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Abstract 33 

Background: Wastewater monitoring data can be used to estimate disease trends to inform public health 34 

responses. One commonly estimated metric is the rate of change in pathogen quantity, which typically 35 

correlates with clinical surveillance in retrospective analyses. However, the accuracy of rate of change 36 

estimation approaches has not previously been evaluated. 37 

Objectives: We assessed the performance of approaches for estimating rates of change in wastewater 38 

pathogen loads by generating synthetic wastewater time series data for which rates of change were 39 

known. Each approach was also evaluated on real-world data. 40 

Methods: Smooth trends and their first derivatives were jointly sampled from Gaussian processes (GP) 41 

and independent errors were added to generate synthetic viral load measurements; the range 42 

hyperparameter and error variance were varied to produce nine simulation scenarios representing 43 

different potential disease patterns. The directions and magnitudes of the rate of change estimates from 44 

four estimation approaches (two established and two developed in this work) were compared to the GP 45 

first derivative to evaluate classification and quantitative accuracy. Each approach was also 46 

implemented for public SARS-CoV-2 wastewater monitoring data collected January 2021 – May 2023 47 

at 25 sites in North Carolina, USA.   48 

Results: All four approaches inconsistently identified the correct direction of the trend given by the sign 49 

of the GP first derivative. Across all nine simulated disease patterns, between a quarter and a half of all 50 

estimates indicated the wrong trend direction, regardless of estimation approach. The proportion of 51 

trends classified as plateaus (statistically indistinguishable from zero) for the North Carolina SARS-52 

CoV-2 data varied considerably by estimation method but not by site. 53 

Discussion: Our results suggest that wastewater measurements alone might not provide sufficient data to 54 

reliably track disease trends in real-time. Instead, wastewater viral loads could be combined with 55 

additional public health surveillance data to improve predictions of other outcomes. 56 
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Introduction 58 

 The use of wastewater surveillance to monitor infectious disease expanded dramatically during 59 

the global coronavirus disease 2019 (COVID-19) pandemic, with thousands of monitoring sites active 60 

across dozens of countries by early 2023.1 Wastewater monitoring offers attractive features for 61 

augmenting surveillance of a wide range of pathogens and other population health-relevant targets, such 62 

as toxic metals and endogenous biomarkers, and may be particularly well-suited as an early warning 63 

system for outbreaks of novel pathogens and variants.2–7 However, assessing disease trends using 64 

wastewater surveillance faces an inherent challenge of interpretation: unlike traditional population 65 

metrics derived from counts of infected, symptomatic, or hospitalized individuals, the quantity of 66 

pathogen markers (e.g., gene targets) measured in wastewater cannot be used directly as a proxy for 67 

community disease burden. The loads of pathogen markers present in wastewater are broadly 68 

proportional to the number of infected individuals shedding the pathogen in their feces—demonstrated 69 

for SARS-CoV-2 by widely reported positive associations between wastewater viral loads and reported 70 

COVID-19 cases—but numerous biological, environmental, and site-specific factors can differentially 71 

impact measurements of wastewater pathogen loads at any given place and time.8–12  72 

A common strategy for interpreting wastewater pathogen loads is to estimate traditional disease 73 

metrics like incidence rate or effective reproduction number.12–17 Such metrics are typically estimated by 74 

exploiting statistical associations between wastewater pathogen loads and reported cases, 75 

hospitalizations, etc. at a given site or by constructing mechanistic models of fecal shedding to estimate 76 

the number of community infections required to produce the pathogen loads measured in the 77 

community’s wastewater. These strategies require additional assumptions and data to implement, such 78 

as geographically and temporally aligned population surveillance data or pathogen-specific fecal 79 

shedding distributions. Such data, however, are often unavailable for novel pathogens and are subject to 80 

change unpredictably over the course of an outbreak or pandemic.17–19 81 
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 An alternative strategy for interpreting wastewater pathogen loads is to assess trends over time 82 

by comparing the loads measured at different time points within the same location. Because assessing 83 

trends within-site helps to control for site-specific factors that influence pathogen load measurements, an 84 

increasing trend in wastewater measurements should correspond to an increase in infections in the 85 

community. Useful information about the direction and speed at which community infection trends are 86 

changing may therefore be inferred solely on the basis of wastewater measurements by estimating the 87 

slope of the wastewater trend at specific times, where the sign and magnitude of the slope provide the 88 

direction and rate of change, respectively.20 89 

 During the COVID-19 pandemic, the United States Centers for Disease Control and Prevention 90 

(CDC) described a simple regression-based approach for estimating the rate of change in SARS-CoV-2 91 

wastewater trends over small subsets of wastewater viral load data.21,22 A refinement of this approach 92 

was suggested that uses reported daily COVID-19 case counts to impute wastewater viral loads on 93 

unmonitored days before applying linear regression to estimate rates of change.20 Both approaches 94 

produce estimated slopes (the rate of change) and associated standard errors that can be used for trend 95 

classification: a positive and statistically significant slope means the trend is increasing, a negative and 96 

significant slope means the trend is decreasing, and a slope that is not statistically significant (regardless 97 

of the sign) indicates the trend is not meaningfully changing and is classified as a plateau.18 Rate of 98 

change estimates from both approaches have been compared with population-based metrics (e.g., 99 

reported cases) but, to the best of our knowledge, the estimation performance and trend classification 100 

accuracy of either approach has not yet been evaluated.18,20  101 

 We developed a simulation-based approach to evaluate rate of change estimates using synthetic 102 

time series data for which the underlying smooth trends and their rates of change were known exactly. 103 

