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Abstract 

Alterations in the gut microbiota have been linked to hypertension, with the role of archaea, 

despite being stable constituents, remaining largely unexplored. Shotgun metagenomic analyses of 

fecal samples were performed on 341 participants from 3 cohorts: discovery cohort (88 

individuals), validation cohort 1 (175 individuals), and validation cohort 2 (78 individuals). 

Principal Coordinates Analysis (PCoA) based on Bray-Curtis distances revealed significant 

alterations in the composition of enteric archaea between control individuals and hypertensive 

patients (P < 0.05). Hypertensive groups showed reduced abundances of halophilic archaea 

(Halorhabdus, Halovivax, and Halorubrum_lipolyticum) and methanogenic archaea 

(Methanomassiliicoccus and Candidatus_Methanomassiliicoccus_intestinalis). Eleven archaea 

species, depleted in fecal samples from hypertensive patients, distinguished them from control 

individuals, with areas under the receiver operating characteristic curve of 0.85, 0.79, and 0.91 in 

the discovery, validation cohort 1, and validation cohort 2, respectively. Significant correlations 

were observed between these archaea and clinical data across cohorts. Additionally, a significant 

positive correlation in richness between gut bacteria and archaea suggests a close cross-kingdom 

synergy within the microbiome. This study highlights significant shifts in the archaeal populations 

of hypertensive patients, underscoring the potential of archaeal biomarkers in hypertension 

diagnosis and suggesting avenues for future therapeutic research. 
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Introduction 

Hypertension remains a leading global health challenge, associated with increased risks of 

cardiovascular disease, stroke, and mortality [1]. The interplay between genetic predispositions, 

lifestyle factors, and environmental influences is well-acknowledged in the development and 
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progression of hypertension [2]. Among these, the role of the gut microbiome, the vast ecosystem 

of microorganisms residing in the human gastrointestinal tract, has recently gained attention for its 

potential influence on systemic blood pressure regulation and, by extension, hypertension [3-6]. 

The gut microbiome, consisting of bacteria, archaea, viruses, and fungi, is known to be intimately 

linked with the host's metabolism, immune function, and overall health [7-8]. Archaea constitute a 

distinct and diverse group of microorganisms on Earth, forming one of the three principal domains 

of life, alongside Bacteria and Eukaryotes [9]. While the bacterial components of the microbiome 

have been extensively studied for their contributions to health and disease, the archaeal 

component—often overlooked—holds intriguing prospects for understanding hypertension's 

complexities.    

Recent research underscores the significant link between gut archaea and human health and 

diseases [10]. Kim et al. identified a rich presence of halophilic archaea within the gut archaeal 

community of Koreans [11]. Barnett et al. presented findings suggesting an inverse association 

between the gut archaeon Methanobrevibacter smithii (MSS) and asthma risk in children; a higher 

relative abundance of MSS correlates with a reduced asthma risk, revealing a linear relationship 

[12]. Coker and colleagues found that in patients with colorectal cancer (CRC), there is an 

enrichment of halophilic archaea and a reduction in methanogenic archaea, with the halophilic 

archaea Natrinema sp. J7-2 progressively increasing through the stages from healthy to adenoma 

to CRC [13]. However, the relationship between gut archaea and hypertension remains unclear. 

The present study aims to elucidate the composition and functional dynamics of enteric archaea in 

individuals with and without hypertension, exploring potential shifts in archaeal populations that 

may be associated with the condition. By examining three separate cohorts comprising a total of 
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341 participants from diverse geographic regions and utilizing meticulous metagenomic 

sequencing and analysis methodologies, we seek to identify specific archaeal species and their 

interactions with gut bacteria that could contribute to the pathogenesis of hypertension. 

Furthermore, we investigated the potential of utilizing changes in the gut archaeal community as 

diagnostic markers for hypertension, offering new insights into the gut microbiome's role in 

hypertension. 

Methods 

Study Cohorts 

This study comprises three distinct cohorts: The first cohort involves individuals from Dalian, 

China, encompassing both hypertensive patients and healthy controls, with their fecal 

metagenomic sequencing data sourced from the European Nucleotide Archive (ENA) under the 

identifier PRJEB21612, acting as the Discovery cohort [5]. The second cohort is drawn from our 

prior study in Tangshan, including hypertensive, pre-hypertensive and healthy individuals, whose 

data was likewise retrieved from the ENA, marked by the identifier PRJEB13870 [3]. The third 

cohort is an in-house group from Fuwai Hospital, consisting of 39 hypertension patients and 39 

healthy controls, which were enrolled between October 2021 and February 2022. 

