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Abstract 

Background: While low-dose computed tomography scans are traditionally used for 
attenuation correction in hybrid myocardial perfusion imaging (MPI), they also contain 
additional anatomic and pathologic information not utilized in clinical assessment. We 
seek to uncover the full potential of these scans utilizing a holistic artificial intelligence 
(AI)-driven image framework for image assessment.  
Methods: Patients with SPECT/CT MPI from 4 REFINE SPECT registry sites were 
studied. A multi-structure model segmented 33 structures and quantified 15 radiomics 
features for each on CT attenuation correction (CTAC) scans. Coronary artery calcium 
and epicardial adipose tissue scores were obtained from separate deep-learning models. 
Normal standard quantitative MPI features were derived by clinical software. Extreme 
Gradient Boosting derived all-cause mortality risk scores from SPECT, CT, stress test, 
and clinical features utilizing a 10-fold cross-validation regimen to separate training from 
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testing data. The performance of the models for the prediction of all-cause mortality was 
evaluated using area under the receiver-operating characteristic curves (AUCs).  
Results: Of 10,480 patients, 5,745 (54.8%) were male, and median age was 65 
(interquartile range [IQR] 57-73) years. During the median follow-up of 2.9 years (1.6-
4.0), 651 (6.2%) patients died. The AUC for mortality prediction of the model (combining 
CTAC, MPI, and clinical data) was 0.80 (95% confidence interval [0.74-0.87]), which was 
higher than that of an AI CTAC model (0.78 [0.71-0.85]), and AI hybrid model (0.79 [0.72-
0.86]) incorporating CTAC and MPI data (p<0.001 for all).  
Conclusion: In patients with normal perfusion, the comprehensive model (0.76 [0.65-
0.86]) had significantly better performance than the AI CTAC (0.72 [0.61-0.83]) and AI 
hybrid (0.73 [0.62-0.84]) models (p<0.001, for all).CTAC significantly enhances AI risk 
stratification with MPI SPECT/CT beyond its primary role - attenuation correction. A 
comprehensive multimodality approach can significantly improve mortality prediction 
compared to MPI information alone in patients undergoing cardiac SPECT/CT. 
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List of abbreviations 

AI = artificial intelligence  

AUC = area under the receiver-operating characteristic curve 

BMI = body mass index 

CABG = coronary artery bypass graft  

CAC = coronary artery calcium 

CAD = coronary artery disease 

CI = confidence interval  

convLSTM = convolutional long short-term memory 

CT = computed tomography 

CTAC = computed tomography attenuation correction 

DL = deep learning  

EAT = epicardial adipose tissue  

HR = hazard ratio 

HU = Hounsfield units  

LVEF = left ventricular ejection fraction 

MPI = myocardial perfusion imaging 

PCI = percutaneous coronary intervention 

SPECT = single-photon emission computed tomography 
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TPD = total perfusion deficit 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.23.24305735doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.23.24305735
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction 

Myocardial perfusion scintigraphy is widely used for the evaluation of coronary artery 

disease (CAD), with over 15-20 million scans performed worldwide.1,2 During myocardial 

perfusion imaging (MPI), a low-dose non-contrast computed tomography attenuation 

correction (CTAC) scan is often used to correct for soft-tissue attenuation, leading to 

improved diagnostic accuracy.3,4 Attenuation correction by computed tomography (CT) is 

recommended by American Society of Nuclear Cardiology guidelines.5 Although the 

myocardium is the structure of principal interest during SPECT/CT MPI, its CTAC scan 

provides a wealth of additional information about other visible organs. Incidental findings 

have been reported in up to 59.5% of SPECT/CT MPI studies, of which some are clinically 

important and necessitate further diagnosis and treatment.6,7  

However, due to limitations in the quality of CTAC images (low dose, no 

electrocardiographic gating), detection and characterization of abnormal findings on 

CTAC can be challenging.8 Consequently, the additional information present in hybrid 

cardiac scans is often underutilized during clinical reporting. While some methods have 

been developed to derive information about coronary artery calcium (CAC) and epicardial 

adipose tissue (EAT) from CTAC scans, 9,10 many other potentially clinically important 

features, like extracardiac structures, are present in these scans, yet to date their added 

value to MPI has not been systematically evaluated.   

