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Abstract

Background: Many disorders display dysbiosis of the enteric microbiome, compared with healthy 

controls. Different disorders share a pattern of dysbiosis that may reflect ‘reverse causation’, due to 

non-specific effects of illness-in-general. Combining a range of disorders into an ‘aggregate non-

healthy active control’ (ANHAC) group should highlight such non-specific dysbiosis.  Differential 

dysbiosis between the ANHAC group and specific disorders may then reflect effects of treatment or

bowel dysfunction, or may potentially be causal. Here, we illustrate this logic by testing if 

individual genera can differentiate an ANHAC group from two specific diagnostic groups.

Methods: We constructed an ANAHC group  (n=17) that had 14 different disorders. We then used 

random forest analyses to test differential dysbiosis between the ANHAC group and two other 

disorders that have no known pathology, but: (i) symptoms of illness (Myalgic Encephalomyelitis / 

Chronic Fatigue Syndrome – ME/CFS – n = 38); or (ii) both illness and bowel dysfunction 

(ME/CFS comorbid with Irritable Bowel Syndrome – IBS – n=27).

Results: Many genera differentiated the ANHAC group from co-morbid IBS. However, only two 

genera - Roseburia and Dialister – discriminated the ANHAC group from ME/CFS. 

Conclusions: Different disorders can associate with specific forms of dysbiosis, over-and-above 

non-specific effects of illness-in-general. Bowel dysfunction may contribute to dysbiosis in IBS via 

reverse causation. However, ME/CFS has symptoms of illness-in-general, but lacks known 

pathology or definitive treatment that could cause dysbiosis. Therefore, the specific dysbiosis in 

ME/CFS may be causal.

[230 words]
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Contribution to the field

Many disorders associate with enteric dysbiosis. The pattern of dysbiosis is largely consistent 

between unrelated disorders, which suggests that it mainly reflects non-specific secondary effects of

illness-in-general (e.g. due to changes in activity levels, or diet). However, faecal microbiome 

transplantation (FMT) can be therapeutic in some disorders. This implies that unique features of 

dysbiosis may cause those specific disorders. Here, we propose a way to assess causal effects of 

dysbiosis, by testing if individual genera can discriminate individual disorders from an ‘aggregate 

non-healthy active control’ (ANHAC) group. Dysbiosis in the ANHAC group can control for non-

specific effects of illness-in-general on the microbiome and so highlight potentially-causal forms of 

dysbiosis in specific disorders. This approach may provide insight into pathogenetic mechanisms of 

individual disorders and help to design specific forms of FMT to counteract them.
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Introduction

Many disorders associate with enteric dysbiosis. The pattern of dysbiosis is largely consistent 

between unrelated disorders.[1] So, this shared pattern may reflect reverse causation, due to  non-

specific secondary effects of illness-in-general (e.g. changes in activity, or diet). However, faecal 

microbiome transplantation (FMT) can be therapeutic in some disorders,[2–6] which indicates that 

unknown elements of dysbiosis may cause those specific disorders. Identifying such causal 

elements of dysbiosis could illuminate pathogenetic mechanisms and hence improve therapeutic 

strategies. The first step toward this identification is to control for non-specific secondary effects of 

illness-in-general on the microbiome.[1] Here, we propose a method to achieve this.

In principle, (a) illness-in-general may cause dysbiosis, (b) specific features of single disorders may 

cause dysbiosis, or (c) dysbiosis can cause single disorders. In order to highlight (b) and (c), we 

propose eliminating (a) by constructing an ‘aggregate non-healthy active control’ (ANHAC) group 

that includes a range of unrelated disorders (c.f.[7]). The profile of dysbiosis in this ANHAC group 

should represent the ‘shared signature’[1] of illness-in-general ((a) above – see detailed rationale in 

Methods). Hence, differential dysbiosis between the ANHAC group and single disorders may 

reflect specific associations of dysbiosis with those single disorders ((b) and (c), above). 