Within the three cohorts, healthy controls are defined by systolic blood pressure (SBP) ≤ 120 

mmHg, and diastolic blood pressure (DBP) ≤ 80 mmHg in subjects not receiving antihypertensive 

treatments. Hypertension (HTN) is diagnosed in patients with SBP ≥ 140 mmHg, or DBP ≥ 90 

mmHg, in the absence of antihypertensive treatments. In validation cohort 1, pHTN is identified in 

individuals with 125 mmHg ≤ SBP ≤ 139 mm Hg, or 80 mmHg ≤ DBP ≤ 89 mmHg, who are not 

on antihypertensive medication. Subjects were excluded for any of the following reasons: current 
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cancer, renal failure, heart failure, stroke, peripheral artery disease, symptoms of respiratory 

infections or digestive tract diseases, or treatment with antibiotics within the two months prior to 

sampling. Additionally, individuals with a history of hypertension or significant cardiovascular 

conditions, such as coronary artery disease or stroke, within the last five years were not included 

in the healthy control group.  

Prior to data and biospecimen collection, written informed consent was secured from each subject. 

Patients were recruited at the juncture of their initial diagnosis, with no prior treatment, to 

preserve the authenticity of fecal sample collection. Ethical approval for the study was granted by 

the Ethics Committees of the Beijing Chao-Yang Hospital of Capital Medical University (approval 

No. 2024-ke-726) and Fuwai Hospital (approval No. 2020-1334), ensuring adherence to ethical 

guidelines. 

Metagenomics Sequencing  

Total DNA was extracted from all samples of validation cohort 2 using the 

cetyltrimethylammonium bromide (CTAB) method and subsequently sequenced by Oriental 

Yeekang (Beijing, China) Medicine Technology Co., Ltd. on the Illumina Novaseq 6000 platform, 

generating 2×150-bp paired-end reads [14]. The quality of the extracted DNA was assessed using 

NanoDrop, Qubit 2.0, and agarose gel electrophoresis (AGE) . The raw sequencing data obtained 

were utilized for subsequent bioinformatic analyses.  

Sequence Taxonomic Annotation 

Metagenomic sequencing datasets obtained from ENA public database and in-house metagenomic 

sequencing data were quality filtered by using trimmomatic v_0.33 software to remove low 

quality sequences [15]. Human sequences were removed after alignment with a reference genome 
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(hg38 database) using Bowtie2 v_2.2.4, with default settings [16]. The species identification of 

archaea and bacteria was conducted using the MetaPhlAn3 software (version 3.0.13), aligning the 

data with the species marker gene database MetaPhlAn_v3.0_CHOCOPhlAn_201901 using 

Bowtie2 for alignment [17]. This process enables the acquisition of relative abundance of species 

across various taxonomic levels (kingdom, phylum, class, order, family, genus, species). 

MetaPhlAn3 relies on unique clade-specific markers identified from about 17,000 reference 

genomes from bacterial, archaeal, viral, and eukaryotic microorganisms for microbial profiling 

and quantification.   

Sample Filtering  

To ensure consistency and data quality, samples were subjected to strict filtering before analysis. 

Samples that were abnormal, such as the length of reads uploaded in the metagenomic dataset 

does not align with the length of quality values, were first discarded. Outliers were also removed, 

including samples with high archaea content (archaeal read counts more than 1% of the total), low 

archaea content (archaeal read counts less than 0.01% of the total) [18]. Moreover, samples with 

low archaeal sequencing depth were discarded (archaea read counts less than 10,000). 

Consequently, a total of 172 patients with HTN, 53 patients with pHTN, and 119 healthy 

individuals were retained across the three cohorts. 