We sampled from Gaussian processes (GP) to jointly simulate smooth wastewater viral load trends and 104 

their first derivatives.23–25 Independent random errors were introduced to the simulated trends to 105 

generate synthetic measurements of wastewater viral loads, varying the smoothness of the trends and the 106 
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magnitude of the errors to represent a range of potential infectious disease patterns. We evaluated four 107 

rate of change estimation approaches: the linear regression approach described by CDC, the multivariate 108 

imputation approach proposed by Al-Faliti et al. (2022), a modified univariate imputation approach 109 

requiring only wastewater measurements, and a continuous smoothing approach using generalized 110 

additive models (GAM) with numerical approximation to estimate the smooth trend and its first 111 

derivative.20,21,26,27 These candidate approaches were applied to the synthetic wastewater data and 112 

evaluated by comparing their rate of change estimates to the simulated GP derivatives. Finally, all four 113 

approaches were applied to public wastewater monitoring data from 25 North Carolina sewersheds to 114 

assess the impact of estimation method on the interpretation of trends in a real-world context. 115 

  116 
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Methods 117 

Rate of Change Estimation Approaches 118 

All analyses were performed in R version 4.2.2.28,29 R packages used are denoted by italics. 119 

Rolling Regressions by Sampling Event 120 

 CDC National Wastewater Surveillance System (NWSS) recommends analyzing trends in 121 

measured wastewater viral loads by fitting simple linear regression models to a minimum of the three 122 

most-recent wastewater samples for a given location. These models use log-transformed viral load (log10 123 

gene copies/day) as the response variable and date as the predictor variable.20–22 When fit to three 124 

observations of weekly wastewater samples or five observations of twice-weekly samples, the regression 125 

coefficient corresponds to the slope of the trend—the average daily change in viral load—over the 126 

preceding ~15 days. The estimated rate of change can also be expressed as percent daily change (PDC), 127 

enabling more direct comparison with trends in other metrics.21 We estimated the rate of change on each 128 

day of sample collection by fitting rolling linear models to wastewater viral loads measured on the 129 

estimation day and the preceding four sampling events (five observations total).21,30 For event 𝑖 of 𝑁 130 

sampling events, let 𝒚𝑖 =  [𝑦𝑖−4, … , 𝑦𝑖]
𝑇 denote the log10-transformed wastewater viral loads and 131 

𝒛𝑖 =  [𝑧𝑖−4, … , 𝑧𝑖]
𝑇denote the sampling dates. The rate of change estimate is given by 𝛽 in 132 

 𝒚𝑖 = 𝛽0 + 𝒛𝑖𝛽 + 𝝐𝑖, (1) 

where we assume independent, normally distributed residuals 𝝐𝑖 = [𝜖𝑖−4, … , 𝜖𝑖]𝑇.  133 

 134 

Rolling Regressions on Imputed Daily Observations 135 

Multivariate Imputation 136 

 While clinical and syndromic surveillance of infectious disease outcomes (e.g., incident cases, 137 

hospitalizations, and deaths) are generally reported at daily resolution, wastewater surveillance programs 138 

typically sample less frequently, often once or twice a week.22,31 Rate of change estimates based on 139 
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small subsets of wastewater observations are subject to substantial uncertainty and temporal 140 

variability.18,32 To address the temporal sparsity of wastewater data, Al-Faliti et al. used daily reported 141 

cases to impute wastewater viral loads on unsampled days.20 Daily rates of change were estimated using 142 

rolling linear models applied over 21- or 28-day subsets of the imputed daily wastewater viral loads. 143 

Following the approach of Al-Faliti et al., we constructed five complete daily viral load datasets using 144 

the mice package to implement multivariate imputation using chained equations (MICE) with random 145 

forest models.33 We used log10 wastewater viral loads and a 7-day moving average of daily cases as 146 

inputs to MICE. We modified the original approach slightly by log-transforming the averaged cases for 147 

computational stability and specifying a consistent 20 iterations of the MICE algorithm for each dataset 148 

we imputed.34 From the five resulting complete daily datasets, we selected the realization demonstrating 149 

the highest Spearman rank correlation between 7-day average cases and the imputed daily wastewater 150 

viral loads for downstream analyses, as specified by the method developers. For the selected 151 

multivariate-imputed daily dataset, we estimated the rate of change on each original sampling day by 152 

applying the rolling linear model approach described previously to the 21 daily observations ending on 153 

the estimation day. 154 

 155 

Univariate Imputation 156 

 The multivariate imputation approach relied on daily reported case data but a key motivation for 157 

estimating rates of change in wastewater surveillance data is to enable identification and interpretation 158 

of infectious disease trends using only wastewater surveillance data (i.e., when reported case data are 159 

unavailable or inadequate). We therefore also implemented a univariate time series imputation approach 160 

that used only the measured wastewater viral loads to impute viral loads on unmonitored days. 161 