Ideally, an ANHAC group should comprise patients with a wide range of disorders whose demo-

graphic and clinical (e.g. organ system and treatment) characteristics resemble those of the target 

disorder(s). Each disorder in the ANHAC group may possess a specific form of dysbiosis, but 

overall these specific associations should cancel. Hence, if the dysbiosis in the whole ANHAC 

group differs from that in a single target disorder, then the elements of dysbiosis that differentiate 

the two groups may be unique to the target disorder. Moreover, if the demographic and clinical 

features and treatments of the ANHAC group and target disorder match, then elements of dysbiosis 

that are unique to the target disorder may be causal.
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One way to assess our proposed method is to compare the ANHAC group with single disorders that 

have no established pathology or definitive treatment. Irritable Bowel Syndrome (IBS) lacks known

pathology or definitive treatment, but associates with bowel dysfunction. Hence differential 

dysbiosis between the ANHAC group and IBS may be secondary to bowel dysfunction. Going one 

step further, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) also lacks known 

pathology or definitive treatment or major bowel dysfunction (comorbidity between IBS and 

ME/CFS is common[8, 9], but not ubiquitous). Therefore, because ‘average’ dysbiosis in an 

ANHAC group should reflect only illness-in-general, any differential dysbiosis between an 

ANHAC group and ME/CFS should not result from ‘reverse causation’ (see above), but may reflect 

microbiome features that contribute to causing ME/CFS.

In principle, a potential problem for our proposed method is heteroscedasticity. That is, the ANHAC

group is diagnostically heterogeneous by design, so that the mean abundance of each genus reflects 

the effects of illness-in-general. However, the diagnostic heterogeneity may cause the range of 

observations of each individual genus to be wide. Such heteroscedasticity may make it impossible 

to detect differences between the mean levels of individual genera in the ANHAC group and 

individual disorders. One goal of the present study is to determine how far the problem of 

heteroscedasticity may be important in practice.
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Methods

Ethics

We obtained microbiome data routinely for the primary purpose of guiding clinical management. 

Additionally, we obtained written consent from each participant to use their data for research. In 

line with UK legislation, the South Central Hampshire Research Ethics Committee deemed that our 

study did not, therefore, need ethical review.

Patients

We studied 4 groups of patients – ANHAC, cancer, ME/CFS and IBS.  We report only comparisons 

between the ANHAC group and ME/CFS or IBS, here (the comparison between the ANHAC and 

cancer groups is in the Supplementary information). Our IBS group comprised mainly people with 

co-morbid IBS and ME/CFS (such co-morbidity is common[3, 10–12] – but see[13]). This co-

morbidity is advantageous in the present context, as it can highlight effects of bowel dysfunction.

We have reported data from some participants previously and posted the current data-set online in 

May 2023.[3, 14, 15] Here, we analysed only participants aged over 14. None had received FMT, 

but (i) all received dietary advice, (ii) those with established pathologies or treatments had 

‘treatment-as-usual’ and (iii) those with ME/CFS or IBS had received β-glucan 1.3 and 1.6 for 

about 4 weeks prior to stool sampling. Here we coarsened patients’ ages to the nearest 5 years.

Microbiome DNA sequencing

Participants collected stool samples and sent them for analysis via bacterial 16S ribosomal RNA 

gene sequencing of bacterial DNA (Atlas Biomed - see[16]). Specifically, identification of 
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microbiota used NanoSeq Illumina paired sequencing to get 250bps after merging. The analysis 

generated Amplicon Sequence variants using QIIME2.[17] 

Rationale

Our design extends that of Gupta et al., who pooled stool metagenomes from 12 different disease or

abnormal bodyweight conditions into “a single aggregate nonhealthy group”.[7]  Gupta and 

colleagues reasoned that the comparing the profile of abundances of different genera in this 

aggregate nonhealthy group with the corresponding profile of healthy people would help to define 

the dysbiosis associated with illness-in-general. We extended Gupta’s logic to compare our 

aggregate non-healthy active control (ANHAC) group with groups that had single disorders – 

ME/CFS or IBS. We reasoned these comparisons could identify genera that associate specifically 

(and, possibly, causally) with individual disorders, after accounting for effects of illness-in-general.

Following the above reasoning, we tested if abundances of individual genera in an ANHAC group 

differ from those in single disorders. Specifically, we tested differential dysbiosis between an 

ANHAC group and two specific disorders: (1) IBS; and (2) ME/CFS.  IBS lacks known pathology, 

so (1) can assess how far bowel dysfunction may cause dysbiosis;  differential dysbiosis between 

ME/CFS and the ANHAC group may reflect causes of ME/CFS (see Introduction).