Statistical Analysis  

The Mann-Whitney U test identified differentially abundant archaea between HTN and CON 

samples in the discovery and validation cohort 2, while the Kruskal-Wallis test assessed 

differences across control, pHTN, and HTN individuals in validation cohort 1. Gut archaeal alpha 

diversity was analyzed through the Shannon index (for evenness and richness) and the Chao1 
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index (for richness). Beta diversity was explored using Principal Coordinate Analysis (PCoA) on 

Bray-Curtis distances of archaeal species abundances with the vegan R package. Spearman's 

analysis correlated CON-enriched archaeal species with clinical metadata across cohorts. Receiver 

operating characteristic curves (AUCs) were generated via logistic regression. Co-occurrence 

patterns between archaeal and bacterial communities were investigated using the SparCC 

algorithm and the ipraph R package. Data analysis utilized R (v4.2.2) and GraphPad Prism (v9.0), 

with p-values < 0.05 deemed significant, presented as means ± S.E.M. 

Results 

Population Characteristics Across Three Cohorts 

In this study, the metagenomic sequencing data for the discovery cohort and Validation Cohort 1 

were downloaded from the ENA database [3, 5]. Additionally, an internal fecal metagenomic 

dataset was utilized as an additional Validation Cohort 2. Within these metagenomic sequencing 

datasets, the relative abundance of archaea ranged between 0.04% and 0.6%. To ensure data 

quality, a series of stringent filtering criteria were applied to remove contaminated samples and 

those with low archaeal content (Figure 1A). This included the exclusion of samples with 

missing/incomplete data, unusually high archaeal abundance (relative abundance greater than 1%, 

suspected contamination), or exceptionally low abundance (relative abundance less than 0.01%), 

as well as samples with low archaea sequencing depth. 

After filtering, the discovery cohort retained 88 samples, including 42 from the healthy control 

group and 46 from the hypertension (HTN) group. Validation Cohort 1 retained 175 samples, 

comprising 35 from the control group, 53 from the pre-hypertension (pHTN) group, and 87 from 

the HTN group. Validation Cohort 2 included 39 samples from the CON group and 39 samples 
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from the HTN group (Figure 1A). The clinical information of the cohorts after filtering are 

presented in Table 1. In the discovery cohort, there were no differences in age, gender, or BMI 

between the control and HTN groups. In Validation Cohort 1, there were no differences in age, 

gender, or BMI among the control, pHTN, and HTN groups. In Validation Cohort 2, the HTN 

group had a higher proportion of males and higher BMI compared to the healthy control group.  

Archaeal Composition in the Gut of Healthy and Hypertensive Individuals 

To ensure that the sequencing depth across the three cohorts was sufficient for archaeal analysis, 

we initially conducted rarefaction curve analyses. The results indicated that the archaeal richness 

in samples from all three cohorts reached a plateau at lower read counts (Figure 1 B-D), 

suggesting that the depth of sequencing data was adequate.  

Subsequently, we analyzed the composition of gut archaea across the three cohorts. We first 

examined the composition of archaea at the phylum level. Euryarchaeota was the most prevalent 

archaeal phylum across all cohorts, accounting for more than 90% of the archaeal community in 

the majority of samples, regardless of whether they were from healthy individuals or those with 

hypertension (Figure 2 A, C, E). This finding aligns with previous reports [13]. At the genus level, 

Haloquadratum and Haloferax were the most dominant genera in the discovery cohort, while 

Thermococcus, Haloquadratum, Halorubrum, and Haloferax constituted the majority in both 

validation cohorts (Figure S1 A-C). In the discovery cohort, the archaeal species with the highest 

relative abundances were Haloquadratum walsbyi, Natrialba taiwanensis, Haloferax prahovense, 

Haloferax denitrificans, and Methanobrevibacter smithii (Figure 2B). In Validation Cohorts 1 and 

2, Haloferax prahovense, Haloferax denitrificans, and Haloquadratum walsbyi were among the 

species with higher relative abundances (Figure 2D, F). The high relative abundance of these 
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halophilic and methanogenic archaeal species suggests they play significant biological roles 

within this microbial community, closely linked to human health. 

Shifts in Gut Archaea Composition Associated with Hypertension  

To explore whether there are compositional changes in the gut archaea of individuals with 

hypertension, we initially compared the archaeal diversity between hypertensive individuals and 

healthy controls within the discovery cohort. The results revealed no significant difference in 

species richness within the archaeal community α-diversity between the two groups (Figure 3A). 

