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Abstract 
Background and objectives. Patients with multiple sclerosis (MS) often experience cognitive 

impairment, and this is related to structural disconnection and subsequent functional 

reorganization. It is not clear how specific patterns of functional reorganization might make it 

harder for cognitively impaired (CI) MS patients to dynamically adapt how brain regions 

communicate, which is crucial for normal cognition. To identify patterns relevant to cognitive 

impairment in MS, we performed a temporally detailed analysis of connectivity state transitions 

and quantified the effort associated with such dynamic alterations. 

Methods. Resting-state functional and diffusion MRI was acquired from 95 controls and 330 

MS patients (mean disease duration: 15 years) in a cross-sectional design, of whom 86 were 

classified as CI (≥2/7 domains Z < −2) and 65 as mildly CI (≥2/7 domains Z < −1.5) based on 

the performance on an expanded Brief Repeatable Battery of Neuropsychological Tests. Four 

functional connectivity states were determined using K-means clustering of moment-to-

moment co-fluctuations (i.e., edge time series), and the resulting state sequence was used to 

characterize the frequency of transitions between network configurations. The control energy 

associated with the transitions between states was then calculated using the structural network 

of each subject with network control theory. 

Results. CI patients transition less frequently between connectivity states. Relative to the time 

spent in a particular state, CI patients specifically transition less from a weakly connected and 

highly modular state (i.e., the weakly connected state) to a more integrated state that featured 

strong involvement of the visual network (i.e., the visual network state), but more in the 

opposite direction. CI patients also required more control energy to transition between states. 

Discussion. This study showed that it became more effortful for MS patients with cognitive 

impairment to dynamically change the organization of the functional network, providing an 

intuitive understanding of why these transitions occur less frequently in some patients. In 

particular, transitions between the weakly connected state and the more integrated visual 

network state were relevant for cognition in these patients. The findings highlight a possible 

underpinning of disturbed cognition in MS patients and also provide novel avenues for studying 

and possibly improving network dynamics.  



Introduction  
Cognitive impairment is a highly debilitating symptom of multiple sclerosis (MS) that occurs 

in up to 65% of patients.1 In MS, neurodegeneration and neuroinflammation damage the central 

nervous system, giving rise to specific patterns of focal lesions and brain atrophy.2 These 

patterns can be detected using MRI, which is essential for diagnosis.3 However, the extent of 

MS-related structural brain damage observed using MRI is often not fully in line with clinical 

outcomes, particularly for cognitive impairment.4 In MS patients, damage to the white matter 

often disrupts the anatomical pathways between brain regions (i.e., structural connectivity) and 

this can also affect the communication between brain regions (i.e., functional connectivity).5 

However, it is not fully understood how this may lead to cognitive impairment in MS.6 

To that end, novel conceptual and mathematical tools were needed to describe how the MS 

brain is (dis)organized and why this leads to complex symptoms. In this push, network 

neuroscience has been crucial. In this field, the brain is represented as a graph consisting of 

brain regions (i.e., nodes) that are structurally and functionally connected (i.e., edges).7 Using 

this framework, it was learned that functional reorganization likely plays an important role in 

compensating for structural damage in the early stages of MS.6 Later in the disease, as structural 

damage accumulates, a critical threshold is passed after which the network cannot function 

properly.8 A key part of this loss of function seems to be the overload of a few highly-connected 

brain regions (i.e., hubs), such as regions in the default-mode network (DMN).9 

A hub overload could leave the brain network as a whole less dynamically adaptable to 

cognitive challenges.6 However, these dynamic characteristics have often not been explicitly 

analyzed as most earlier studies averaged connectivity over time (i.e., static connectivity).10 

This means that time-dependent patterns (i.e., dynamic functional connectivity) were neglected. 