Univariate imputation was conducted by Kalman smoothing on structural time series models using the 162 

imputeTS package.35 Kalman smoothing has previously been shown to flexibly estimate smooth trends 163 

in wastewater viral loads on both synthetic and various real-world wastewater surveillance data.32 164 
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However, as a discrete-time autoregressive approach that assumes equal-sized time steps, Kalman 165 

smoothing does not provide a direct way to estimate the rate of change and corresponding uncertainty of 166 

the modeled trend. As such, we used Kalman smoothing trend estimates to impute wastewater viral 167 

loads on unsampled days, then estimated the rate of change on each original sampling day by applying 168 

21-day window rolling linear models to the imputed dataset. 169 

 170 

First Derivatives of Smooth Functions of Time 171 

 Substantial fluctuations over short timescales in both measured wastewater viral loads and 172 

reported infections have motivated the use of a variety of smoothing approaches to better characterize 173 

infectious disease trends from noisy surveillance data.20,26,36 Many common smoothing techniques, 174 

including simple moving averages and locally weighted scatterplot smoothing (LOESS), use the values 175 

of neighboring observations within a user-defined window to estimate smoothed values.17,18,20,37 Such 176 

techniques are entirely data-dependent and do not have simple mathematical representations like those 177 

from the methods previously presented. Common time series approaches like Kalman smoothing assume 178 

equally spaced time steps and can only provide smooth estimates at discrete time points.38,39 By contrast, 179 

approaches that estimate continuous, smooth functions of time from the observed data can be evaluated 180 

at any arbitrary time point to obtain the corresponding estimate of the smooth trend. This feature 181 

provides a straightforward means of estimating the rate of change in the smooth trend at any moment 182 

during the monitoring period using finite differences to numerically approximate the first derivative.38 183 

 We used generalized additive models to estimate smoothed wastewater viral loads as continuous 184 

functions of time (see Supplemental Material, Smoothing with Generalized Additive Models). GAMs 185 

are a flexible extension of the generalized linear model that have previously been shown to provide 186 

accurate estimates of wastewater SARS-CoV-2 viral loads.26,27,40 We used the mgcv package to estimate 187 

GAMs by restricted maximum likelihood (REML) using log10 wastewater viral load as the response and 188 

study date as a smooth predictor term. We specified a cubic regression spline basis and the lesser of 100 189 
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or half the number of observations as the maximum basis dimension.27,41 Daily first derivatives and their 190 

corresponding pointwise 95% confidence intervals (CI) were estimated from GAM fits using the gratia 191 

package.42 192 

 193 

Simulating Differentiable Time Series 194 

Simulating Smooth Trends with Known Rates of Change 195 

 We simulated wastewater trends and corresponding rates of change by sampling from Gaussian 196 

processes with squared exponential kernel covariance functions. A GP represents a distribution over all 197 

the possible smooth functions of a continuous domain (e.g., time) and is defined by its covariance 198 

function 𝑘(𝑧𝑖 , 𝑧𝑗) that relates any pair of time points 𝑧𝑖, 𝑧𝑗 on that domain.23,38,43 The time-derivative of a 199 

GP is also a GP with a covariance kernel function 𝑘′(𝑧𝑖 , 𝑧𝑗) equal to the derivative of the original 200 

covariance function with respect to times 𝑧𝑖 and 𝑧𝑗.24,25 This feature enables us to simulate both a smooth 201 

trend and its instantaneous rate of change at any finite set of time points by jointly sampling from the GP 202 

and its derivative, which follow a multivariate normal distribution (see Supplemental Material, Gaussian 203 

Process Derivatives).25,44  204 

 The squared exponential kernel covariance function is given by  205 

 
𝑘(𝑧𝑖 , 𝑧𝑗|𝛼, 𝜌) = 𝛼2exp (−

1

2
(

𝑧𝑖−𝑧𝑗

𝜌
)

2
), (2) 

where 𝛼 is the marginal standard deviation, a scale hyperparameter that controls the magnitude of the 206 

covariance.25 The rate at which correlation decays with increasing distance between times 𝑧𝑖 and 𝑧𝑗 is 207 

controlled by the range hyperparameter 𝜌. Smaller values of 𝜌 indicate that correlation decays more 208 

quickly, so that each observation provides less information about observations at other time points. The 209 

result is a more rapidly changing, wiggly function. Conversely, larger values of 𝜌 mean each 210 

observation offers greater information about its temporal neighbors, producing a more slowly changing, 211 

or smoother, trend. We implemented the squared exponential kernel and its derivatives (see 212 
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Supplemental Material, Squared Exponential Kernel Function) as R functions and jointly sampled trend 213 

observations and derivatives using the mvnfast package.44,45 214 

 215 

Generating Synthetic Wastewater Measurements 216 

 Synthetic wastewater viral load time series data (in log10 copies/day) were generated by jointly 217 

sampling a smooth trend and its first derivative from a GP at 1000 sequential integer locations to 218 

represent a 1000-day monitoring period with daily trend realizations. Independent random errors 219 

𝜖𝑡
𝑤𝑤  ∼  N(0, 𝜎2) with standard deviation 𝜎 were independently sampled on each day 𝑡 and added to the 220 

corresponding trend value 𝑥𝑡 to simulate the daily wastewater log10 viral load measurement 221 