The present method requires the ANHAC group to be heterogeneous. However, if the microbiota of 

the ANHAC group are too heterogeneous, then comparisons with other, single-diagnosis groups 

may lack power to detect differences (see Introduction). We initially used binomial tests to compare 

(i) the proportion of zeros and (ii) the variances of each genus in the ANHAC group with those in 

each single-diagnosis group. However, (i) and (ii) inter-relate. Therefore we assessed heterogeneity 

more accurately using hierarchical mixed-membership beta regression, to test effects of diagnostic 
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grouping on variance of abundances and on zero inflation while accounting for different levels  of 

abundance of each genus between people (see Supplementary Information). 

We used random forest (RF) analyses to test if the relative abundances of microbial genera can 

predict diagnostic categories.[18] RF may be optimal for this purpose.[19–22] However, RF tends 

to perform badly in high-dimensional analyses with a low fraction of relevant predictors and small 

sample sizes.[23] Therefore, we used preliminary RF analyses to select important variables for each

classification, before constructing large RFs that used the selected variables to predict each 

diagnostic grouping. We weighted the RFs’ sampling procedures to eliminate effects of imbalance 

between group sizes, by down-sampling the larger group when growing decision trees. 

We assessed the RFs’ abilities to predict each diagnostic grouping using the areas under the 

Receiver Operating Characteristic curves (AUROCs) along with their overall classification errors, 

which are available from the RF output.[24] We computed the 95% confidence limits for each 

AUROC.[25] The Supplementary Information gives the details of the RF analyses.

Finally, we assessed the dependence of clinical groupings on abundances of different microbiota 

qualitatively, by generating partial plots to show the forms of their (independent) effects on 

diagnostic groupings. RF analyses can, in principle, discriminate different groups on the basis of 

heteroscedasticity (the variances of individual genera in each group), rather than differences in 

location (the mean abundance of each genus in each group). In this case, the partial relation between

group membership and the abundance of a genus should show a biphasic (U-shaped) form. In 

contrast, if the RF discriminates two groups on the basis of the mean abundance of a genus in each 

group, then the partial relationship should show a monotonic form. We examined the partial 

dependence of group membership on each genus that was important in the RF analyses.
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Results

Sample

The main study included 82 participants (see Supplementary Information for cancer group). Three-

quarters (61/82) were female and the median age was 58 (IQR 35-67). The age and sex distributions

of these diagnostic groups were similar (age: KW χ2 = 0.8, 2df, p=0.67; sex χ2 = 2.7, 2df, p=0.25). 

The ANHAC group comprised 17 people with miscellaneous disorders (1 each of morbid obesity, 

acne rosacea, polymyalgia rheumatica, alopecia areata, anxiety and insomnia, autism, herpes 

genitalis, seborrhoeic dermatitis, eczema, Alzheimer-type dementia, and Parkinson’s Disease; 2 

each with Crohn’s disease, ulcerative colitis, and motor neurone disease); 38 people had ME/CFS; 

27 people had IBS (23 co-morbid with ME/CFS).

Compositions of microbiota

Data were available for 193 genera, but only 94 genera had fewer than 80% non-zero abundances 

(see Supplementary Table S1). There was no evidence of heteroscedasticity between different 

diagnostic groups (see Supplementary Information).

Differential dysbiosis between the ANHAC group and single-diagnosis groups

The proportions of individual genera discriminated the ANHAC group from the ME/CFS and IBS 

groups (see Table 1). 

Table 1: accuracy of the discrimination between clinical groupings by the random forest analyses
Measure   Comparison: ANHAC vs IBS ANHAC vs ME/CFS
AUROC 71.2 (55.4 – 87.0) 70.9 (56.2 – 85.6)
Error rate 31.8 34.5
Values are rounded percentages, with 95% confidence limits in parentheses. Key: AUROC = Area Under the 
Receiver Operating Characteristic curve. The error rate is the overall proportion of misclassification of cases 
in each analysis. Larger AUROCs and smaller error rates indicate better discrimination. Note that analyses 
that used the true ages, prior to coarsening them to meet the requirements of publication, yielded slightly 
higher AUROCs (71.8 for both IBS and ME/CFS) and lower error rate for ME/CFS (27.3).
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Thirty individual genera discriminated the ANHAC group from the IBS group (see Supplementary 

Information). In contrast, only two specific genera – Roseburia and Dialister – discriminated the 

ANHAC group from the ME/CFS group (see Figures 1A-1B). The grouping of ‘Unclassified 

Bacteria’ also contributed to discriminating the ANHAC group from both the IBS and CFS groups. 