The aim of this study is to develop a holistic artificial intelligence (AI)-based approach for 

the prediction of all-cause mortality from SPECT/CT MPI utilizing all possible information 

contained in the hybrid images and to separately evaluate the value of CTAC images for 

this purpose, which have been previously underutilized.   
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2. Material and methods  

2.1 Study population 

In this retrospective study we utilized CTAC scans of patients who underwent SPECT/CT 

MPI from 4 sites (University of Calgary, Yale University, Columbia University, University 

of Ottawa Heart Institute) participating in the Registry of Fast Myocardial Perfusion 

Imaging with Next generation SPECT (REFINE SPECT).11 The study protocol was 

approved by the IRB at all participating sites and complied with the Declaration of Helsinki. 

Baseline demographic and clinical characteristics were obtained from the REFINE 

SPECT registry.11 CTAC image acquisition at each participating site is shown in Table 

S1. The outcome was all-cause mortality (referred to subsequently simply as “mortality”), 

which was determined using the national death index for sites in the United States and 

administrative databases in Canada. 

 

2.2 Myocardial Perfusion Image Analysis  

Total perfusion deficit (TPD), end-diastolic stress shape index (ratio between the 

maximum left ventricular (LV) diameter in short axis and the length of the LV in end-

diastole at stress), stress ejection fraction, and end-diastolic volume were quantified 

automatically from non-attenuation-corrected MPI scans at the core laboratory (Cedars-

Sinai Medical Center, Los Angeles) with the use of dedicated software (Quantitative 

Perfusion SPECT [QPS] software, Cedars-Sinai Medical Center, Los Angeles)12. Normal 

myocardial perfusion was defined as stress TPD <5%13, whereas moderate-to-severe 

ischemia was defined as TPD ≥10% of the myocardium.14  
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2.3 Multi-structure deep learning feature extraction from CTAC 

The study design is shown in Figure 1. TotalSegmentator, a multi-structure segmentation 

deep learning (DL) model, was used to segment structures visible on CTAC.15 Out of all 

segmented structures, we selected thirty-three structures with a frequency of >80% on all 

scans (Figure S1). The automatic extraction of imaging features for all selected structures 

was performed with PyRadiomics package (version 3.0.1).16 In per-organ analysis, we 

included eleven first-order and four 3D features (Table S2).  

 

2.4 Automated Coronary Artery Calcium Scoring 

Our formerly validated deep learning model was used for CAC segmentation and 

scoring.17,18 To segment heart mask and CAC on CTAC images, two convolutional long 

short-term memory (convLSTM) networks were tested externally on data (10,480 CTAC 

scans) from 4 different sites. To automatically obtain CAC scores from the deep learning 

segmentation, established methods were used.19  

 

2.5 Automated Epicardial Adipose Tissue Scoring 

A previously developed deep learning model was used to estimate EAT volume and 

density (-190 and -30 Hounsfield units [HU]) from CTAC scans.10 For EAT model training 

and validation purposes, we used 500 CTAC scans from one site (Yale University). 

Patients who were used for EAT model training and validation were not included in this 

analysis.  
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2.6 Classification Models 

Extreme Gradient Boosting (XGBoost) models (version 1.7.3), a currently leading 

machine learning method, were used for mortality classification. These models generate 

all-cause mortality risk scores by applying 10-fold cross-validation regimen across the 

entire dataset. Within each fold, 90% of the data was first set aside for model training and 

validation. This 90% was further divided, with 80% used for training and 20% for 

validation. The remaining 10% of the data in each fold was used for testing and kept 

separate from training and validation to ensure each patient was tested exactly once 

across all folds. 10 separate models were built, and each was tested independently. 

Testing results were concatenated from all models for the overall performance evaluation.   

Hyper-parameter tuning to optimize the model parameters was conducted during training 

and validation, separately in each fold using the grid-search method.  

Three key benefits of employing 10-fold cross-validation are primarily 3-fold: 1) it reduces 

the variability of prediction errors, leading to a more accurate evaluation; 2) it maximizes 

the data utilization while minimizing the chance of overfitting and cross-contamination of 

information among data splits; 3) it guards against validating the hypothesis influenced 

by arbitrary data split (Type III error).20,21 

 

2.7 Models 

Four models were used for the mortality endpoint: 1 – model incorporating DL-EAT (EAT), 

2 – model combining quantitative CTAC image analysis of all segmented structures 

[radiomics], DL-EAT and DL-CAC (AI CTAC), 3 – model incorporating all variables 

included in the CTAC model as well as stress ejection fraction, stress end-diastolic 
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volume, stress shape index end-diastolic, stress TPD, and other SPECT imaging features 

[see Table S3] (AI hybrid), 4 –  model combining CTAC, MPI and clinical data (All), 

whereas Coronary calcium (DL-CAC score) and Perfusion (utilizing stress TPD) were 

univariate comparisons.  