𝑦𝑡
𝑤𝑤 =  𝑥𝑡 +  𝜖𝑡

𝑤𝑤. We down-sampled the synthetic wastewater measurements by selecting every third, 222 

then fourth, observation in an alternating pattern to represent a typical twice-weekly wastewater 223 

sampling frequency, denoted 𝑦𝑖
𝑤𝑤,𝑜𝑏𝑠 =  𝑦𝑡[𝑖]

𝑤𝑤 for the 𝑖th of 𝑁 simulated sampling events.46 Although our 224 

primary aim was estimating rates of change using wastewater measurements alone, implementing the 225 

multivariate imputation approach required simulating daily reported case counts that shared an 226 

underlying trend with the simulated wastewater viral loads. We sampled daily cases from a Poisson 227 

distribution with the daily log-incidence rate given by the sum of the GP trend, independent Gaussian 228 

error, and a constant mean log-incidence rate determined mechanistically for an assumed sewershed 229 

population of 200,000 (see Supplemental Material, Simulating Reported Case Counts).12 230 

 231 

Evaluating Performance of Rate of Change Estimation Approaches 232 

Simulation Scenarios 233 

 We evaluated the rate of change estimation performance for three values of 𝜌 so as to have 234 

varying smoothness of trends, and three values of 𝜎 so as to control the magnitude of variation of 235 

synthetic observations around the trend. In total, we had nine simulation scenarios. Range 236 
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hyperparameter values of 𝜌 =  90, 𝜌 =  30, and 𝜌 =  15 days were selected to produce more smooth 237 

(slowly changing), moderately smooth, and less smooth (wiggly) trends, respectively.38 The GP 238 

marginal standard deviation 𝛼 =  1 was used for all simulations, such that the uncorrelated variance 𝜎2 239 

was a quarter of the autocorrelated trend variance 𝛼2 for the less-noisy condition 𝜎 =  0.5; 240 

approximately half the trend variance for the moderate condition 𝜎 =  0.75; and equal to the trend 241 

variance for 𝜎 =  1. We generated 1000 synthetic datasets under each scenario and estimated the rate of 242 

change on each designated “sampling event” day (i.e., the third and seventh day of each seven-day 243 

period) by each of the four approaches (rolling linear models, multivariate imputation, univariate 244 

imputation, and generalized additive models). 245 

 Implementing an estimation approach over the entire synthetic dataset corresponds to a 246 

retrospective analysis in which previously collected data are analyzed to characterize past trends. 247 

However, active wastewater monitoring programs are primarily concerned with identifying changes in 248 

infection trends in near real-time, updating estimates as new data become available.22 For the rolling 249 

linear model approach these analyses are identical, as only the five most recent observations are 250 

analyzed for each estimation day. By default, the imputation and GAM approaches make use of the 251 

entire set of observations, but in real-time analyses they would be limited to only the data collected up to 252 

each estimation time point. Accordingly, we also implemented a modified local GAM approach 253 

(“rolling GAM”) that refit the GAM to only the subset of data already observed by the day for which the 254 

rate of change was being estimated. Locally restricted rolling imputations were not implemented: 255 

multiple imputation was too computationally intensive to feasibly perform across all simulation 256 

scenarios and iterations, while for univariate imputation, the maximum likelihood estimation 257 

underpinning the Kalman smoothing too often failed to converge, halting the simulations. The global 258 

imputation approaches provide upper bounds on the performance of these approaches by incorporating 259 

future information into the imputations while only using a limited window of antecedent imputed 260 

observations to estimate the rate of change on a given day. 261 
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 262 

Performance Metrics 263 

 For each simulated 1000-day surveillance period, we estimated the rate of change by each 264 

approach on all days with a corresponding synthetic wastewater viral load measurement after the first 90 265 

days (a three-month baseline data collection period to accommodate the different minimum sample sizes 266 

required by each approach), for a total of 260 estimates per approach. The rate of change estimate 𝑅𝐶𝑡[𝑖]
𝑘  267 

for approach 𝑘 was compared with the sampled GP first derivative 𝑥𝑡[𝑖]
′  on day 𝑡 corresponding to viral 268 

load observation 𝑖 to assess pointwise estimation performance. The pointwise performance indicators 269 

were summarized across all estimates for a given simulated time series to calculate performance metrics 270 

for each approach. Performance metric distributions were further characterized as the median, 2.5%, and 271 

97.5% quantiles of each metric across all 1000 simulations of each simulation scenario. Quantitative 272 

accuracy was assessed by the root mean square error, 𝑅𝑀𝑆𝐸𝑘 =  √
1

𝑁
∑ (𝑅𝐶𝑡[𝑖]

𝑘 − 𝑥𝑡[𝑖]
′ )

2𝑁
𝑖=1 .17 The 95% 273 

CI coverage (the proportion of 95% CIs containing the true rate of change) and average width (distance 274 

between the upper and lower 95% CI bounds) served as indicators of quantitative precision. 275 

 Each estimate was also classified as increasing or decreasing according to the sign of the point 276 

estimate (positive or negative, respectively, as the point estimate was never exactly zero).18 The rate of 277 

change estimate at observation 𝑖 was considered a true positive (TP) when both the point estimate and 278 

true rate of change were positive (𝑅𝐶𝑡[𝑖]
𝑘 >  0 and 𝑥𝑡[𝑖]

′ >  0); a true negative (TN) for 𝑅𝐶𝑡[𝑖]
𝑘 <  0 and 279 

𝑥𝑡[𝑖]
′ <  0; a false positive (FP) for 𝑅𝐶𝑡[𝑖]