Dynamic network alterations are integral brain processes that are relevant to cognitive 

functioning by themselves, for instance allowing the brain to transition between modes of 

segregated and integrated processing.11 A few more recent studies have observed disturbed 

network dynamics in MS patients with cognitive impairment, even without subjecting them to 

an explicit task (i.e., resting-state). For example, regions in the DMN, frontoparietal network 

(FPN) and visual network showed less connectivity dynamics.12 This has been interpreted as an 

indication that hubs can be stuck in an “overloaded” state.6 Brain network dynamics of 

cognitively impaired (CI) MS patients might be affected in non-hub regions as well,13 so it is 

important to look at dynamics of the functional network as a whole. Accordingly, recent studies 



applied a holistic model in which recurrent whole-brain connectivity patterns (i.e., 

“connectivity states”) were identified over time,14 showing that CI MS patients transitioned less 

fluidly between such states compared to cognitively preserved (CP) patients.15 Thus, less 

adaptability of the network might be particularly important for cognitive impairment in MS. 

Questions remain, including: which specific adaptations are important for cognitive 

impairment? Also, can structural network disturbances impede network adaptability? 

Sensitivity to changes occurring on small temporal scales is needed to accurately characterize 

transitions between specific connectivity states. Nevertheless, connectivity dynamics have 

usually been captured using a sliding-window approach, which induces temporal blurring by 

computing correlations over windows of around a minute long.16 This issue can be ameliorated 

by temporally unwrapping correlation values and focusing on the resulting “edge time series”, 

which represent moment-to-moment co-fluctuations of regional brain activity. This approach 

makes it possible to disentangle brief events of high-amplitude co-fluctuations16,17 from non-

events in between. Disentangling these could be useful, as both have been observed to relate to 

cognitive performance and may each provide unique insights.18 

The interaction between brain structure and function previously related to cognitive impairment 

in MS,19 but an intuitive link to explain how the structural network could shape functional 

network dynamics has been missing. Network control theory can provide this link, by 

quantifying the control energy that is required to change the network configuration given the 

underlying structural network.20 Control energy has been likened to cognitive demand or mental 

load, so these measures quantify how effortful transitions between connectivity states are. 

Recent work showed that physically disabled MS patients required more control energy to 

transition between activity states,21 but it is unclear whether this can explain the disrupted 

functional network dynamics in patients with cognitive impairment. 

Therefore, this work aimed to increase our understanding of the functional underpinnings of 

cognitive impairment in MS. This is done by characterizing framewise state transitions and 

computing the control energy required for these connectivity state transitions. We investigated 

330 patients with MS and 95 healthy controls (HCs) and hypothesized that MS patients with 

cognitive impairment would remain “stuck” in (i.e., transition away less from) states featuring 

relatively high DMN connectivity. This pattern was expected to be explained by the energetic 

costs of making the transitions.  



Methods 
Participants 
Cross-sectional imaging from the Amsterdam MS cohort was analyzed, including a total of 330 

MS patients and 95 HCs with available functional and diffusion MRI data who were recruited 

between 2008 and 2012. Functional network dynamics has been described previously for these 

participants,12 but not yet in combination with diffusion MRI data. All patients were diagnosed 

with clinically definite MS according to the 2010 revised McDonald criteria.3 These patients 

were relapse-free and without steroid treatment for two months before participation, and have 

no history of a psychiatric and/or neurological disease besides MS. Age, sex and the highest 

obtained level of education were acquired from all participants and clinical data obtained from 

patients included: symptom duration, disease phenotype and treatment status. The Expanded 

Disability Status Scale (EDSS) was administered by a neurologist to characterize the level of 

physical disability. Fatigue was ascertained in a subset of patients (N=167) with the Checklist 

Individual strength-20 Revised. Approval for the study was acquired from the local institutional 

ethics review board. All participants provided written informed consent before participation. 

Neuropsychological assessment 
An expanded Brief Repeatable Battery of Neuropsychological Tests was used on the same day 

as the MRI examination, as previously described.22 Performance on individual tests was 

grouped into seven cognitive domains and adjusted for age, sex and education effects in the 

HCs. Domains included executive functioning (concept shifting), verbal memory (selective 

reminding), information processing speed (symbol digit modalities), verbal fluency (word list 

generation), visuospatial memory (spatial recall), working memory (memory comparison) and 

attention (stroop colour-word). The scores of these domains were transformed to z-scores based 

on the distribution of HCs. These z-scores were averaged across domains to produce a summary 

value of average cognition, used to explore linear relationships (not classify cognitive groups). 