Clinical data include patient demographics such as age, sex, body mass index [BMI]. Also 

included is past medical history: hypertension, diabetes, dyslipidemia, prior CAD (prior 

myocardial infarction, percutaneous coronary intervention [PCI], and coronary artery 

bypass graft [CABG]). Further, the clinical data encompass variables from stress test 

such as the type of test, peak stress heart rate, peak stress blood pressure, and ECG 

response to stress.  

 

2.8 Model Explainability 

The predictive power of variables included in model training was evaluated using 

XGBoost feature importance, which quantifies the increase in accuracy resulting from the 

addition of each feature. SHapley Additive exPlanations (SHAP), a game-theoretic 

feature importance method, was used to explain how structures contributed to the overall 

risk in model inference for individual patients.22  

 

2.9 Thresholds for Comparisons of Machine Learning  

Patients were classified into low or high-risk groups based on AI-derived all-cause 

mortality risk score. This classification was achieved by setting a threshold that aligns 

with the proportion of patients identified by the established clinical criteria for ischemia 

(≥10%).23,24 
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2.10 Statistical Analysis  

Continuous variables with a normal distribution are presented as mean ± standard 

deviation (SD) and not normally distributed variables as medians with interquartile range 

(IQR) [IQ1-IQ3]. Categorical variables are expressed as count and relative frequencies 

(percentages). Differences between categorical variables were compared by the 

Pearson’s χ2 test whereas continuous variables were compared by Wilcoxon Mann-

Whitney test, as appropriate. The performance of the models was evaluated using 

receiver-operating characteristics analysis, and area under the receiver-operating 

characteristic (AUC) analysis values were compared with the DeLong test.25 Kaplan-

Meier survival curve, alongside univariate Cox proportional hazard models, were 

employed to evaluate the association with mortality. Log-rank test was used to ascertain 

the statistical significance. The improvement in model predictions was measured using 

the time-dependent net reclassification improvement score at 2 years.26 Confidence 

intervals were calculated by the percentile bootstrap method. A two-tailed p-value of 

<0.05 was considered statistically significant. All statistical analyses were performed with 

Pandas (version 2.1.1) and Numpy (version 1.24.3), Scipy (version 1.11.4), Lifelines 

(version 0.28.0) and Scikit-learn (version 1.3.0) in Python 3.11.5 (Python Software 

Foundation, Wilmington, DE, USA), as well as “nricens” package (version 1.6) in R 

version 4.3.2 (R Foundation for Statistical Computing, Vienna, Austria).  

 

3. Results 

3.1 Patient Characteristics 
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Study population 

In total 10,983 participants from 4 sites were enrolled in the REFINE SPECT registry, of 

which 500 CTAC scans from one site were used for EAT-model training and validation. 

Of the 10,483 remaining participants, 3 were excluded due to incomplete CTAC scans. 

The final study cohort consisted of 10,480 participants (Figure S2).  

Table 1 represents baseline characteristics stratified by sex. Of all participants, 5,745 

(54.8%) were male, and median age was 65 (57, 73) years. During the median 2.9-year 

(1.6-4.0) follow-up period, 651 (6.2%) patients died. Normal myocardial perfusion was 

present in 6,165 (58.8%) patients, of whom 274 (4.4%) died. Patients with normal 

perfusion were significantly younger (p<0.001), more often female, and less often 

diagnosed with hypertension (p<0.001), diabetes (p<0.001), and dyslipidemia (p=0.007) 

(Table S4). 

 

Myocardial Imaging Perfusion Quantitative Image Analysis Parameters 

In all patients, the median total perfusion deficit (TPD) was 2.6% (0.9-6.0) and was higher 

in male than female patients (2.7 vs. 2.5, respectively, p<0.001) (Table 1). Significantly 

lower stress ejection fraction was observed in men compared with women (59% vs. 70%, 

respectively, p<0.001). The median TPD in patients with abnormal perfusion was 7.0 (4.9-

11.7), whereas the median stress ejection fraction in this group was 59 (49-68) (Table 

S4). 