𝑘 >  0 but 𝑥𝑡[𝑖]
′ <  0; and a false negative (FN) for 𝑅𝐶𝑡[𝑖]

𝑘 <  0 280 

but 𝑥𝑡[𝑖]
′ >  0. We assessed binary classification performance by sensitivity, the proportion of true 281 

increasing trends correctly classified as increasing, and specificity, the proportion of true decreasing 282 

trends correctly classified as decreasing: 283 
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𝑠𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦𝑘 =

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑘 =
𝑇𝑁𝑘

𝑇𝑁𝑘 + 𝐹𝑃𝑘
 

(3) 

 CDC suggests a third class, plateau, corresponding to low rates of change that may not warrant a 284 

response.18,21 In practice, however, plateaus are classified on the basis of a statistical test and identify 285 

trends with rates of change that the estimator cannot confidently differentiate from zero. Because the 286 

simulated true trend and its rate of change are known exactly, there is no directly equivalent definition 287 

available to classify true plateaus for evaluating multiclass performance. We instead incorporated the 288 

concept of varying confidence in class predictions by considering the probability that the trend was 289 

increasing. We estimated the probability of an increasing trend by computing the proportion of a rate of 290 

change estimate’s 95% CI that was greater than zero. A CI that covered only positive rates of change 291 

was assigned a 100% probability of belonging to the increasing class, while a CI that included only 292 

negative rates of change was considered to have a 0% probability of increasing. For a CI that included 293 

zero, we computed the probability of an increasing trend by dividing the rate of change value at the CI’s 294 

upper bound by the width of the CI. We performed receiver operating characteristic (ROC) curve 295 

analysis with the yardstick package to incorporate trend class probability into the binary classification 296 

performance assessment.47 Sensitivity and specificity were calculated using each observed class 297 

probability as the threshold for classifying an increasing trend, which generated an ROC curve tracing 298 

the sensitivity-specificity trade-off across probability thresholds. We used the area under the curve 299 

(AUC) to assess classification performance when treating the rate of change estimation approach as a 300 

probabilistic classifier.48 301 

 302 
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Application: North Carolina SARS-CoV-2 Wastewater Viral Loads 303 

 We obtained publicly available data on wastewater SARS-CoV-2 per-capita viral loads and 304 

COVID-19 cases for 25 North Carolina sewersheds from the NC Department of Health and Human 305 

Services (NCDHHS) COVID-19 Wastewater Monitoring Dashboard.49 Detailed procedures for sample 306 

collection, laboratory analysis, and data processing have been described previously.46,50 Ten sewersheds 307 

began reporting viral loads in January 2021, with nine sewersheds added in June 2021, five more in 308 

October–November 2021, and a single addition in March 2022. We analyzed data collected through 309 

24 May 2023, when COVID-19 case reporting ended statewide. The publicly available data listed a 310 

count of 2 for any day with 1 – 4 cases to protect privacy and no value (missing) for days with no new 311 

cases, with COVID-19 incidence reported as daily new cases per 10,000 sewershed population. We 312 

scaled by the reported sewershed population and rounded to the nearest integer to recover daily case 313 

counts, substituting 0 for missing counts and a random integer from 1 – 4 with equal probability for any 314 

recovered counts of 2. Wastewater per-capita viral loads were log10-transformed for all analyses, 315 

yielding units of log10 copies/person/day; data were provided with imputed values already substituted for 316 

non-detects, as described previously.46,50 317 

 For each sewershed, we estimated the rate of change on the date of each wastewater sample 318 

(after an initial 90-day baseline monitoring period) via the four estimation approaches and classified 319 

each estimate as increasing, decreasing, or plateau.21 We compared rate of change estimates to the first 320 

derivative of the global trend estimated by the GAM fit to the full dataset for each sewershed (“global 321 

GAM”). Agreement between the global GAM estimates and the four local estimation approaches 322 

informed only by antecedent observations was assessed using the same metrics as for the simulation 323 

study.  324 

 325 
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Approval and Availability Statement 326 

 No human participants were involved in this research. All analyses were performed on synthetic 327 

or publicly available, aggregated data and did not require ethical approval. The code and data to perform 328 

these analyses are freely available in a permanent online repository at 329 

https://doi.org/10.17605/OSF.IO/BPGN4 (see Supplemental Material, Analysis Code). The original NC 330 

sewershed monitoring data may be accessed at https://covid19.ncdhhs.gov/dashboard/data-behind-331 

dashboards.  332 
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Results 333 

Simulation Study 334 

Scenarios 335 

 Figure 1 presents examples of the synthetic wastewater viral load data we generated for each 336 

simulation scenario. As expected, the 𝜌 =  90 days, 𝜎 =  0.5 log10 copies/day scenario produced the 337 

smoothest trend and least noisy observations, whereas the 𝜌 =  15 days, 𝜎 =  1 log10 copies/day 338 

scenario produced the most wiggly trend with the noisiest observations. The trend first derivatives, 339 

corresponding to the rate of change, were influenced only by the value of 𝜌 (Figure 1b). The smoothest 340 

scenarios (𝜌 = 90) produced rates of change with the smallest magnitudes, while the wigglier 𝜌 = 15 341 

scenarios produced much larger magnitude rates of change. 342 

 343 
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 344 
Figure 1. Illustrative realizations of (a) simulated wastewater viral load trend (black line) and synthetic 345 

observations (blue points) and (b) first derivative of simulated wastewater viral load trend for nine 346 

scenarios with varying specifications of the Gaussian process (GP) range parameter ρ and independent 347 

random error standard deviation 𝜎 348 

 349 
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Rate of Change Estimates 350 

