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Abstract: 29 

Objectives: Tooth extraction is one of the most frequently performed medical procedures. The indication is based 30 

on the combination of clinical and radiological examination and individual patient parameters and should be made 31 

with great care. However, determining whether a tooth should be extracted is not always a straightforward decision. 32 

Moreover, visual and cognitive pitfalls in the analysis of radiographs may lead to incorrect decisions. Artificial 33 

intelligence (AI) could be used as a decision support tool to provide a score of tooth extractability.  34 

Material and Methods: Using 26,956 single teeth images from 1,184 panoramic radiographs (PANs), we trained a 35 

ResNet50 network to classify teeth as either extraction-worthy or preservable. For this purpose, teeth were cropped 36 

with different margins from PANs and annotated. The usefulness of the AI-based classification as well that of 37 

dentists was evaluated on a test dataset. In addition, the explainability of the best AI model was visualized via a 38 

class activation mapping using CAMERAS. 39 

Results: The ROC-AUC for the best AI model to discriminate teeth worthy of preservation was 0.901 with 2% 40 

margin on dental images. In contrast, the average ROC-AUC for dentists was only 0.797. With a 19.1% tooth 41 

extractions prevalence, the AI model's PR-AUC was 0.749, while the human evaluation only reached 0.589. 42 

Conclusion: AI models outperform dentists/specialists in predicting tooth extraction based solely on X-ray images, 43 

while the AI performance improves with increasing contextual information.  44 

Clinical Relevance: AI could help monitor at-risk teeth and reduce errors in indications for extractions.  45 



Introduction 46 

Tooth extraction is one of the most commonly performed medical measures in the field of general dentistry/ 47 

oral and maxillofacial surgery. The decision is based on the patient's records, which include medical history, 48 

clinical evaluation, and radiographs. Given its irreversible impact on the quality of life, the decision of extraction 49 

should be made with great care [1–3]. Certain X-ray signs are pivotal in determining the necessity for tooth 50 

extraction. These signs include the compromised structural integrity of the tooth, significant alveolar bone loss, or 51 

evident root fractures. In addition, massive periapical radiolucency may also suggest the extraction. Advanced 52 

internal or external resorption cases can also be identified on these radiographs, providing a clear indication for 53 

removal of the affected teeth [4]. 54 

Although indications are made clear in the extraction guidelines [5, 6], the decision-making process is not 55 

always easy for the practitioner in clinical practice [2, 4]. This decision may be confounded by many factors, such 56 

as the dentist's/specialist's own experience, the reliability of the clinical evidence, or even pressure from patients 57 

[5]. The interplay of these different potentially disruptive factors regarding diagnostic decision-making can lead 58 

to misdiagnosis and problematic therapy situations, especially in borderline cases. For example, incorrect tooth 59 

extraction is the third most common cause of tooth loss in periodontally damaged teeth [7].  60 

However, leaving teeth that are not worthy of preservation is not an option, as they can cause massive pain [1] 61 

and can even be the starting point for life-threatening lodge abscesses in the head and neck region or cause fatal 62 

endocarditis, which ultimately affects the entire organism [8, 9]. At the same time, every tooth extraction has its 63 

risk of serious complications like persisting root fractures, dry sockets or damage to neighboring teeth. The 64 

indication is, therefore, also always a balancing of different requirements. In general, tooth extraction serves as a 65 

last resort when every other treatment option failed or is not indicated anymore [4].  66 

Panoramic radiographs (PANs), commonly used due to easy access and low dosage, are crucial in evaluating 67 

a patient’s dental condition, providing insights into the whole dentition and relating structures [10]. However, 68 

accurate and comprehensive interpretation of PANs requires extensive training and considerable clinical 69 

experience. This expertise may not be fully developed in young practitioners, potentially leading to variability in 70 

diagnostic decisions [11]. Furthermore, seasoned practitioners may also be susceptible to cognitive and visual 71 

pitfalls when dealing with challenging cases [12].  72 

Deep learning (DL), a subfield of artificial intelligence (AI), has revolutionized the field of medical imaging 73 

by extending the capabilities of human practitioners. These models are trained on vast datasets, allowing them to 74 

recognize patterns and anomalies with superhuman precision [13]. In the context of PANs, the DL models enable 75 