 

Coronary Artery Calcium and Epicardial Adipose Tissue 
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CAC was 0 in 3,753 (35.8%) patients, >0-100 in 1,982 (18.9%), >100-400 in 1,462 

(14.0%), and >400 in 3,283 (31.3%) subjects. The median EAT volume and density were 

130 mL (90, 183) and -65 HU (-70, -61), respectively (Table 1).  

In patients with normal perfusion, 2,459 (39.9%) subjects had no CAC, 1,305 (21.2%) 

had CAC >0 and ≤100, 862 (14.0%) had CAC >100 and ≤400, and 1,539 (25.0%) had 

CAC >400. The median EAT volume and density in patients with normal perfusion were 

129 mL (89, 179) and -65 HU (-70, -61), respectively (Table S4).  

 

3.2 Model Performance  

Figure 2 represents the model performance and feature importance for mortality in all 

patients, subjects with normal perfusion, and patients without calcified lesions in coronary 

arteries. The lungs were the top feature in all patients, in patients with normal perfusion 

as well as in subjects without coronary calcifications. Table S5 shows AUCs with 95% CI 

for all AI models in all patients included in the study. There was a better performance of 

the AI CTAC model than the EAT model (AUC 0.56, 95% CI 0.49-0.63, p<0.001), and 

coronary calcium (AUC 0.64, 95% CI 0.57-0.71, p<0.001) alone. There was a statistically 

significant difference in the prediction performance of the AI hybrid model and the CTAC 

model (AUC 0.79 vs. 0.78, p<0.001). 

AUCs with 95% CI for all AI models in patients with normal myocardial perfusion are 

shown in Table S6 whereas in subjects with no coronary calcium in Table S7. In the group 

with normal perfusion, the performance of the AI CTAC model was significantly better 

compared to Perfusion (AUC 0.72 vs. 0.55, respectively, p<0.001). The AI hybrid model 

incorporating CTAC and MPI features had higher prediction performance compared to 
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the AI CTAC-only model (AUC 0.73 vs. 0.72, respectively, p<0.001). Among the patients 

with no calcium, the AI CTAC model significantly outperformed Perfusion (AUC 0.71 vs. 

0.59, respectively, p<0.001). The AI hybrid model was significantly better than AI CTAC-

only model (AUC 0.75 vs 0.71, respectively, p<0.001). 

 

3.3 Association with Outcomes and Multivariable Model 

Kaplan-Meier Curves stratified by TPD (ischemia <10% and ≥10%), and a matched 

proportion of patients with high and low AI scores (AI threshold at 0.095, high risk in 9.8%) 

are shown in Figure 3. AI score led to an improved risk reclassification of patients who 

experienced mortality (23.9%, 95% CI 19.5-28.5, p<0.001), and patients who did not 

experience mortality (2.4%, 95% CI 1.7-3.2, p<0.001), with an overall net reclassification 

improvement of 26.4% (95% CI 21.8-31.0, p<0.001). 

Figure S3 illustrates findings of multivariable analyses. After adjusting for age, sex (male), 

hypertension, dyslipidemia, diabetes mellitus, peripheral vascular disease, past 

myocardial infarction, and family history of CAD, patients with abnormal perfusion were 

at higher risk of death compared to patients with normal myocardial perfusion (adjusted 

hazard ratio [HR] 1.71, 95% CI 1.46-2.01, p<0.001). Moreover, CAC >400 (adjusted HR 

2.11, 95% CI 1.67-2.65, p<0.001) was associated with an increased risk of death. 

 

3.4 Structure Specific Risk Evaluation 

Examples of patients classified to be at a higher risk of death (with extracardiac structures, 

notably the lungs and aorta, contributing the most to mortality) are shown in Figure 4.  
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4. Discussion 

In this study, we have demonstrated the potential value of holistic anatomic, functional 

and clinical evaluation of CTAC scans for improving all-cause mortality prediction in 

patients undergoing hybrid perfusion MPI. We developed a fully automated AI model 

incorporating multi-structure segmentation and radiomic feature extraction in parallel to 

deep learning-based CAC and EAT quantification. This model improves mortality 

prediction from multimodality myocardial perfusion, with a combined model improving 

upon any feature set (SPECT, CTAC, or clinical) in isolation. Moreover, it provides 

physicians with guidance regarding portions of CTAC scans which require further scrutiny 

to identify potentially important underlying conditions indicating potentially significant 

incidental findings, despite coronary artery disease being the primary indication for the 

examination. This fully automated workflow could be leveraged by physicians to unlock 

the full potential of hybrid SPECT/CT imaging.  