 Under the moderate 𝜌 =  30 days, 𝜎 =  0.75 log10 copies/day simulation scenario, the global 351 

GAM approach generally produced smooth estimates that largely tracked both the simulated trend 352 

(Figure 2a) and its rate of change (Figure 2b). By contrast, the four local estimation approaches yielded 353 

more disjointed estimates that broadly oscillated around the true rate of change, with the rolling GAM 354 

and univariate imputation point estimates appearing to track the truth more closely and the rolling linear 355 

model swinging more dramatically between estimates. The rolling linear model estimates also exhibited 356 

the highest uncertainty, with the widest 95% CIs on average (Table S1); univariate imputation estimates 357 

typically had the narrowest CIs, which frequently did not include the true rate of change given by the GP 358 

derivative. Both the global and rolling GAM estimates generally covered the true rate of change with 359 

their 95% CIs. The rolling GAM estimates had greater uncertainty. This uncertainty resulted because 360 

each estimate was made at the extreme of the range of the observed data without the benefit of future 361 

observations to the right of the estimation point that were available to the global GAM (except for the 362 

final observation, for which the approaches, as expected, converged to identical estimates).40 Both 363 

imputation approaches and the rolling GAM also appeared to lag somewhat during periods of more 364 

rapid change in the trend, observable in Figure 2b as the right-ward shift in the estimated rate of change 365 

relative to the GP derivative. 366 
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 367 
Figure 2. True (simulated) and estimated (a) viral load trend and (b) rate of change in viral load by each 368 

of the candidate estimation approaches for one realization of the moderately smooth, moderately noisy 369 

(𝜌 = 30, 𝜎 = 0.75) simulation scenario. The synthetic measurements used to fit all models are 370 

displayed as green points. 371 

 372 
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Estimation Performance 373 

 Across all nine scenarios, the global GAM—which utilized more data than an ongoing, real-time 374 

wastewater monitoring program would have access to—consistently produced the most accurate 375 

estimates, as indicated by lowest RMSE (Figure 3a). For the smoothest scenarios (𝜌 = 90 days), the 376 

rolling GAM exhibited similarly high accuracy regardless of the magnitude of the noise parameter 𝜎, 377 

followed by the univariate imputation approach, multivariate imputation, and finally by the rolling linear 378 

model approach, which was considerably less accurate and more impacted by increasing noise variance. 379 

However, the differences in accuracy between approaches diminished for less-smooth trends as RMSE 380 

increased, such that the RMSE distributions were similar across all four local estimation approaches 381 

(median RMSE: 0.06 – 0.08 Δlog10 copies/day) for the least-smooth (𝜌 = 15) scenarios with low (𝜎 =382 

0.5) and moderate (𝜎 = 0.75) noise variance.  383 

 Although the rolling linear model estimates generally had the widest 95% CIs (Figure 2b), they 384 

also most consistently included the true rate of change in about 95% of intervals, the target coverage 385 

proportion (Figure 3b). The uncertainty of global GAM estimates, while much narrower than for the 386 

rolling linear model, was overly conservative, with median coverage >95% for the smoother and less 387 

noisy scenarios. Univariate imputation had coverage proportions appreciably <95% for all but the 388 

smoothest scenarios. The multivariate imputation approach also generally had coverage proportions that 389 

were <95%. The median 95% CI coverage of rolling and global GAM estimates remained relatively 390 

high across all scenarios, but both approaches demonstrated large variability in interval coverage across 391 

iterations of the more challenging (less smooth, noisier) scenarios. GAMs appear to be susceptible to 392 

estimating inappropriately smooth trends under such conditions, as observed in the essentially flat trend 393 

with narrow 95% CIs estimated by the global GAM for the 𝜌 = 30, 𝜎 = 1 scenario in Figure S4.26 Such 394 

over-smoothing appears to occur more frequently when GAMs are fit to high-variance (relative to 𝛼) 395 

synthetic measurements generated from wiggly trends, which can produce an essentially uniform cloud 396 

of observations that envelop and obscure the trend (𝜌 =  30, 𝜎 =  1 scenario in Figure 1a). 397 
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 The relative performance of each approach at correctly classifying the trend as increasing or 398 

decreasing was consistent across the nine simulation scenarios (Figure 3c). The global GAM 399 

consistently demonstrated the highest median AUC, although AUCs were more variable across 400 

iterations of the wigglier and noisier scenarios. Under the smoothest trend scenarios (𝜌 = 90), the 401 

rolling GAM estimates had the highest median AUC among the local estimation approaches, but also 402 

greater variability in AUC. Rolling linear models exhibited the lowest median AUC at just over 50%—403 

only slightly better than chance. Intriguingly, the AUC of rolling linear models improved as trend 404 

smoothness decreased and the AUC of all other approaches degraded; for the wiggliest scenarios 405 