To classify cognitive groups, performance on all domains was compared to HCs, resulting in 

three groups in MS: CI, mildly CI (MCI), CP. Classification of CI patients was defined as 

scoring at least two standard deviations below HCs on two or more cognitive domains.9 Patients 

that were not defined as CI, but scored at least 1.5 standard deviations below HCs on two or 

more cognitive domains, were classified as MCI. All other patients were classified as CP. 



MRI acquisitions 
All scans were acquired using a 3T MRI scanner (GE Signa-HDxt, Milwaukee, WI) with an 8-

channel phased-array head coil. The protocol included a 3D T1-weighted fast spoiled gradient 

echo sequence (repetition time[TR]/echo time[TE]=7.8/3ms; inversion time=450ms; flip 

angle=12°; sagittal slice thickness=1.0mm; in-plane resolution=0.9×0.9mm), a 3D T2-

weighted fluid-attenuated inversion recovery (FLAIR) sequence (TR/TE=8000/125ms; 

inversion time=2350ms; sagittal slice thickness=1.2mm; in-plane resolution=1.0×1.0mm), a 

resting-state fMRI echo planar imaging sequence (202 volumes; TR/TE=2200/35ms; flip 

angle=80°; axial slice thickness=3mm, contiguous; in-plane resolution=3.3×3.3mm) and a 

diffusion tensor imaging sequence using five volumes without directional weighting (b=0 

s/mm2) and 30 with non-collinear diffusion gradients (b=1000s/mm2, TR/TE=13000/91ms, flip 

angle=90°, axial slice thickness=2.4mm, contiguous; in-plane resolution=2×2mm).  

Image preprocessing 
Lesion detection and filling 
White matter lesions of MS patients were automatically segmented on FLAIR images23 and the 

resulting lesion masks were linearly registered to T1-space to perform lesion filling.24 

Functional preprocessing 
The fMRI images of all 425 participants were preprocessed using the MELODIC pipeline (FSL 

6, fmrib.ox.ac.uk/fsl), including the removal of the first two volumes, motion correction, brain 

extraction and 4mm Gaussian smoothing. Subsequently, ICA-AROMA (v0.4-beta)25 was used 

for automatic removal of residual motion artifacts. Then, regression of mean white matter and 

cerebrospinal fluid signal was performed, followed by high-pass temporal filtering, boundary-

based registration to T1-space and co-registration and resampling to 4mm standard space. 

Diffusion preprocessing 
Complete diffusion MRI data was available for 420 participants. Preprocessing was performed 

using QSIPrep 0.14.3.26 This included denoising and correction for B1 field inhomogeneity, 

head motion and eddy currents. Then, a deformation field was estimated using a registration-

based fieldmap-less approach and used to calculate an unwarped b0 reference.27 The unwarped 

diffusion data was then registered to the T1w volume with 2mm isotropic voxels. Fiber response 

functions and orientation distributions (FODs) were produced with an unsupervised multi-

tissue method and subsequent intensity normalization.28  



Structural damage indicators 
Volumetric measures 
FreeSurfer 7.1.1 was used to automatically perform white-matter as well as cortical and deep 

gray matter segmentations on T1 weighted images.29 Lesion segmentation masks were used to 

determine white matter lesion volume. 

White matter integrity 
Fractional anisotropy (FA) was calculated for each voxel using DSI studio.30 FA maps were 

nonlinearly registered and projected onto an FA template skeleton, using the tract-based spatial 

statistics pipeline.31 The mean FA over the whole skeleton signified white matter integrity. 