However, the Shannon diversity index was significantly lower in the hypertension (HTN) group 

compared to the control (CON) group (Figure 3B). In contrast, no significant differences in 

species richness or community diversity were observed between the CON and HTN groups in 

Validation Cohorts 1 and 2 (Figure 3C-F). Moreover, there was no significant difference in 

α-diversity of the archaeal community between individuals with pre-hypertension (pHTN) and 

other groups within Validation Cohort 1 (Figure S2A-B). Subsequent analysis using Principal 

Coordinates Analysis (PCoA) based on Bray-Curtis distances examined β-diversity between the 

CON and HTN groups in the discovery cohort, showing a clear clustering difference 

(Permutational Multivariate Analysis of Variance, p<0.05) (Figure 3G). Similar significant 

differences in β-diversity were also observed between the CON and HTN groups in both 

Validation Cohorts 1 and 2 (Permutational Multivariate Analysis of Variance, p=0.047 for 

Validation Cohort 1, p<0.001 for Validation Cohort 2) (Figure 3H, I). Additionally, in Validation 

Cohort 1, the composition of the archaeal community was different between the healthy control 

group and the pre-hypertensive group (Permutational Multivariate Analysis of Variance, p=0.067), 

as well as between the pre-hypertensive group and the hypertensive group (Permutational 
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Multivariate Analysis of Variance, p=0.047) (Figure S2C-D), indicating changes in the gut archaea 

composition begin in the pHTN phase. 

In the discovery cohort, we identified three genera of archaea that were reduced in patients with 

HTN: the halophilic archaea Halorhabdus and Halovivax, and the methanogenic archaea 

Methanomassiliicoccus (Figure 3J). This trend was also observed between the CON and HTN 

groups in Validation Cohorts 1 and 2 (Figure 3K, L). However, in Validation Cohort 1, there were 

no significant differences in the levels of Halorhabdus and Halovivax between the CON and 

pHTN groups (Figure S2E-F), while Methanomassiliicoccus showed a decreasing trend in pHTN 

patients (Figure S2G). These results suggest significant differences in the archaeal structure of the 

HTN population compared to healthy individuals, with reductions in methanogenic and halophilic 

archaea closely associated with the development and progression of hypertension. 

Utilizing Gut Archaea Species as Diagnostic Markers for Hypertension 

In the discovery cohort, we identified 16 archaeal species whose abundances differed between 

hypertensive patients and control individuals, with 5 species being enriched and 11 reduced in 

hypertensive patients (Figure 4A). The enriched species included two halophilic archaea, 

Candidatus Haloredivivus sp. G17 and Haloplanus vescus, and two methanogenic archaea, 

Methanomassiliicoccales archaeon RumEn M2 and Methanosaeta harundinacea. The 11 species 

that were found to be reduced in hypertensive patients include halophilic archaea such as 

Halogranum salarium, Halorubrum lipolyticum, Halorhabdus utahensis, Halorubrum sp. AJ67, 

and Halovivax asiaticus, and methanogenic archaea such as Methanobrevibacter filiformis, 

Methanobrevibacter sp. AbM4, and Candidatus Methanomassiliicoccus intestinalis (Figure 4A). 

Subsequently, we found that Candidatus Methanomassiliicoccus intestinalis and Halorubrum 
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lipolyticum were significantly reduced in the HTN group across all three cohorts (Figure 4B-C). In 

Validation Cohort 1, a significant reduction trend in the pHTN group was also observed for 

Candidatus Methanomassiliicoccus intestinalis and Halorubrum lipolyticum (Figure S3A-B). 

Next, we evaluated the diagnostic potential of these archaeal species that were reduced in 

hypertensive patients. Our results demonstrated that the 11 archaeal species biomarkers reduced in 

hypertensive patients could differentiate between hypertensive patients and control individuals in 

the discovery cohort. Receiver Operating Characteristic (ROC) curves were plotted, and the Area 

Under the Curve (AUC) was calculated to assess the predictive value of these archaeal biomarkers 

for hypertension, resulting in an AUC of 0.85 (Figure 4D). In Validation Cohort 1, this set of 

biomarkers similarly distinguished between 35 control individuals and 53 pHTN individuals with 

a diagnostic efficacy of AUC=0.73 (Figure S3C), and between 35 healthy individuals and 87 HTN 

individuals with an AUC=0.69 (Figure 4E). In Validation Cohort 2, the same set of biomarkers 

differentiated between 39 control individuals and 39 HTN individuals with a diagnostic efficacy of 

AUC=0.91 (Figure 4F). These results suggest the potential value of fecal archaeal DNA in 

diagnosing hypertension. 