the detection and segmentation of anatomical structures in seconds, with performance improvements being noted 76 

on an ongoing basis [14–18]. Moreover, DL models can identify subtle or complex pathologies that may be 77 

overlooked by the human eye, such as caries, cysts, periodontitis, and periapical lesions. These can be 78 

automatically annotated with high accuracy [19–23]. Such advancements demonstrate the potential of DL to serve 79 

as a powerful tool that enhances diagnostic accuracy and efficiency. 80 

Despite these advancements, most research has focused on lesion diagnosis [24–28], with limited exploration 81 

into subsequent clinical decisions like tooth extraction. Furthermore, the model's predictions are often given with 82 

blunt probabilities without any explanation or reasoning process, which is crucial for clinical acceptance and 83 

understanding. Applying explainable DL has the potential to accelerate the decision-making process, resulting in 84 

timely and more effective interventions, ultimately leading to improved patient outcomes [29].  85 

The study's main objective is to develop and internally validate a model that can predict the need for tooth 86 

extraction from PANs and compare its performance to dentists/specialists. Furthermore, the effect of contextual 87 

knowledge of teeth on the model's performance and its possible explainability will be visualized. 88 

Material and Methods 89 

Study Design and Patients 90 

The study used retrospective PANs from 2011 to 2021 from patients who underwent tooth extraction at the 91 

Department of Oral and Maxillofacial Surgery of the University Hospital RWTH Aachen. Patients with edentulous 92 

conditions, or without available panoramic radiographs taken within six months post-treatment were excluded. 93 

Additionally, patients with significant artifacts in their preoperative panoramic radiographs that affected the teeth 94 

were also removed from the study cohort. 95 

The study was approved by the Ethics Committee of the University Hospital RWTH Aachen (approval number 96 

EK 068/21, chairs: Prof. Dr. G. Schmalzing and PD Dr. R. Hausmann, approval date 25.02.2021) and followed 97 

the MI-CLAIM reporting guideline for the development of AI models [30]. 98 



Dataset Preparation 99 

For the study, all PANs were exported in DICOM format from the hospital’s picture archiving and 100 

communication system. If a patient had received more than one PAN within six months post-treatment, the last 101 

PAN would be taken as the postoperative image. After the cohort's statistical summary, all PANs were stratified 102 

by patients and converted to PNG format for anonymization purposes. 103 

Annotations and labeling of teeth in the preoperative PANs were performed by four investigators (I.M., J.B., 104 

K.G. and B.P.) using LabelMe [31]. For this purpose, all teeth were marked with a bounding box on the 105 

preoperative image and divided into a preserved and extracted class according to their presence in the postoperative 106 

image (Figure 1). Implants or residual roots were marked in the same way as teeth. For quality control, the 107 

annotated images and labels were then reviewed by two investigators (I.M. and B.P.) for a second round. 108 

The bounding boxes were then used to export single tooth images with different margins, as well as their class 109 

(preserved or extracted tooth). Since the distances (in mm) in PANs are not uniform and the teeth themselves have 110 

different sizes, we defined the margins in % of the PAN image height and width. Images were then exported with 111 

margins ranging from -0.5% to 10%, with 0% being the bounding box itself, resulting in 8 datasets. Figure 1 112 

describes the pipeline of the dataset preparation.   113 

Model Development and Validation 114 

The dataset was stratified by patient and randomly divided into a training set (17,874), validation set (4,784), 115 

and test set (4,298) in a 4:1:1 ratio. During training, we apply a random crop to the image, then resize it to 224x224 116 

pixels and perform horizontal flip augmentations to enhance model generalization. Validation and test sets images 117 

are resized to 256x256 pixels and the 224x224 center-crop is extracted. 118 

The training was conducted on a high-performance cluster at RWTH Aachen University. We adopted a 119 

ResNet50 model pre-trained on ImageNet. The binary cross-entropy loss was used for our  binary classification 120 

tasks. Training spans 50 epochs. The model employs the SGD optimizer with a learning rate of 0.01 and 121 

momentum of 0.9. A learning rate scheduler reduces the learning rate by a factor of 10 every 7 epochs, aiding in 122 

precise model tuning as training progresses (reduce by < 1 = increase). Model performance was evaluated based 123 

on accuracy and ROC-AUC metrics, with periodic checks to save the best-performing model based on the highest 124 