(𝜌 = 15), the rolling linear model median AUC was equal to or greater than any of the other local 406 

models. The rolling GAM approach provided the least accurate trend classifications in the least smooth, 407 

most noisy scenario, likely related to the propensity for GAMs to over-smooth under such conditions.26 408 

By contrast, the univariate imputation approach performed fairly consistently across less-smooth 409 

scenarios, regardless of the noise variance, potentially due to the overly precise estimates providing 410 

more weight when the sign was correct (as was the case for the majority of estimates). However, no 411 

local estimation approach consistently achieved median sensitivities, specificities, or AUCs above 80% 412 

for any scenario (Table S1), indicating that none of these approaches would reliably classify pandemic 413 

trends as increasing or decreasing in near real-time as part of an ongoing wastewater monitoring 414 

program. 415 

 416 
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 417 
Figure 3. Median and 2.5th – 97.5th percentiles of performance metrics for candidate rate of change 418 

estimation approaches across 1000 realizations of each of the nine simulation scenarios. Vertical dotted 419 

lines indicate the target performance for each metric. 420 

 421 
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SARS-CoV-2 Trends in North Carolina Sewersheds 422 

 The 25 NC sewersheds that we analyzed served populations ranging from 3500 – 550,000 people 423 

and were monitored over periods of 431 – 871 days, with SARS-CoV-2 viral loads reported for 121 – 424 

245 wastewater samples at each site (Table S2). The lowest median per-capita viral loads were observed 425 

in the Wilmington sewershed, at 3.7 million copies/person/day (interquartile range [IQR] 7.6 million 426 

copies/person/day), with the highest viral loads observed at the Cary 3 site (median (IQR): 36.8 (44.3) 427 

million copies/person/day). The measured wastewater viral loads and global GAM-estimated trend, 428 

along with the corresponding rate of change estimates by each approach assessed in the simulation 429 

study, are presented separately for each sewershed in Figures S7 – S31. Concordance between the global 430 

GAM rate of change estimates and the local model estimates were similar between approaches except 431 

for rolling linear model estimates, which exhibited somewhat higher and more variable RMSE across 432 

the 25 sewersheds (Figure S6). As in the simulation study, the rolling linear model estimates had the 433 

widest 95% CIs but also included the mean global GAM estimate at approximately the target proportion 434 

of 95%. Likewise, the univariate imputation approach had the narrowest average 95% CIs, which failed 435 

to cover the majority of GAM estimates.  436 

 Under the three-class system, in which rate of change estimates are classified as increasing or 437 

decreasing only when their 95% confidence intervals exclude zero, the univariate imputation approach 438 

also consistently identified the highest proportion of estimates as clearly increasing or decreasing and 439 

the fewest as plateaus across all sites (Figure 4). The majority of estimates were classified as plateaus by 440 

each of the other approaches, while only one site (Roanoke Rapids) was majority plateau (53%) by the 441 

univariate imputation approach (Table S3). The proportion of estimates deemed plateaus was highest 442 

(often >90%) by either the rolling linear model or the rolling GAM approaches, except in Jacksonville, 443 

where the global GAM classified all but one estimate as plateau (Figure S20). Approximately three-444 

quarters of global GAM estimates and two-thirds of multivariate imputation estimates were identified as 445 

plateaus. The relative frequency at which each estimation approach classified trends as plateaus matched 446 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2024. ; https://doi.org/10.1101/2024.04.24.24306320doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.24.24306320
http://creativecommons.org/licenses/by/4.0/


 24 

between the NC data and the simulated data under the moderate (𝜌 = 30) and least smooth (𝜌 = 15) 447 

scenarios, although the global GAM produced fewer plateau calls than did the univariate imputation for 448 

the smoothest (𝜌 = 90) simulation scenarios (Figure S5). All approaches identified both increasing and 449 

decreasing trends at each site, but we observed appreciable variation between approaches in the ratio of 450 

increasing to decreasing trend classifications.  451 

 452 
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 453 
Figure 4. Percentage of estimates classified as decreasing (purple), increasing (mauve), or plateau 454 

(orange) trends by each rate of change estimation approach for 25 North Carolina Sewersheds. 455 

 456 
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Discussion 457 

 Approaches for classifying viral load trends and estimating their rates of change in wastewater 458 

monitoring programs have not, to our knowledge, previously been compared for accuracy and reliability. 459 

Because trends and their slopes are not directly measured, we generated synthetic wastewater viral load 460 

time series using Gaussian processes to simulate a range of potential patterns of disease trends with 461 

known first derivatives. We implemented four rate of change estimation approaches—two previously 462 

reported and two developed herein—representing routine trend assessments from a typical, twice-463 

weekly wastewater monitoring program that could reasonably be utilized by public health authorities 464 

without specialized statistical expertise. When applied to the synthetic time series data, all of the 465 

approaches showed only modest reliability in identifying the correct direction of the trend. The median 466 

agreement between the signs of the estimated and true rates of change typically ranged between 50% 467 

and 75%, corresponding to at least one out of every four trend assessments (i.e., once every two weeks) 468 

providing misleading conclusions about the direction of the trend. This result raises concerns about the 469 

ability to take appropriate action (e.g., issuing alerts in response to apparently increasing trends) 470 

informed by such trend classification approaches. 471 

 The addition of plateau-class trends in a three-class system partially addresses this modest 472 