Furthermore, we conducted Spearman correlation analyses between these archaeal markers and 

clinical data of the cohort populations. The results showed that in the discovery cohort, all 11 

archaeal markers were negatively correlated with SBP or SDP, while Candidatus 

Methanomassiliicoccus intestinalis was significantly positively correlated with serum HDL levels 

(Figure 4G). In Validation Cohort 1, Halorubrum lipolyticum, Halogranum salarium, and 

Candidatus Methanomassiliicoccus intestinalis still showed significant negative correlations with 

DBP (Figure 4H). In Validation Cohort 2, Halorubrum lipolyticum and Candidatus 
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Methanomassiliicoccus intestinalis were also significantly negatively correlated with both SBP 

and DBP (Figure 4I). These results further validate the close association between archaea and the 

development of hypertension. 

Cross-Kingdom Synergy Between Gut Bacteria and Archaea in Hypertension 

The interplay and connections between cross-kingdom species within the gut microbiome are 

closely linked to diseases [13]. Considering the potential synergistic interactions between gut 

bacteria and archaea, we analyzed the diversity between these two microbial kingdoms. The 

results indicated a significant positive correlation in richness between bacteria and archaea, both in 

the control (CON) group and the hypertension (HTN) group (Figure 5A-B). Analyses in Validation 

Cohorts 1 and 2 further confirmed this observation (Figure 5C-F), suggesting a close 

cross-kingdom synergy between gut bacteria and archaea. 

Interactions Between Gut Archaea and Bacteria in Hypertension Development 

We further explored the correlations between archaeal and bacterial species through SparCC 

analysis and presented the results in network diagrams. Given that the genera Halorhabdus, 

Halovivax, Methanomassiliicoccus, and the archaeal species Candidatus Methanomassiliicoccus 

intestinalis and Halorubrum lipolyticum were enriched in the control groups across all three 

cohorts, we analyzed their correlations with different bacterial genera and species in both control 

and hypertension (HTN) groups (Figure 6). Interestingly, we found that the number of correlation 

nodes between these archaeal genera or species and bacteria significantly increased in the HTN 

group across all three cohorts. This suggests that gut archaea might participate in the development 

of hypertension through their interactions with bacteria. 

Specifically, Lachnoclostridium showed a consistent negative correlation with Halorhabdus across 
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all cohorts, suggesting it may be involved in the mechanism by which Halorhabdus influences 

blood pressure. The bacterial genus Erysipelatoclostridium was negatively correlated with either 

Halorhabdus or Methanomassiliicoccus in all populations across the three cohorts, indicating that 

Halorhabdus or Methanomassiliicoccus might affect the progression of hypertension by 

suppressing the levels of Erysipelatoclostridium. Additionally, the bacterial genus Gemmiger 

showed a consistent positive correlation with either Halorhabdus or Halovivax, implying a 

potential protective role (Figure 6). 

At the species level, in the control populations, the differential bacterium Eubacterium eligens 

showed a consistent negative correlation with either Candidatus Methanomassiliicoccus 

intestinalis or Halorubrum lipolyticum across all three cohorts. Oscillibacter sp. 57_20 

consistently showed a positive correlation with either Candidatus Methanomassiliicoccus 

intestinalis or Halorubrum lipolyticum across all cohorts, suggesting that gut archaea might be 

involved in the pathogenesis of hypertension through their effects on Eubacterium eligens and 

Oscillibacter sp. 57_20 (Figure S4). 

Discussion 

The present study uncovered notable shifts in the gut archaeal populations of hypertensive 

individuals compared to healthy controls, particularly highlighting the differential abundance of 

halophilic and methanogenic archaea. These findings suggest a link between changes in gut 

archaea and hypertension, underscoring the potential of archaeal species as non-invasive 

biomarkers for diagnosing hypertension. Through examining the complex interactions between 

gut archaea and bacteria, our research opens a new avenue for understanding and potentially 

managing hypertension, emphasizing the critical role of archaea in hypertension. 
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Archaea are indispensable members of the human gut microbiota [19-21]. Many archaea thrive in 

extreme ecosystems, being adapted to acidic, alkaline, saline, or thermophilic conditions [22]. 