The Supplementary Information shows the full details of the dependence of diagnostic categories on

individual genera that contribute to differential dsybiosis.

Figures 1A-1B partial plots of the dependence of ME/CFS on Roseburia and Dialister.

 

Each panel shows the probability of ME/CFS (compared with theANHAC group; y-axis) over the range of 
abundances (%) of an individual genus (x-axis), adjusted for all other predictors in the random forest (RF) 
model. Both plots show monotonic dependence of ME/CFS on the abundance of the genera, which indicates 
that heteroscedasticity did not exert undue influence in the RF model. See Supplementary files for partial 
plots of all genera selected for the random forest analyses.
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Discussion

The present study found that proportions of microbiota can discriminate a heterogeneous aggregate 

non-healthy active-control (ANHAC) group from other, more homogeneous patient groups. Overall 

dysbiosis in the ANHAC group may reflect non-specific secondary effects of illness-in-general. 

Hence, differential dysbiosis between the ANHAC group and other, more homogeneous diagnostic 

groups may reflect specific effects of pathologies or their treatments in the homogenous groups. 

Alternatively, in groups that lack established pathology or definitive treatment (e.g. ME/CFS) – 

differential dysbiosis from the ANHAC group may indicate causal elements of the microbiome. 

Overall, our results provide preliminary proof of the principle that this approach can delineate 

specific dysbiosis in individual disorders, which may help to tailor appropriate treatments.

The present study did not include healthy controls. Many single-disorder groups differ from healthy

controls[1, 7] and there is “a common signal for gut dysbiosis …. shared across unrelated diseases”.

[1] Hence, it is likely that (a) the microbiomes of healthy controls will differ from any patient group

(e.g. [1, 26–28]); and (b) our ANHAC group showed dysbiosis, overall. Consistent with (b), the 

random forest could not differentiate the ANHAC group from a grouping of cancer diagnoses (see 

Supplementary Information and compare[1, 29–32]). However, the absence of healthy controls 

limits characterization of our ANHAC group and the nature of its dysbiosis. This limitation (which 

we address further in the Supplementary Information) does not prevent the proof of principle of our 

approach of comparing an ANHAC group with single-disorder groups. Further studies should 

compare ANHAC groups with healthy controls to assess the nature of dysbiosis that reflects illness-

in-general.[7] 

The random forest analyses differentiated the ANHAC grouping from both the ME/CFS and IBS 

groups. Previous studies have shown that the microbiomes of healthy controls differ from both 
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IBS[1, 33, 34] and from ME/CFS.[14, 35–38] So, the differences that we observed imply that 

ME/CFS and IBS have particular forms of dysbiosis. Almost all of the IBS group had co-morbid 

IBS and ME/CFS. Hence, the genera that discriminate the ANHAC and IBS groups may represent 

the combined effects of ME/CFS and gastrointestinal dysfunction. Consistent with this, low levels 

of Dialister and high levels of Roseburia or Unclassified bacteria contributed to discriminating both 

ME/CFS and IBS from the ANHAC grouping (see Supplementary file of partial plots). These 

convergent findings strengthen each other. The remaining genera that discriminate IBS from the 

ANHAC grouping may reflect causes or effects of the gastrointestinal dysfunction in IBS.

The ME/CFS group had higher proportions of Roseburia than the ANHAC group. The logic of 

comparing single disorders with an ANHAC group is that this can control for ‘reverse causation’ 

due to illness-in-general (see Introduction). Since ME/CFS lacks established pathology,[1, 39] our 

result implies that Roseburia may cause ME/CFS. At first glance, this conflicts with reports that low

abundance of Roseburia generally associates with illness-in-general[1] and fatigue.[40] However, 

people with ME/CFS complain of cognitive difficulties (“brain fog”[41, 42]) and our observation of

more Roseburia in ME/CFS fits with findings of recent Mendelian Randomisation (MR) studies that

higher Roseburia can cause worse cognition.[43, 44] Additionally, our observation of low Dialister 

in ME/CFS fits with findings that levels of Dialister were almost significantly lower in ME/CFS[1] 

and that low levels of Dialister can cause worse cognition.[43, 44] It is unlikely that 2 out of 3 taxa 

that predicted ME/CFS in our small study would concur with findings of causal MR analyses of a 

large sample (¼ million) by chance alone (p=0.006 – see Supplementary Information). Hence, the 

congruity of these results reinforces our logic that excluding reverse causation, by comparing single

disorders with an ANHAC group, may help to identify causal elements of dysbiosis. 
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The ME/CFS group had a higher proportion of “Unclassified Bacteria” than the ANHAC group. 