Network generation 
Functional networks 
All 210 cortical regions from the Brainnetome atlas32 were combined with 14 deep gray matter 

(DGM) segmentations derived from FSL’s FIRST and transformed to fMRI-space. For 

visualization, all regions were assigned to one of seven cortical resting-state subnetworks33 

based on maximum overlap. All DGM regions were combined into one distinct network. Only 

voxels that represented gray matter were included, whereas distorted resting-state fMRI signal 

was excluded from the atlas.9 Regions with less than 30% non-distorted voxels in more than 

10% of participants were discarded (the bilateral orbitofrontal and nucleus accumbens). This 

resulted in 197 brain regions, from which nodal (i.e., regional) functional time series were 

extracted. We computed edge time series by transforming nodal time series to z-scores (using 

nodal means and standard deviations) and performing point-wise multiplication.16,17 Edge time 

series were used to determine a functional network for each frame in the scan (see Figure 1A). 

Structural networks 
Tractography was performed using MRTrix3 using the normalized white matter FODs, by 

applying iFOD2 probabilistic tracking to generate 10 million streamlines.34 Anatomical 

constraints were provided by a hybrid surface/volume segmentation.35 Finally, streamline 

weights were calculated using SIFT236 and a 196×196 structural connectivity matrix was filled 

with the weighted number of streamlines connecting brain regions, using only regions in the 

functional network (excluding the cerebellum). 



State dynamics 
State identification 
Edge time series of all participants were concatenated and k-means clustering was performed 

to derive connectivity states.14 Clustering was performed in MATLAB for 2-7 clusters, with 

five replicates and using city block distance. The optimal number of states was derived using 

the elbow criterion, resulting in four states whose centroids (cluster median) represented 

robustly detected co-activation patterns. The resulting state sequence assigns each frame to a 

connectivity state. The organization of these states was characterized by computing global mean 

connectivity, global efficiency, modularity, and the eigenvector centrality per resting-state 

network of the centroids, using the brain connectivity toolbox.  

State dynamics characterization 
The total number of transitions across all states, as well as the average fractional occupancy 

(time spent in each state) and relative transition probabilities (probability of transitioning 

between and persisting within each individual state) were computed (see Figure 1B).14 In line 

with arguments made in previous research,37 the relative transition probabilities from states that 

were not visited were considered missing values in this work.  

Control energy 
The nctpy Python toolbox was used to determine control energy based on network control 

theory (see eMethods 1 for details). The minimum control energy (Emin) was calculated per brain 

region, reflecting the minimum external input that explains the observed change in brain activity 

(see Figure 1C). The sum across brain regions defined overall required energy for a transition. 

Averaging the Emin from the same state transitions using information from the state sequence, 

resulted in a 4×4 control energy transition matrix per participant (see Figure 1D). Each 

transition in the transition matrix was transformed to a z-score based on the distribution of HCs 

for that transition. The average across the entire matrix determined the total control energy 

required across state transitions, representing overall energy inefficiency or energetic costs. The 

means of the diagonal values determined persistence control energy, denoting the costs of 

staying in the same state. The off-diagonal values were used for transition control energy, 

signifying the costs of transitioning to a different state. Some transitions were not observed in 

specific individuals, so the control energy for these transitions were regarded as missing values.  



Statistical analyses 
SPSS 28 was used for all statistical analyses. All group comparisons (unless differently 

specified) were adjusted for age, sex and education. Education was based on the highest level 

attained and was binarized for analyses (higher vocational education or university yes/no). 

When the same analysis was performed across multiple states or transitions, multiple 

comparisons were taken into account using Bonferroni and corrected p-values were reported. 

An α-level of .05 was considered statistically significant. Normality of the dependent variables 

was inspected visually and using Kolmogorov-Smirnov tests. 

Demographics and clinical variables were compared between the cognitive groups (HC, CP, 

MCI and CI) using chi-square (X2) tests of independence for categorical variables and ANOVAs 

for numeric variables (no adjustment for covariates). For group comparisons of all imaging 

measures, linear mixed models were used when the data was normally distributed and Quade’s 

non-parametric ANCOVA if not. Using this approach, differences in the total number of state 

transitions and the fractional occupancy of each specific state were compared between cognitive 

groups. Transition probabilities were investigated for states that showed differences between 

groups. Total control energy as well as transition and persistence control energy were compared 

between the cognitive groups. Then, the difference in control energy required to transition 

between specific states was evaluated. Finally, the connection between transition probability 

and control energy was investigated in relation to measures of structural damage and clinical 

indicators of MS using partial correlations.  