ROC-AUC achieved. Predictions were made on the test set using these best models, and the predictions were 125 

evaluated and saved. The corresponding code can be found on GitHub (https://github.com/OMFSdigital/PAN-AI-126 

X). 127 

Performance of Dentists 128 

In addition, the test images were evaluated by 5 dentists/specialists (A.P., J.B., I.M., K.X., B.P.) with different 129 

levels of experience (dentist in first year to specialist in oral and maxillofacial surgery) to evaluate human 130 

performance. For this purpose, the 4,298 test images (2% margin) were randomly distributed among the 131 

investigators. Each dental image was then given a score between 0 (preserved) and 10 (extracted) to determine the 132 

the likelihood with which a human investigator would recommend a removal of the to.. The 2% margin was chosen 133 

to compare human performance to the DL model with the best performance. To avoid a learning effect between 134 

the annotation in the PANs and the scoring of the individual tooth images by the investigators, there was a 6-month 135 

time delay between initial annotation and scoring. 136 

Model Explainability 137 

To explain the basis of the prediction of the AI models, CAMERAS [32] was used. It uses class activation 138 

mapping to help visualize the regions of the input image that are important for the model's decision-making process 139 

(Figure 4, 5). In our case of binary classification where outcomes are extraction or preservation, CAMERAS 140 

highlights features based on the binary outcome. If the model predicts extraction, it highlights features leading to 141 

this decision; conversely, a prediction of preservation highlights or lacks features, indicating why the preservation 142 

is predicted. The intensity and frequency of these highlights can aid in interpreting model outputs, where more 143 

frequent or intense highlights correlates with a prediction with a higher probability. 144 

Statistical analysis  145 

The statistical analysis was performed in Python (version 3.11.0) using the scikit-learn package (version 1.4.0). 146 

The performance of the AI classifiers and dentists was assessed by using the area under the curve of the receiver 147 

operating characteristic curve (ROC-AUC) and the precision-recall curve (PR-AUC).  We then calculated the 148 

maximum Youden's index for each ROC curve and acquired the optimal threshold for the corresponding model. 149 



Metrics of accuracy, specificity, precision (syn. positive predictive value), and sensitivity (syn. recall) were 150 

calculated with the thresholds above The F1 score was calculated from precision and sensitivity. We used a set of 151 

thresholds of 0.3 and 0.7 to plot the confusion matrices with clinically relevant decisions, namely extraction, 152 

monitoring, and preservation. 153 

Results 154 

Patients 155 

1,184 patients who met the criteria were selected in this study. The average age of patients was 50.0 years 156 

(range 11 – 99 years), with a standard deviation of 20.3 years. The gender ratio of the cohort was 61:39, with 722 157 

males and 462 females. A total of 26,956 teeth were annotated in 1,184 PANs with bounding boxes and classified 158 

into preservation (21,797) and extraction (5,159). The prevalence of tooth extraction in our dataset was 19.1%, 159 

compared to the majority of 80.9% of preserved teeth. The demographic and clinical characteristics of patients are 160 

described in Table 1.  161 

Performance of AI models 162 

Eight different ResNet-50 models were trained on single tooth images with margin settings from -0.5% to 10%. 163 

The performance of models is summarized in Table 2 and Figure 2 based on the thresholds at the maximum 164 

Youden’s index. The model with 2% margin setting yielded the best results in both ROC-AUC (0.901) and PR-165 

AUC (0.749). It also exhibited the best performance in all other metrics except for sensitivity. Shrinking of the 166 

bounding boxes (margin -0.5%) produced worse results in ROC-AUC and PR-AUC than the baseline (margin 0%). 167 

A general increase can be observed in both ROC‑AUC and PR-AUC as the margin increases from -0.5% to 2%. 168 