Despite advances in understanding the microbiome, many of its bacteria remain unclassified.  

Again, the logic that comparing single disorders with an ANHAC group can exclude reverse 

causation suggests that chronic infection with unknown bacteria could cause ME/CFS. An 

alternative possibility is that Roseburia may interact with an unknown taxon (see Supplementary 

Information). If confirmed, these possibilities would have important clinical implications.

No other studies have compared individual disorders with an ANHAC group. Therefore, we used 

publicly-available data (see Supplementary Information) to do this for two of the specific disorders 

that we studied – cancer and IBS. In brief, we used publicly-available data from a recent large 

study[1] to create a new ANHAC group that represents the microbiome signature of illness-in-

general. We reasoned that deviations from this signature in specific disorders may reflect specific 

forms of dysbiosis that associate uniquely with those disorders. The genera that deviated from the 

signature of illness-in-general in the regressions for cancer and IBS in those independent data 

correspond with the genera that random forest selected to discriminate these disorders in our study. 

This correspondence reinforces the reliability and validity of the ANHAC approach to defining 

associations between specific disorders and specific forms of dysbiosis. We describe the methods, 

results and limitations of these analyses in more detail the Supplementary Information.

Heteroscedasticity was not a major limitation for the ANHAC comparisons. Not only did these 

comparisons yield results that resemble other recent findings (see above), but the partial plots of 

group membership on the abundances of individual genera were monotonic (which indicates that 

heteroscedasticity may be unimportant – see Methods). However, the ANHAC group in our study 

was small, which may limit the influence of heteroscedasticity. Further studies should construct 

larger ANHAC groups and examine the influence of heteroscedasticity more fully. 
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We used random forest (RF) analyses to compare individual diagnoses with our ANHAC group. 

Using RF is not essential to the ANHAC approach that we present here. In principle, this approach 

can use any form of discriminant analysis, or machine learning model. However, RF analyses are 

generally both robust and sensitive when analysing microbiome data.[20, 45] Moreover in the 

present context, RF models generated partial plots that could help to assess the influence of 

heteroscedasticity in the ANHAC approach (see above).

Our study focused on excluding reverse causation in associations between enteric dysbiosis and 

disorders that lack established pathology. However, there is increasing recognition that reverse 

causation can complicate many kinds of clinico-pathological associations that underpin our 

understanding of diseases (e.g. [46–53]). Methods in current use to exclude reverse causation may 

rely on unproven assumptions,[54] large samples,[55] long-term follow-up (e.g.[46, 56]) and/or 

complex statistical methods.[50, 56] In contrast, our method of constructing an ANHAC grouping 

uses clinical reasoning to help to exclude reverse causation due to illness-in-general. In the case of 

ME/CFS (where reverse causation due to definitive treatment is unlikely), our small study yielded 

findings comparable with those of complex Mendelian Randomisation analyses of a large sample.

[43, 44] Such large samples are likely to include people with a wide range of illnesses, as well as a 

majority of ‘healthy controls’ – and so may already incorporate elements of our ANHAC approach. 

Potentially, (a) our ANHAC method may be applicable with other types of data that may carry a 

shared signature of illness-in-general – e.g. metabolomic or immunological measures – and (b) 

combining our ANHAC method with other strategies to exclude reverse causation may help to 

clarify causal mechanisms more efficiently in cross-sectional samples.
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In summary, we present an approach to control for reverse causation of dysbiosis due to illness-in-

general, and so help to define forms of dysbiosis that may contribute to causing specific disorders. 

We used the unique features of ME/CFS to illustrate our method, but did not expect our method to 

illuminate ME/CFS because our sample is so small. Nevertheless, correspondence between our 

findings and those of Mendelian Randomisation studies of microbiota that affect cognition[43, 44] 

supports the rationale of our approach. Ultimately, such causal knowledge may help to tailor FMT 

to treat ME/CFS.
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