However, some archaeal species can inhabit temperate and neutral environments, such as those 

found in the human gut, skin, nose, lungs, oral cavity, and vagina [23-24]. Due to the 

uncultivability of most archaeal species, current knowledge regarding the composition and 

function of gut archaea is limited. With the rapid advancement of high-throughput sequencing 

technologies, analyzing the archaeal community in the gut using next-generation sequencing has 

become feasible [10, 13, 25-26].   

Our findings indicate that the abundance of archaea in the gut accounts for approximately 

0.04%-0.6% of the total species abundance, consistent with previous reports [13]. Our analysis 

reveals significant variability in the abundance of specific archaeal species between hypertensive 

individuals and healthy controls, underscoring the potential role of these microbes in blood 

pressure regulation or in reflecting physiological alterations related to hypertension. The 

identification of differentially abundant halophilic and methanogenic archaea between these 

groups corroborates earlier studies linking these archaeal families to health and disease [13], 

suggesting a potential mechanism through which these microbes could affect hypertension. 

Specifically, in three cohorts, the abundance of halophilic archaea genera Halorhabdus and 

Halovivax, as well as the halophilic archaeal species Halorubrum lipolyticum, was significantly 

reduced in the hypertensive group. Current knowledge about the functions of these halophilic 

archaea is limited. Halorhabdus utahensis, a member of the Halorhabdus genus, can metabolize 

and produce carotenoids, which have antioxidant properties [27]. Halorhabdus rudnickae has been 

shown to activate human dendritic cells and orient T helper cell responses [28]. Additionally, 
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metabolites secreted by Halorhabdus rudnickae exhibit significant toxic effects on ovarian cancer 

cells, suggesting that it plays a protective role as an archaeon [29]. The role and mechanisms of 

these halophilic archaea in hypertension require further investigation. 

In all three cohorts studied, we observed a reduced abundance of the methanogenic archaea genus 

Methanomassiliicoccus and its species Candidatus Methanomassiliicoccus intestinalis in patients 

with hypertension, suggesting a potential role of methane in the development and progression of 

hypertension. Methane, an important intestinal gas produced by methanogenic archaea metabolism, 

has anti-inflammatory properties and may be linked to the pathophysiological processes of 

hypertension [30-32]. Additionally, both Methanomassiliicoccus intestinalis and 

Methanomassiliicoccus belong to the Methanomassiliicoccales, an order of archaea that can utilize 

trimethylamine (TMA) [33]. TMA is a compound generated by the gut microbiota from the 

metabolism of specific nutrients such as choline, phosphatidylcholine, and L-carnitine, and is 

oxidized in the liver to form trimethylamine N-oxide (TMAO). Studies have found that TMAO 

may contribute to increased vascular tension and blood pressure by reducing the production of 

nitric oxide (NO) and directly affecting vascular smooth muscle cells [34-35]. In this context, 

archaea that utilize TMA may play a role in the development of hypertension by metabolizing 

TMA and thereby reducing TMAO levels. However, the specific role and significance of gut 

methanogenic archaea in hypertension require further investigation to be fully understood.  

Moreover, the diagnostic potential of archaeal biomarkers for hypertension, as evidenced by the 

predictive power of certain archaeal species, opens new avenues for non-invasive screening 

methods. These findings highlight the microbiome's potential in early disease detection and 

management, offering a novel approach to hypertension diagnosis beyond traditional risk factors 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 27, 2024. ; https://doi.org/10.1101/2024.04.25.24305417doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.25.24305417


16 

 

and indicators. 

The significant positive correlation in richness between bacteria and archaea across both 

hypertensive and control groups underscores the symbiotic relationship within the gut microbiome. 

This synergy suggests a balanced microbial ecosystem is crucial for maintaining health, with 

disturbances potentially contributing to disease pathogenesis, including hypertension. The increase 

in correlation nodes between specific archaeal genera or species and bacteria in hypertensive 

patients further supports this notion, indicating a disrupted microbial interaction network that 

could influence the development or progression of hypertension. 