  



Results 
Demographics and clinical characteristics 
Complete fMRI and neuropsychological assessments were available for 330 patients (mean age 

of 48 ± 11 years; 68% female) and 95 HCs (mean age of 46±10 years, 58% female). Across all 

patients, 179 (54%) were classified as CP (131 women, mean age of 46 ± 10 years), 65 (20%) 

as MCI (42 women, mean age of 49 ± 12 years) and 86 (26%) as CI (51 women, mean age of 

51 ± 11 years). Cognitive groups differed on age, sex and educational level (see Table 1). 

State dynamics 
State organization 
Four recurring connectivity states were identified (see Figure 2A). State 1 was moderately 

connected with high visual network and therefore described as the visual network state (see 

Figure 2B). State 2 was strongly connected overall, thus termed the highly connected state. 

State 3 showed moderate connectivity strength, in particular with a strongly connected VAN 

and therefore called the VAN state. State 4 was weakly connected with high modularity and 

high DMN connectivity and described as the weakly connected state. 

Total transitions 
The total number of transitions was lower in CI compared to CP patients and HCs (see Figure 

3 & Table 2 for statistical parameters). MCI patients also transitioned between states less 

frequently compared to HCs. Thus, dynamics became less fluid in impaired patients. 

Fractional occupancy 
After correcting for performing comparisons across four states, the fractional occupancy of 

State 1 was significantly lower in CI compared to CP patients and HCs. Both MCI and CP 

patients also showed a lower fractional occupancy in State 1 compared to HCs. For State 2 and 

State 3 the same directionality was observed, but no significant differences were found between 

groups. The fractional occupancy of State 4 showed the opposite effect, being higher in CI 

patients compared to HCs. Although it was not significantly elevated in CI compared to CP 

patients, all MS groups showed a higher fractional occupancy in State 4 compared to HCs. 

These findings indicate that the time spent in State 1 and State 4 were altered in MS, with CI 

patients mainly spending less time in State 1. 



Transition probabilities 
Based on the results above, the probability of persisting within and transitioning between State 

1 and State 4 were explored further, correcting for performing four comparisons. Different 

probabilities of persisting in State 1 were observed. CI persisted in State 1 less frequently 

compared to CP patients and HCs. MCI also persisted in State 1 less frequently compared to 

HCs. Differences between groups were also observed in the probability of persisting in State 4, 

but these were not observed between patients and only a heightened persistence probability was 

observed compared to HCs across all patient groups. Differences between groups were also 

observed in the probability of transitioning from State 1 to State 4. When in State 1, CI 

transitioned to State 4 more compared to CP patients and HCs. The inverse was true when in 

State, as then CI transitioned less to State 1 compared to CP. 

Control energy 
Total control energy 
Of all 330 patients, 5 had incomplete diffusion MRI data (3 CP & 2 MCI) and were excluded 

from these analyses. Total control energy was increased in MCI and CI compared to CP patients 

and HCs (see Figure 4 & Table 2 for statistical parameters). 

Persistence and transition control energy 
Persistence control energy was not different between groups after correction for performing 

two comparisons, thus staying in the same state was not more energetically costly in CI. 

Transition control energy was increased in MCI and CI compared to CP patients and HCs. This 

indicated that CI featured more energetically costly transitions between states. Based on these 

findings, we used transition and not total control energy in the correlations with disease severity. 

Energy of specific state transitions 
Similarly to the transition probability, the minimum control energy required for transitions 

between and within State 1 and State 4 were compared between groups, whilst correcting for 

comparing across these four transitions. Only the control energy of the transition from State 4 

to State 1 showed significant differences between groups, with CI and MCI patients both 

showing increased control energy compared to CP patients and HCs. Control energy of 

transitions from State 1 to State 4, as well as the control energy related to persisting in State 1 

or State 4 did not differ between groups. 