reliability by requiring greater certainty before identifying trends as increasing or decreasing. As 473 

currently defined in wastewater surveillance applications, plateau status is not an inherent property of 474 

the trend but rather the product of a conventional decision criterion that the rate of change estimate was 475 

not significantly different from zero at the 5% significance level.51 Both the magnitude of the estimate 476 

and the precision with which it was estimated affect whether statistical significance was achieved, 477 

meaning that trends classified as plateau may have been changing too slowly to warrant attention or that 478 

the rate of change estimate was too uncertain to confidently determine the direction of change. The 479 

choice of estimation approach consistently impacted the proportion of estimates deemed plateau, though 480 

these patterns appeared mostly related to the precision of the rate of change estimates, with the 481 
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inappropriately precise imputation-based approaches identifying a larger proportion of non-plateau 482 

trends. The plateau concept implies a trade-off between making a potentially incorrect determination 483 

(e.g., classifying as decreasing a trend that is truly increasing) against failing to make a determination 484 

(i.e., classifying as plateau) when conditions are in fact meaningfully changing. However, by conflating 485 

two distinct concerns—the magnitude of change and estimation uncertainty—the existing plateau 486 

definition does not directly address key questions of what is a meaningful rate of change to warrant 487 

further attention and how to balance the costs of incorrect action vs. inaction when meaningful changes 488 

in the trend are underway. Such considerations may be informally addressed by selecting more or less 489 

aggressive classification approaches or by varying the significance threshold. Greater transparency 490 

would be afforded by explicitly specifying the threshold above which rates of change would be 491 

considered meaningful, as when Keshaviah et al. specified the doubling of wastewater viral quantities as 492 

a component of an algorithm to detect infection surges.36 As of December 2023, CDC NWSS similarly 493 

published fixed categories defined by the percent change in viral load over the previous 15 days to 494 

classify trends, with changes  100% considered “large” increases.52,53 495 

 Both quantitative and classification accuracy differed between approaches, but the differences 496 

were generally observed only for smoother trends. As trends oscillated more rapidly with decreasing 𝜌, 497 

method performance degraded such that all were essentially equally poor. This dependence on 498 

characteristics of the trend itself suggests that even highly performing approaches may not be suitable in 499 

all contexts and anticipated trend smoothness should be considered when selecting a rate of change 500 

estimation approach to apply at a given monitoring site and time. While trend smoothness may be 501 

directly characterized by estimating GP range hyperparameters from previously collected monitoring 502 

data, fitting GPs is non-trivial—particularly estimating the weakly identified covariance function 503 

hyperparameters—and may be generally infeasible outside academic settings.43,54,55 Informal 504 

smoothness assessments may prove sufficient, for example by visually comparing global GAM-505 

estimated trends to representative GP simulations across a range of 𝜌 values. Both strategies rely on the 506 
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assumption that future trends will be similar to those already observed, for which adequate data to 507 

characterize trend smoothness may be unavailable, particularly after the emergence of a novel pathogen. 508 

 To aid interpretability, we simulated wastewater trends using a simple GP with zero global mean 509 

and a squared exponential covariance function with constant marginal standard deviation 𝛼 and a single 510 

temporal range hyperparameter 𝜌 across the entire simulated monitoring period. These conditions do not 511 

fully reflect the real-world complexity of infectious disease trends. However, the flexibility of GPs 512 

readily allows extension of our simulation approach to represent smooth trends of far greater 513 

complexity. For example, the GP may be specified with multiple additive Matérn covariance functions 514 

(of which the squared exponential is a special case) to introduce fluctuations at multiple time scales, or 515 

with alternative covariance structures that represent specific physical processes (though non-Matérn 516 

functions may not be readily differentiable).23,43,46,56,57  517 

 The broad utility of wastewater surveillance, particularly in detecting emerging pathogen 518 

lineages, has been widely demonstrated.58–60 However, effectively leveraging wastewater measurements 519 

alone to estimate the rate of change of disease trends in real-time (i.e., on the day of the most recent 520 

measurement) has proved particularly challenging. While retrospective estimation of temporal trends 521 

and their rates of change by global GAMs was reasonably accurate in our simulation study and credible 522 

when applied to observed SARS-CoV-2 viral loads in NC sewersheds, real-time estimates are made at 523 

the extreme range of the data where uncertainty is greatest (as illustrated by the rolling GAM’s much 524 

noisier estimates and wider CIs relative to the global GAM). Coupling the most recent viral load 525 

measurement with recent estimated trend values provides a good indication of the neighborhood of 526 

potential values the current trend may take, but is less informative about where the trend is heading.61 527 

Rather than attempting to estimate instantaneous rates of change, relative metrics with more 528 

retrospective features, such as the more recently developed CDC NWSS Wastewater Viral Activity 529 

Level metric that compares current viral loads to a long-running, site-specific baseline value, may offer 530 

a more reliable basis for understanding community disease burdens using only wastewater data.62 As 531 
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wastewater surveillance data become increasingly relied on, any such wastewater-only metric must be 532 

thoroughly evaluated before being used to identify public health-relevant differences in community 533 

disease burden. We suggest that additional studies focus on using wastewater measurements in context 534 

with other public health metrics, such as hospitalizations or emergency department visits, to enhance 535 

predictions and updating current models to adapt to changing disease dynamics.63 536 

 537 

  538 
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