Lachnoclostridium, Erysipelatoclostridium, and Gemmiger are bacterial genera closely associated 

with Halorhabdus, Halovivax, or Methanomassiliicoccus. Eubacterium eligens and Oscillibacter 

sp. 57_20 are bacterial species closely related to Candidatus Methanomassiliicoccus intestinalis or 

Halorubrum lipolyticum. In our discovery cohort, significant changes in the abundance of these 

bacterial species/genera were observed in patients with hypertension, and similar trends in 

abundance changes for Erysipelatoclostridium, Gemmiger, Eubacterium eligens, and Oscillibacter 

sp. 57_20 were also seen in one or both validation cohorts of patients with hypertension. Although 

the roles of these bacteria in hypertension are not yet clear, they may serve as intermediaries 

through which gut archaea influence the development and progression of hypertension.  

However, the study also acknowledges the complexity of inferring causality from correlation. 

While significant associations between gut archaea and hypertension are evident, determining 

whether these microbial shifts cause hypertension or arise as a consequence remains a challenge. 

Future research should aim to delineate the directional relationship between gut microbiome 

alterations and hypertension, potentially through longitudinal studies or interventional trials that 
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manipulate the gut microbiome and observe effects on blood pressure regulation. 

In conclusion, our findings contribute to the emerging narrative that the gut microbiome, including 

its archaeal constituents, plays a critical role in hypertension. By shedding light on the specific 

archaeal species associated with hypertension and demonstrating their potential as diagnostic 

markers, this study paves the way for innovative approaches to understanding, diagnosing, and 

treating hypertension. As we continue to unravel the microbiome's complexities, the integration of 

microbial analysis into clinical practice could enhance personalized medicine, offering targeted 

interventions based on an individual's microbiome composition. 
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Figure Legends 

Figure 1. Species richness analysis and overview of sample selection. A-C: Rarefaction curves 

depicting species richness across different cohorts: the discovery cohort (A), validation cohort 1 

(B), and validation cohort 2 (C). D: Sample selection was based on four primary filtering criteria: 

exclusion of samples with missing or incomplete raw data, removal of samples with high archaea 

content, exclusion of samples with low archaea content, and removal of samples with insufficient 
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archaeal sequencing depth. 

Figure 2. Distribution of enteric archaea in discovery and validation cohorts. A-B. Relative 

abundance of archaea phyla (A) and species (B) in discovery cohort (CON, n=42; HTN, n=46). 

C-D. Relative abundance of archaea phyla (C) and species (D) in validation cohort 1 (CON=35, 

pHTN, n=53, HTN, n=87). E-F. Relative abundance of archaea phyla (E) and species (F) in 

validation cohort 2 (CON, n=39, HTN, n=39). 

Figure 3. Alterations in enteric archaea associated with hypertension (HTN). A-B: Comparison of 

species richness and Shannon diversity indices between control participants (CON, n=42) and 

HTN patients (n=46) in the discovery cohort, analyzed via the Mann-Whitney U test. C-D: 

Species richness and Shannon diversity indices in validation cohort 1 (CON, n=35; HTN, n=87), 

compared using the Mann-Whitney U test. E-F: Analysis of species richness and Shannon 

diversity indices in validation cohort 2 (CON, n=39; HTN, n=39), utilizing the Mann-Whitney U 

test. G: Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarity showcases 

differences between CON (n=42) and HTN (n=46) in the discovery cohort, assessed with the 

Adonis method. H: PCoA diagram indicating Bray-Curtis dissimilarity in validation cohort 1, 

evaluating dissimilarities between CON (n=35) and HTN (n=87) groups using the Adonis method. 

I: PCoA based on Bray-Curtis dissimilarity between CON (n=39) and HTN (n=39) in validation 

cohort 2, analyzed via the Adonis method. J-L: Differentially abundant archaeal genera between 

CON and HTN groups across the discovery cohort (J: n=42 CON vs. n=46 HTN), validation 

cohort 1 (K: n=35 CON vs. n=87 HTN), and validation cohort 2 (L: n=39 CON vs. n=39 HTN). 

*p<0.05, **p<0.01. 

Figure 4. Potential of enteric archaea species as diagnostic markers for hypertension. A: Heatmap 
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depicting fold changes in enteric archaea species in hypertensive patients (HTN, n=46) relative to 

the mean normalized abundance in the control group (CON, n=42) within the discovery cohort. 