Correlations with disease severity 
Structural damage 
We corrected significance thresholds for considering four measures of structural damage. 

Reduced white matter integrity in MS patients related to less frequent state transitions, an 

increased probability of persisting in State 4, more transition control energy, and more control 

energy for transitions from State 1 to State 4 (see Table 3 for statistical parameters). 

Clinical outcomes 
After correcting for investigating three clinical outcomes, worse average cognitive performance 

in MS related to fewer transitions and increased transition control energy. Further, average 

cognition related to all transition probabilities between State 1 and State 4, whereas it only 

related to the control energy of transitions from State 4 to State 1. Worse EDSS related to fewer 

transitions, a higher probability to transition from State 1 to State 4, increased probability of 

persisting in State 4, and more control energy for transitions from State 1 to State 4. More 

fatigue related to an increased probability to transition from State 1 to State 4. 

Cognitive domains 
We corrected for studying seven cognitive domains. Worse information processing speed and 

verbal fluency associated with elevated transition control energy in MS. Impaired information 

processing speed, visuospatial memory, and attention related to less probability of persisting in 

State 1. Patients with poorer attention were more likely to transition from State 1 to State 4. 

Finally, poorer performance on executive functioning, verbal fluency, and visuospatial memory 

related to more control energy required to transition from State 1 to State 4.   



Discussion 
This study showed that dynamic network changes required for normal cognitive processing 

requires more effort in cognitively impaired people with MS, as transitions between 

connectivity states required more control energy. This suggests that state transitions became 

more effortful and may explain why transitions happen less frequently in MS patients with 

cognitive impairment. The results showed that impaired patients spent more time in the weakly 

connected state and less in the visual network state, with the probability of transitioning to and 

from the visual network state being altered in CI patients. Transitions that happened more 

frequently did not become less energetically costly, but patients that required more transition 

control energy generally transitioned towards the weakly connected state and away from the 

visual network state. 

CI patients used more control energy for transitions between connectivity states. This provides 

a mechanistic understanding of reduced brain dynamics in MS patients with cognitive 

impairment, suggesting that state transitions became more cognitively effortful and 

metabolically demanding,20 which may prevent transitions from occurring. Additional 

mediation analyses (see eMethods 2) did not support a clear directionality in which structural 

aberrations affect the transition probability; thus, it is possible that transitions occurring less 

frequently make them more effortful. Further experimental studies are required to discern this 

directionality. Several possible explanations exist for the more energetically costly network 

dynamics in CI MS. Firstly, demyelination-related conduction delays in MS can impact 

efficient information transfer,38 which matches our observed link with white matter integrity. 

We detected no relationship with lesion volume or atrophy in MS. This suggests that the extent 

of demyelination could affect these measures more strongly than changes in brain 

morphometry, which can be further studied using modelling work with individualized 

estimations of conduction velocities.39 Secondly, more energetically costly state transitions may 

be linked to an excitation-inhibition imbalance,40 as an adequate balance is critical for efficient 

neural encoding.41 This matches a recent study showing the relevance of such balance for 

cognition in MS.42 Thirdly, structural damage in MS might impair the efficient wiring of the 

structural network and make functional transitions more energetically costly.43 Exploratory 

analyses using a “healthy” structural network to compute control energy showed that 

differences between groups remained (see eMethods 3). Thus, although the structural network 

likely shaped network dynamics, this suggests that he dynamic patterns themselves might 

particularly be more costly and not the organization of the structural network. 



The visual network state was especially important for cognition, as CI-MS was less likely to 

stay in this state and more likely to move to the weakly connected state than CP patients. 

Conversely, when in the weakly connected state, CI patients moved to the visual network state 

less. Thus, in contrast to our hypothesis, CI patients did not get “stuck” in states featuring high 

DMN connectivity (the weakly connected state), but also returned to that state more often. 