Several studies have proven the role of AI in predicting cardiovascular events from 

SPECT/CT using clinical, MPI 27,28, and CTAC data.29,30 Nevertheless, only a limited 

number of CTAC findings, like CAC29, or EAT10 were included in these previous analyses. 

More recently we demonstrated that deep learning cardiac chamber volumes (from 

CTAC) provided incremental and complementary value to CAC and SPECT variables.31 

Ashrafinia et al. used radiomic features from SPECT MPI to predict CAC score derived 

from CT scans32, whereas Amini et al. applied a quantitative image analysis approach not 

only to diagnose CAD, but also for risk classification.33 The proposed AI approach 

integrates simultaneous assessment of multiple structures on CTAC by leveraging 

strengths of deep learning and quantitative image analyses. Importantly, the model 
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incorporating SPECT, CTAC, and clinical data had the highest prediction performance 

suggesting that AI-derived information encrypted in CTAC is complementary to traditional 

methods for analysis.  

By integrating functional imaging (SPECT) with anatomic characteristics (CT), hybrid 

imaging has not only enhanced nuclear medicine by improving diagnostic accuracy 34,35, 

but also provides an enormous amount of data contained in CTACs - which to date is not 

fully utilized. However, accurate interpretation and identification can be challenging due 

to image quality of these low-dose, non-electrocardiographically gated, and often free-

breathing scans.8 Importantly, these auxiliary scans may be interpreted by physicians 

without dedicated training in interpreting chest CT.36 In some cases, unexpected intra-, 

and extrathoracic radiotracer uptake can lead to identification of conditions like thymoma, 

breast and lung cancer.37,38 Previous studies have demonstrated the ability of AI to 

support physicians in identifying potentially important incidental findings.39,40  Our AI 

model could potentially help with this clinical challenge by combining 33 cardiac and 

extracardiac structures automatically segmented from CTAC scans, and ranking those 

structures based on their importance in predicting mortality in each patient.  

 

Limitations 

This study has some limitations. It was a retrospective study with non-uniform CTAC 

acquisition protocols from multiple sites, however, this highlights the generalizability of 

the approach. Some organs were only partially visible or not visualized on all scans. For 

example, organs like kidneys and thyroid were excluded from the analysis because of 

their high missingness across the cohort. No information regarding the reported cause of 
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death is available in this large, multicenter registry. Therefore, we are not able to evaluate 

the associations between organ features and cause-specific death. Finally, radiological 

evaluation of CTACs was performed only with radiomic features and no information 

regarding reported incidental findings is available in this cohort. 

 

Conclusions 

We demonstrate a significant, yet underappreciated, role of CTAC in risk stratification 

with MPI SPECT/CT. Fully automated AI integration of quantitative features from multiple 

organs derived from CTAC, perfusion and clinical data images significantly improves 

mortality risk stratification in patients undergoing SPECT/CT MPI as compared to MPI 

only.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.23.24305735doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.23.24305735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

This research was supported in part by grants R01HL089765 and R35HL161195 from 

the National Heart, Lung, and Blood Institute at the National Institutes of Health (PI: Piotr 

Slomka). The content is solely the responsibility of the authors and does not necessarily 

represent the official views of the National Institutes of Health. MB is supported by a 

research award from the Kosciuszko Foundation – The American Centre of Polish 

Culture. 

 

Disclosures 

Dr. Robert Miller received consulting fees and research support from Pfizer. Drs. Berman 

and Slomka, and Paul B. Kavanagh participate in software royalties for QPS software at 

Cedars-Sinai Medical Center. Dr. Slomka has received consulting fees from Synektik. 