B-C: Decline in abundance of Candidatus Methanomassiliicoccus intestinalis and Halorubrum 

lipolyticum observed both in the discovery and validation cohorts 1 and 2. D: Evaluation of 11 

CON-enriched archaea markers for HTN classification against CON using logistic regression in 

the discovery cohort, achieving an area under the curve (AUC) of 0.85. E: Validation of these 

diagnostic markers in validation cohort 1, with an AUC of 0.69 for differentiating CON (n=35) 

from HTN (n=87). F: Further validation in cohort 2 showed an AUC of 0.91 for distinguishing 

CON (n=39) from HTN (n=39), underscoring their diagnostic efficacy. G-I: Spearman correlation 

analysis via heatmap plots illustrates the relationship between CON-enriched archaea markers and 

clinical indices across the discovery cohort (G), validation cohort 1 (H), and validation cohort 2 (I). 

* p<0.05, ** p<0.01. 

Figure 5. Correlations between archaeal and bacterial alpha diversity across cohorts. A-B: In the 

discovery cohort, a significant positive correlation exists between the alpha diversities of archaea 

and bacteria (measured using the Chao index) within both the control (CON) group (A) and the 

hypertension (HTN) group (B). C-E: Significant positive correlation is also observed in validation 

cohort 1, across the control (CON) group (C), pre-hypertension (pHTN) group (D), and 

hypertension (HTN) group (E), with alpha diversities assessed by the Chao index. F-G: Significant 

positive correlations between the alpha diversities of archaea and bacteria, based on the Chao 

index, are noted in validation cohort 2 for both the control (CON) group (F) and the hypertension 

(HTN) group (G).  

Figure 6. Ecological networks of archaeal and bacterial genera in control and hypertension groups 
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across cohorts. A-C: Co-occurrence networks between key archaeal genera and distinct bacterial 

genera within the control (CON) group across the discovery cohort (A), validation cohort 1 (B), 

and validation cohort 2 (C). D-F: Co-exclusion networks between signature archaeal genera and 

differential bacterial genera within the hypertension (HTN) group, across the discovery cohort (D), 

validation cohort 1 (E), and validation cohort 2 (F). Correlation analyses were conducted using 

SparCC, with significance determined at P values < 0.05. Only correlations with absolute values 

greater than 0.3 are shown, ensuring the representation of ecologically meaningful interactions. 

 

 

 

Table 1. Clinical Details of Study Cohorts 

Cohort Discovery Cohort Validation Cohort 1 Validation Cohort 2 

CON  HTN P value CON pHTN HTN P value CON HTN P value 

Sample Size 42 46 N/A 35 53 87 N/A 39 39 N/A 

Male (%) 23(54.8) 29(63.0) 0.56719 28(80) 49(92.5) 81(93.1) 0.07089 21(53.8) 34(87.2) 0.00288 

Age 56(8.3) 56.7(9.7) 0.70069 54.3(5.8) 51.6(6.6) 53.7(5.6) 0.06759 32.2(11.5) 34.5(6) 0.27873 

BMI 23.2(2.5) 23.3(2.9) 0.82651 25.3(3.1) 

(n=34) 

25.4(2.8) 

(n=49) 

26.1(3.7) 

(n=79) 

0.34069 22.8(2.4) 27.3(3.7) <0.0001 

SBP 111.5(6.6) 162.9(18.8) <0.0001 115.3(7.5) 127.7(10.5) 149.4(14.2) <0.0001 117.8(10.5) 147.2(4.8) <0.0001 

DBP 70.3(6.6) 99.5(10.5) <0.0001 74(6.4) 82.2(5.9) 94.7(9.3) <0.0001 74.1(8.1) 94.1(4.1) <0.0001 

Abbreviations: CON, Control; pHTN, Pre-hypertension; HTN, hypertension; BMI, Body Mass 

Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure. CON is characterized by 

SBP≤120 mmHg, and DBP≤80 mmHg in subjects not receiving antihypertensive treatments. 

pHTN is identified in individuals with 125 mmHg ≤SBP≤139 mm Hg, or 80 mmHg ≤DBP≤89 

mmHg, who are not on antihypertensive medication. Hypertension (HTN) is diagnosed in patients 
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with SBP≥140 mmHg, or DBP≥90 mmHg, in the absence of antihypertensive treatments. All 

continuous variables are presented as mean ± standard deviation unless otherwise noted. P-value 

from the ANOVA/Kruskal Wallis test comparing all three groups and the t-test comparing two 

groups for the continuous variable and Chi-squared test comparing all groups for the categorical 

variable. 
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