These transition probabilities could not be explained by the control energy required for the 

transitions, as exploratory analyses suggested that a less energetically efficient network pushes 

the brain to the weakly connected state (see eMethods 4). This weakly connected state was by 

far the most abundant across participants, which was further elevated in CI patients. Lower 

connectivity strength is arguably less metabolically demanding,16 so residing in this state more 

regularly could be a compensatory mechanism. These periods of low connectivity may also be 

uniquely relevant for cognition,18 but were likely underrepresented in studies utilizing static or 

windowed approaches,16 emphasizing the utility of framewise approaches. Periods of more 

integrative connectivity (the visual network state) were observed less in CI patients, whereas 

instances of more integrated processing are likely important for complex cognitive tasks44 

which is often impaired in MS.1 Finally, hampered transitions from a state featuring more DMN 

connectivity (the weakly connected state) to the visual network state might reflect disrupted 

switching between internally and externally oriented processing, as previously proposed.12 

We found a link between transition frequency and probability with total cognition. The 

frequency of transitions across all states may be a broad indicator of disease severity, however, 

as we also observed that fewer transitions related to more physical disability. This aligns with 

findings from prior research on shifts in connectivity states in MS.15,45,46 The same might be 

true for the detected increase in control energy for CI patients, as recent work showed that MS 

patients with physical disability required more control energy compared to non-disabled 

patients.21 In contrast to that finding, we did not observe a relationship between physical 

disability and transition control energy in this study, possibly as our cohort had longer disease 

durations where disability mechanisms might be different. Interestingly, the transition control 

energy was particularly relevant for information processing speed and verbal fluency which 

suggests that transition control energy might be related to shared cognitive processes, such as 

cognitive flexibility. Altered network dynamics could in theory impact fatigue in MS, given the 

previously observed link between fatigue and energy metabolism.47 We did not observe such a 

relationship in the current study, so dedicated studies now need to test whether altered dynamics 

are important for specific types of fatigue.  



The current framework comes with inherent strengths and challenges. Network control theory 

provides an exciting new perspective to link brain function to structural network organization. 

Although control energy should not be directly equated to metabolic energy, previous work did 

show a relationship between control energy and glucose metabolism.43 Parameter choice is still 

a topic of debate, however, particularly for the arbitrary choice of a control horizon, which is 

why we optimized this parameter using a data-driven approach (see eMethods 1).21 Despite 

these challenges, the current framework offers an exciting opportunity and generalizable 

approach to study and develop personalized treatment of cognitive impairment in MS by 

identifying optimal target areas for transcranial magnetic stimulation or for tailoring 

pharmacological interventions.48,49 Furthermore, although fine-grained temporal scales can 

increase noisiness of windowed connectivity (i.e., short windows), the current approach utilizes 

information (e.g. variance) from the entire scan and is not affected by noisy estimations in the 

same way.17 Furthermore, the chance of sojourning in the same connectivity state was 

particularly low for event states (i.e., brief high-amplitude co-fluctuations), so to understand 

what is happening during those states other modalities that acquire data with a better temporal 

resolution (e.g. electro-/magnetoencephalography) are required. Finally, explicit stimuli (e.g. 

tasks or movie watching) would be required to understand the cognitive processes underlying 

specific states.50  

Conclusions 
This study showed that transitions between connectivity states became more effortful in MS 

patients with cognitive impairment compared to preserved patients and controls, as these were 

more costly from a control energy perspective. Heightened energetic costs might limit the 

transitions between states and, in turn, negatively impact cognition. The transitions between a 

weakly connected state and a slightly more integrated visual network state appear to be 

particularly relevant for cognition in these patients. These findings provide new insights into 

the possible biological underpinnings of disturbed brain dynamics in CI patients with MS and 

opens up new avenues for treatment of cognitive impairment in MS.  
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Figures 

 