Drs. Berman, Einstein, and Edward Miller have served or currently serve as consultants 

for GE Healthcare. Dr. Einstein has received speaker fees from Ionetix; has received 

consulting fees from W. L. Gore & Associates; has received authorship fees from Wolter 

Kluwer Healthcare-UpToDate; has served on a scientific advisory board for Canon 

Medical Systems; and has received grants to his institution from Attralus, Bruker, Canon 

Medical Systems, Eidos Therapeutics, Intellia Therapeutics, Ionis Pharmaceuticals, 

Neovasc, Pfizer, Roche Medical Systems, and W. L. Gore & Associates. Dr. Ruddy has 

received research grant support from GE Healthcare and Advanced Accelerator 

Applications. Dr. David Ouyang reported having a patent pending for EchoNet-LVH. The 

remaining authors have nothing to disclose. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.23.24305735doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.23.24305735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data Availability Statement 

To the extent allowed by data sharing agreements and IRB protocols, the data from this 

manuscript will be shared upon written request.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.23.24305735doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.23.24305735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables 

 

Table 1. Baseline characteristics for all participants stratified by sex 

 All Participants Male Female P-value 

N (%) 10,480 5,745 (54.8) 4,735 (45.2)  
Age [years] 65 (57, 73) 64 (56, 72) 66 (57, 74) <0.001 
BMI [kg/m2] 29 (25, 33) 28 (25, 33) 29 (25, 34) 0.019 
Hypertension 6,175 (58.9) 3,371 (58.7) 2,804 (59.2) 0.589 
Diabetes mellitus 2,684 (25.6) 1,539 (26.8) 1,145 (24.2) 0.003 
Dyslipidemia 5,085 (48.5) 2,984 (51.9) 2,101 (44.4) <0.001 

Smoking 1,987 (19.0) 1,224 (21.3) 763 (16.1) <0.001 

Family history of CAD 2,771 (26.5) 1,393 (24.3) 1,378 (29.1) <0.001 
Prior CAD     
  Prior Myocardial   
Infarction 

750 (7.2) 522 (9.1) 228 (4.8) <0.001 

  Past PCI 1,508 (14.4) 1,111 (19.3) 397 (8.4) <0.001 
  Past CABG 636 (6.1) 506 (8.8) 130 (2.7) <0.001 
Mortality 651 (6.2) 398 (6.9) 253 (5.3) <0.001 

CT Quantitative Image Analysis Parameters 

DL CAC score 56 (0, 709) 171 (0, 1,184) 12 (0, 248) <0.001 
DL EAT volume [mL] 130 (90, 183) 143 (99, 198) 119 (83, 163) <0.001 
DL EAT density [HU] -65 (-70, -61) -65 (-70, -61) -65 (-70, -61) 0.004 

MPI Acquisition Parameters 

Stress Test Type     <0.001 
 Exercise 4,732 (45.2) 2,843 (49.5) 1,889 (39.9)  
 Pharmacological  5,748 (54.8) 2,897 (27.6)  2,851(27.2)  
Peak Stress Heart 
Rate 

112 (89, 146) 115 (88, 146) 110 (91, 142) 0.547 

Peak Stress Systolic 
Blood Pressure 

148 (128, 170) 150 (128, 172) 145 (126, 166) <0.001 

Peak Stress Diastolic 
Blood Pressure 

80 (70, 86) 80 (70, 88) 80 (70, 85) <0.001 

ECG Response to 
Stress 

   <0.001 

  Negative 8,010 (77.0) 4,295 (75.0) 3,715 (79.0)  
  Positive 1,167 (11.1) 708 (12.3) 459 (9.7)  
  Equivocal 455 (4.3) 219 (3.8) 236 (5.0)  
  Nondiagnostic 824 (7.9) 512 (8.9) 312 (6.6)  
  Borderline 10 (<0.1) 4 (<0.1) 6 (0.1)  

MPI Quantitative Image Analysis Parameters 

Stress Ejection 
Fraction 

64 (55, 72) 59 (51, 66) 70 (63, 77) <0.001 

Stress End Diastolic 
Volume 

84 (64, 111) 102 (82, 127) 66 (54, 82) <0.001 
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Stress Shape Index 
End Diastolic 

0.58 (0.54, 
0.62) 

0.57 (0.53, 
0.62) 

0.58 (0.54, 0.63) <0.001 

Stress Total 
Perfusion Deficit 

2.6 (0.9, 6.0) 2.7 (1.0, 6.6) 2.5 (0.7, 5.5) <0.001 

Values are presented as N (%) or median (IQ1, IQ3)   

BMI – body mass index; CABG – coronary artery bypass graft; CAC – coronary artery 

calcium; CAD – coronary artery disease; CT – computed tomography; DL – deep 

learning; EAT– epicardial adipose tissue; ECG–electrocardiogram; HU – Hounsfield units; 

MACE – major adverse cardiovascular events; MPI – myocardial perfusion imaging; N – 

number of patients; PCI – percutaneous coronary intervention 
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Figures 