Models with a 5% margin setting have achieved the highest sensitivity (0.835). However, increasing the margin 169 

further to 10% reduced both ROC-AUC and PR-AUC. In confusion matrices, with thresholds of 0.3 and 0.7 for 170 

monitoring, the 2% margin model had the least cases of false positive (53). The model with 3% margin had the 171 

highest accuracy (3455/4298). 172 

Performance of Dentists 173 

In contrast, the human assessment (average of 5 dentists/specialists) had a lower performance based on the 2% 174 

dental images compared to the AI models. The ROC-AUC was only 0.797 or PR-AUC of 0.589. This is also 175 

reflected by the confusion matrices where human have the most false positives (131) and lowest accuracy 176 

(3085/4298). 177 

Explainability 178 

Figure 4 and 5 shows the activation map of the extracted and preserved predictions generated by CAMERAS 179 

with a 2% margin setting. In extraction cases, the model focused on the areas where roots are exposed in low 180 

density regions and crowns are buried in bone. In preservation cases, on the other hand, alveolar ridge and 181 

periapical regions were the most relevant.  182 

Discussion 183 

In this study, to our knowledge, we present the first clinical prediction model using DL to make a 184 

recommendation about teeth extractions. The main results of the study are, 1) the best model achieved a ROC-185 

AUC of 0.901 with a PR-AUC of 0.749; 2) outperforming dentists/specialists, who on average achieved a ROC-186 

AUC of 0.797 with a PR-AUC of 0.589; 3) additional contextual information through wide margins around the 187 

tooth led to a better prediction; 5) the visual explainability of the prediction for tooth extraction or preservation 188 

was comprehensible. 189 

Decision aids are a useful tool, for example in healthcare, to reduce the dentists’ workload, as suggestions 190 

calculated by algorithms can contribute to the final decision-making or diagnosis and significantly speed up this 191 

process [33]. Similarly, decision aids can be used as an objective perspective, especially in borderline cases where 192 

otherwise subjective approaches are applied by the clinicians alone [33, 34]. In this regard, work in the medical 193 

field has already been done on identifying pathologies in medical imaging like X-ray scans. One of the first 194 

applications used for detection was in 1995 to detect nodules in X-rays of the lungs [35]. Another object detection 195 

algorithm was developed to detect and classify several entities in chest X-rays like cardiomegaly, calcified 196 



granulomas, catheters, surgical instruments or thoracic vertebrae [36]. The emergence of convolutional neural 197 

networks / DL more than a decade ago opened up completely new possibilities [37]. 198 

One recent application is described by Yoo et al. who proposed a DL model (VGG16 pre-trained on ImageNet) 199 

to predict the difficulty of extracting a mandibular third molar from PANs [38]. The model was trained to predict 200 

the difficulty of mandibular third molar extraction in terms of depth, ramal relationship, and angulation. The 201 

accuracies of the model for different difficulty parameters (depth, ramal relationship, angulation) were found to 202 

be 78.9%, 82.0%, and 90.2%, respectively. Yet the model was made to predict the difficulty rather than the 203 

necessity of the extraction.  204 

In our study, we used a residual neural network (ResNet-50) pretrained on ImageNet for the development of 205 

our clinical prediction model. Compared to other convolutional neural networks, a ResNet is characterized by so-206 

called residual skip connections, which add inputs to outputs of small blocks of layers in the network. These skip 207 

connections improve the gradient flow during training and significantly improve the performance of very deep 208 

networks [39]. An outstanding strength of our model was its ability to classify teeth not worthy of preservation 209 

across multiple indications, such as extractions for orthodontic space, misplaced wisdom teeth, caries-destroyed 210 

teeth, periodontally compromised teeth or teeth from mixed dentition. Equally noteworthy was the reliable 211 

classification even in radiographs with more difficult classification conditions, such as anatomical superimposition 212 

effects.  213 

Yet, evidence-based medicine encourages decisions based on patient-specific clinical evidence. However,  DL 214 

models often provide blunt predictions without any explanation [40]. This results in a low acceptance among 215 

practitioners of these predictions due to the lack of visible evidence [29]. To address this problem, class activation 216 

map offers a solution to visualize and highlight the critical area of the image where the predictions are made [41, 217 

32]. In the case of the caries classification task in the study of Vinayahalingam et al., areas that leads to the 218 

classification by DL model were be highlighted [42]. Such visual prompts can then correlate with established 219 

dental knowledge of the practitioners, which in turn explains the classification or recommendations. 220 

