0.167, −0.042

−0.156, −0.076

−0.292, −0.052

−0.152,  0.153

−0.322, −0.107

−0.023,  0.046

−0.013,  0.037

−0.050,  0.104

−0.052,  0.116

−0.066,  0.143

−0.054,  0.020

−0.031,  0.022

−0.023,  0.077

−0.109,  0.072

−0.059,  0.070

p−value
0.001

0.000

0.006

0.996

0.000

0.509

0.342

0.486

0.458

0.470

0.367

0.745

0.296

0.685

0.862

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
Beta (with 95% CI) for each continuous outcome per SD unit change in log(eGFR)

Figure 1: Forest plot of the pairwise bidirectional univariable MR results. Each trait is presented
as the trait name (its corresponding source). Estimates of the causal effects of the following ex-
posures: A) urate (CKDGen); B) SBP (UKB); C) DBP (UKB); D) eGFR (CKDGen2019), are
presented as SD unit change in outcome per SD unit increase in exposure (eGFR is in the SD
unit of log(eGFR)). CI, confidence interval; SBP and DBP, systolic and diastolic blood pressure;
eGFR, estimated glomerular filtration rate; MR, Mendelian Randomization.
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Expsoure
Urate (CKDGen)

Outcome
Hypertension (UKB)

Early−onset hypertension (UKB)

Late−onset hypertension (UKB)

Approach
Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Inverse variance weighted

Weighted median

Weighted mode

MR Egger

Simple mode

Number of SNPs
95

95

95

OR
1.216

1.058

1.061

0.999

1.088

1.281

1.130

1.015

0.860

1.374

1.173

1.074

1.060

1.029

1.109

95% CI
1.121, 1.319

1.003, 1.116

1.013, 1.110

0.871, 1.146

0.998, 1.187

1.073, 1.528

0.914, 1.397

0.824, 1.250

0.637, 1.160

0.876, 2.156

1.095, 1.257

1.013, 1.140

1.003, 1.121

0.914, 1.159

1.002, 1.226

p−value
0.000

0.040

0.013

0.992

0.058

0.006

0.260

0.892

0.326

0.170

0.000

0.017

0.041

0.640

0.048

0.75 1 1.25 1.5
OR (with 95% CI) for each type of hypertension per 1−SD unit change in urate

Figure 2: Forest plot of MR results of urate on each type of hypertension. Exposure and outcomes
are presented as the trait name (its source name). Estimates of causal effects are presented as
OR of each hypertension outcome per SD unit increase in urate (CKDGen). MR, Mendelian
randomization; CI, confidence interval. OR, odds ratio.
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Expsoure

Urate (CKDGen)

SBP (UKB)

Outcome

eGFR (CKDGen2019)

Approach

Inverse variance weighted

MVMR

Inverse variance weighted

MVMR

Number of SNPs

96

65

237

187

Beta

−0.099

−0.102

−0.021

−0.028

95% CI

−0.222,  0.024

−0.181, −0.022

−0.082,  0.040

−0.129,  0.072

p−value

0.116

0.012

0.498

0.578

−0.2 −0.1 0 0.1
Beta (with 95% CI) for SD−unit of log(eGFR)  per SD unit change in exposure

A)

Expsoure

Urate (CKDGen)

DBP (UKB)

Outcome

eGFR (CKDGen2019)

Approach

Inverse variance weighted

MVMR

Inverse variance weighted

MVMR

Number of SNPs

96

65

231

186

Beta

−0.099

−0.118

−0.065

−0.092

95% CI

−0.222,  0.024

−0.199, −0.037

−0.134,  0.004

−0.192,  0.007

p−value

0.116

0.004

0.064

0.068

−0.2 −0.1 0 0.1
Beta (with 95% CI) for SD−unit of log(eGFR)  per SD unit change in exposure

B)

Figure 3: Forest plot of MVMR of urate and BP on eGFR. Each trait is presented as the trait name
(its corresponding source). Estimates of causal effects of the two sets of following exposures:
A) urate (CKDGen) and SBP (UKB); B) urate (CKDGen) and DBP (UKB), are presented as SD
unit change in log(eGFR) per SD unit increase in exposure. CI, confidence interval; SBP and
DBP, systolic and diastolic blood pressure; eGFR, glomerular filtration rate estimated from serum
creatinine; MVMR, multivariable MR.
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