 

 

Figure 1. Central illustration. Artificial intelligence (AI) model integrating fully automated multi-structure computed 

tomography attenuation correction (CTAC) segmentation, quantitative image analysis (radiomics), deep learning (DL)-
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based coronary artery calcium (CAC), and epicardial adipose tissue (EAT) in all patients undergoing myocardial perfusion 

imaging (MPI) single-photon emission computed tomography/computed tomography (SPECT/CT). Receiver-operating 

characteristics curve for all-cause mortality and area under the receiver-operating characteristic curve values of Coronary 

calcium (DL-CAC score), Perfusion (stress TPD), the AI CTAC model (including DL-CAC, DL-EAT, and radiomics); the 

AI hybrid model – combing the CTAC model with stress MPI quantitative image parameters and stress variables and the 

All model incorporating AI hybrid image features, and clinical data. 
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Figure 2. Model performance and feature importance scores for all-cause mortality in all 

patients (A), in patients with normal perfusion (B), and patients with no coronary artery 

calcification (C). Normal myocardial perfusion was defined as total perfusion deficit (TPD) 

<5%. Receiver operating characteristic curve for the AI computed tomography 

attenuation correction (CTAC) model, including deep-learning (DL) coronary calcium, 

DL-epicardial adipose tissue (EAT), and radiomics, the AI hybrid model incorporating 

CTAC and myocardial perfusion imaging (MPI) data (stress MPI quantitative image 

parameters, Coronary Calcium (DL-coronary artery calcium score), Perfusion (stress 

TPD), and a model combining CTAC, MPI, and clinical data, (All). In all patients, the 

performance of the EAT model (not shown in the figure) alone was AUC 0.56, in patients 

with TPD <5% AUC 0.55, whereas in subjects with no coronary calcium AUC 0.59. 

Feature importance score plot represents 10 segmented structures with the highest 

scores for the CTAC model. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.23.24305735doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.23.24305735
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 3. Kaplan-Meier curves stratified by total perfusion deficit (TPD) matched to AI 

scores (All model). Ischemia was defined as TPD ≥10%. Abbreviations: CI – confidence 

interval, NRI – Net Reclassification Improvement.  
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Figure 4. Examples of patients undergoing single-photon emission computed 

tomography/computed tomography (SPECT/CT) myocardial perfusion imaging 

with an extracardiac structure increasing the highest risk of all-cause mortality. 

Waterfall plot demonstrates the top 10 structures with the highest influence on per-

patient risk of mortality (for the computed tomography attenuation correction [CTCA] 

model).  

Case 1: A male patient was classified to be at higher risk of death with the lungs (right 

lower lobe) contributing the most to the elevated risk (red arrow on the waterfall plot). A. 

CTAC, axial view, with a corresponding deep learning (DL) structures segmentation (B) 

revealed a 39x39 mm solid mass with irregular margins in the right lower lobe. CTAC with 

an overlayed SPECT scan showed no uptake of the radiotracer. D-E. 3D reconstruction 

of all segmented and ranked structures. The patient had abnormal myocardial perfusion 

(total perfusion deficit of 7.65) and died 48 days after the exam.  

Case 2: A male patient was identified to be at elevated risk of mortality. The risk of death 

was increased the most by the aorta (red arrow on the waterfall plot). F. CTAC, axial view, 

with a corresponding DL structures segmentation (G) showed a descending aortic 

aneurysm (cross-sectional diameters of the descending aorta 53x51 mm at the level of 

the pulmonary artery bifurcation). H. CTAC with an overlayed single-photon emission 

tomography scan, coronal view. I-J. 3D reconstruction of all segmented and ranked 

structures. The patient had abnormal myocardial perfusion (total perfusion deficit of 32.1) 

and died 209 days after the exam. 

Case 3: A male patient was assigned to be at increased risk of death. The dilated 

pulmonary artery was contributing the most to the elevated risk (red arrow on the waterfall 
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plot). K. CTAC with a corresponding DL structures segmentation (L) showed a dilatated 

pulmonary artery (the pulmonary artery diameter on transaxial image - 32 mm). M. CTAC 

with an overlayed SPECT scan showed no uptake of the radiotracer. N-O. 3D 

reconstruction of all segmented and ranked structures. The patient had abnormal 

myocardial perfusion (total perfusion deficit of 9.67) and died 5.4 years after the exam. 
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