We used CAMERAS, which, in contrast to methods such as GCAM or NormGrad, provides high-resolution 221 

mapping for ResNet and, thus, new insights into the explainability of DL methods [32]. The explainability can be 222 

illustrated using the examples of extracted teeth (Figure 4) and preserved teeth (Figure 5), including their prediction 223 

probability. In the case of healthy teeth, for example, this leads to activation of the bone, whereas in the case of 224 

root remnants this leads directly to the root itself. In addition to the recommendation, this activation map could 225 

also be offered directly to the dentist.  226 

Interestingly, however, it can also be seen that due to the additional context information provided by the 227 

extended margin (2%) in Figures 4 and 5, neighboring root residues are also included in the classification and may 228 

possibly lead to a misclassification. This could be remedied in the future by more modern architectures that 229 

consider the entire PAN instead of individual image sections with a tooth and the adjacent bone. 230 

Besides these technical aspects, the question arises as to how such a model could be translated into practice. 231 

An important challenge is that DL models fall under regulatory requirements such as FDA / Medical Device 232 

Regulation (MDR) as medical software. This means that the models developed in research cannot simply be 233 

applied in clinical encounters [43]. An important step here would be the external validation of the developed model 234 

[44]. At our department, the prevalence of tooth extraction was 19.1% (Table 1). This is influenced by the present 235 

population with its socioeconomic status, but certainly to some extent also to the treating specialty (conservative 236 

dentistry, prosthodontics, orthodontics, oral and maxillofacial surgery) has an impact that cannot be dismissed out 237 

of hand, as well as the pre-selection of cases. This could represent a bias if the model is applied elsewhere. On the 238 

other hand, it could be argued that the reasons for tooth extraction are universal worldwide [3, 45]. Periapical 239 

radiolucency or deep caries are not treated much differently around the world. 240 

Clinical prediction models such as ours usually divide cases into two treatment recommendations based on a 241 

single threshold (perceive / extract). For an actual application scenario, however, the question of design is 242 

particularly crucial for optimal clinical usefulness [46]. This could involve dividing teeth into three groups based 243 

on two thresholds. Using a low threshold (with a high negative predictive value) to distinguish teeth that are 244 

definitely worth preserving from suspect teeth. Another higher threshold (with a high positive predictive value) 245 

could separate suspect teeth from definitely not preservable ones. The suspect teeth could then be monitored 246 

closely, while the healthy teeth would be ignored, and the decayed teeth would be extracted. An example for this 247 

approach is shown in Figure 3.   248 

However, a major limitation of our results is that our model does not include clinical information (pain, tooth 249 

vitality, course of disease, diagnosis). On the one hand, this is impressive because a high level of accuracy has 250 

been achieved despite the lack of any clinical information surpassing humans. Nevertheless, in a real clinical 251 

setting this information would be available and should be used. In the future, multimodal AI models could be used 252 

to process additional clinical information and improve prediction. 253 



Another limitation is that there was a maximum period of 6 months between pre- and postoperative PAN. 254 

Usually, significant changes are visible during this period, but the causes for the extraction may not have been 255 

visible on the preoperative image used in some cases, but only shortly before the extraction itself (such as the 256 

involvement of teeth in a mandibular fracture). 257 

Conclusion 258 

In summary, our study presented the first AI model to our knowledge to assist dentists/specialists in making 259 

tooth extraction decisions based on radiographs alone. The developed AI models outperform humans, with AI 260 

performance improving as contextual information increases. Future models may integrate clinical data. This study 261 

provides a good foundation for further research in this area. In the future, AI could help monitor at-risk teeth and 262 

reduce errors in indications for extraction. By providing a class activation map, clinicians could be able to 263 

understand and verify the AI decision. 264 
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Tables 417 

Table 1 418 

Parameters Training Validation Testing Total 

Patients Total  

(%) 

787 

(66.5%) 

206 

(17.4%) 

191 

(16.1%) 

1,184 

(100%) 

Age Mean  

(SD) 

50.5 

 (20.3) 

48.6  

(21.6) 

49.5  

(20.7) 

50.0  

(20.6) 

Range 12 – 92 27 – 66 12 – 99 11 – 99 

Gender Female 

(%) 

310 

(39.4%) 

78 

(37.9%) 

74 

(38.7%) 

462  

(39.0%) 

Male 

(%) 

477 

(60.6%) 

128 

(62.1%) 

117 

(61.3%) 

722  

(61.0%) 

Teeth Extracted  

(%) 

3,410 

(66.1%) 

876 

(17.0%) 

873 

(16.9%) 

5,159 

(19.1%) 

Preserved 

(%) 

14,464 

(66.4%) 

3,908 

(17.9%) 

3,425 

(15.7%) 

21,797 

(80.9%) 

Total 

(%) 

17,874 

(66.3%) 

4,784 

(17.7%) 

4,298 

(15.9%) 

26,956 

(100%) 

Table 1. Demographic and dental characteristics of the patients and distribution across training, validation, and 419 

testing datasets. 420 

Table 2 421 

Predictor Margin Accuracy Sensitivity Specificity Precision F1_Score ROC-AUC PR-AUC 

AI 

(ResNet 50) 

-0.5% 0.775 0.700 0.794 0.464 0.558 0.815 0.590 

0% 0.768 0.781 0.765 0.459 0.578 0.852 0.657 

0.5% 0.778 0.772 0.780 0.472 0.586 0.852 0.650 

1% 0.813 0.716 0.837 0.529 0.608 0.864 0.693 

2% 0.834 0.797 0.843 0.564 0.661 0.901 0.749 

3% 0.812 0.805 0.814 0.525 0.635 0.895 0.743 

5% 0.805 0.835 0.797 0.512 0.634 0.899 0.741 

10% 0.817 0.816 0.818 0.533 0.645 0.890 0.727 

Human 

(Avg.) 
2% 0.775 0.674 0.800 0.462 0.548 0.797 0.589 

Table 2. Performance at Youden's index of AI models with different margin settings as well as human 422 

performance.. 423 

 424 
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Figures 426 

Figure 1 427 

 428 

Figure 1. Pipeline to prepare the dataset. Panoramic radiographs from the same patient were compared and 429 

annotations of teeth were made on the preoperative image with bounding boxes and labeled as preserved (green) 430 

or extracted (yellow). Different margin factors were used to resize the bounding boxes (red) in width and height. 431 

Teeth images were then cropped from the original image with margins (-0.5% to 10%). 432 

   433 

  434 



Figure 2 435 

 436 

Figure 2.  (a) ROC curves and (b) PPV-Sensitivity curves of models with different margin settings. The 2% 437 

margin model performed best in both ROC-AUC (0.901) and PR-AUC (0.749), the average human performance 438 

was ROC-AUC (0.797) and PR-AUC (0.589). Relationship between ROC-AUC and margins is displayed in (c). 439 

Relationship between PR-AP and margins is displayed in (d). A steep increase observed for both metrics from -440 

0.5% to 2% margin and slightly drop from 5% to 10% margin. 441 

   442 



Figure 3 443 

 444 

Figure 3. Confusion matrices showing prediction results. The results from AI models (a)~(f) and dentists (g) with 445 

different margins were split into 3 decisions, namely extraction, monitoring, and preservation. Teeth with 446 

prediction probabilities from 0.3 to 0.7 were recommended to “Monitor”. Teeth with prediction probabilities below 447 

0.3 were recommended to “Extract” while above 0.7 to “Preserve”. True labels were marked in y-axis. 448 



Figure 4 449 

 450 

Figure 4. Activation gradient heatmap generated by CAMERAS for extracted teeth with a margin of 2%. The 451 

probability (0 to 1, where 0 indicates preservation and 1 indicates extraction) of the prediction is shown in the first 452 

row. The left image in each column is the tooth image used for the prediction, the right image is the class activation 453 

mapping with CAMERAS. Blue indicates no activation and red indicates strong activation. Green and yellow are 454 

in between. 455 
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Figure 5 457 

 458 

Figure 5. Activation gradient heatmap generated by CAMERAS for preserved teeth with a margin of 2%. The 459 

probability (0 to 1, where 0 indicates preservation and 1 indicates extraction) of the prediction is shown in the first 460 

row. The left image in each column is the tooth image used for the prediction, the right image is the class activation 461 

mapping with CAMERAS. Blue indicates no activation and red indicates strong activation. Green and yellow are 462 

in between. 463 
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