Figure 1. Illustration of the quantification of state dynamics and control energy. A) 
Functional MRI (fMRI) data was used to create edge time series, which reflected a functional 
network per time point. These networks were clustered using K-means clustering to define brain 
states (S1-S3 in this example; each represented by different colors). B) Cross-state dynamics 
were quantified using the total number of transitions, whereas fractional occupancy (i.e., 
fraction of time spent in each state) was used as state-specific measure and the transition 
probability (Ti,j: probability of transitioning from state i to state j, relative to the total transitions 
from i) as transition-specific measure. C) Information on the number of streamlines of white-
matter (WM) tracts (based on diffusion MRI) was combined with fMRI data, to derive the 
minimum control energy (Emin) that is required to transition between successive frames. D) The 
resulting Emin values were averaged over the same transitions (using the state sequence) to 
compute an energy transition matrix for each participant, so this matrix denotes the mean Emin 
required for each type of transition. The mean over the total matrix signified total control energy 
(CE), whereas the diagonal and off-diagonal reflected transition- and persistence CE. 

  



 

Figure 2. Brains state organization. Four states were identified using K-means clustering. A) 
The backbone of the network of the state (minimum spanning tree) is depicted, with the 
thickness indicating connection strength and the colored edges indicating within-network 
connections and gray edges between network connections. The corresponding connectivity 
matrices are depicted below. B) Global connectivity strength, global efficiency, global 
modularity and the mean eigenvector centrality per resting-state network are portrayed per state 
centroid to help illustrate how states differed from each other. Note. DMN=default-mode 
network, FPN=frontoparietal network, DAN=dorsal attention network, VAN=ventral attention 
network, VIS=visual network, SMN=sensorimotor network, DGM=deep gray matter. 

  



 

Figure 3. Brains state dynamics across cognitive groups. In CI patients, fewer transitions 
between brain states were observed compared to CP and HCs. These patients spend less time 
in State 1 and more time in State 4. CI patients show a lower probability to move from State 4 
to State 1 and stay there relative to preserved patients, whereas the transition from State 1 to 
State 4 was more likely. The thickness of the arrows on the bottom right indicates the relative 
probability of that transition occurring on average in HCs. Note. HC=healthy control, 
CP=cognitively preserved, MCI=mildly impaired, CI=cognitively impaired, S1-S4=State 1-
State 4, *p<0.05, **p<0.01, ***p<0.001.  



 

Figure 4. Control energy of brain state transitions across cognitive groups. In CI patients, 
transitions between and within brain states were more energetically costly compared to CP and 
HCs. In particular, more control energy was required for transition between states, not for 
persisting in the same state. The transition from State 4 to State 1 was particularly more costly 
in CI compared to CP patients. The thickness of the arrows on the bottom left indicates how 
much control energy is required on average in HCs for that transition. Note. HC=healthy 
control, CP=cognitively preserved, MCI=mildly impaired, CI=cognitively impaired, *p<0.05, 
**p<0.01, ***p<0.001. 



Tables 
Table 1. Demographic, clinical and brain volumetric sample characteristics 
  Multiple Sclerosis (MS)   
 HC (N=95) CP (N=179) MCI (N=65) CI (N=86)  Test-statistic p-value 
Demographics        
  Male, n 40 (42.1%) 48 (26.8%) 23 (35.4%) 35 (40.7%)  X2=8.607 0.035* 
  Age, y 45.70 ± 10.35CI 46.16 ± 10.35CI 49.19 ± 12.15 51.21 ± 10.66HC,CP  F=5.819 <0.001* 
  Level of education¥ 6 (3)MCI,CI 6 (2)MCI,CI 4 (3)HC,CP 4 (3)HC,CP  F=7.035 <0.001* 
Disease characteristics        
  Symptom duration - 13.49 ± 7.83CI 14.15 ± 8.15 17.17 ± 9.30CP  F=5.799 0.003* 
  Disease phenotype, 
    RRMS/SPMS/PPMS 

 
- 

 
147CI/20CI/12MCI 

 
47/6CI/12CP 

 
49CP/25 CP,MCI/12 

  
X2=26.106 

 
0.001* 

  Treatment, 
    Yes, n 

 
- 

 
63 (35.2%) 

 
26 (40.0%) 

 
57 (33.7%) 

  
X2=0.689 

 
0.709 

    IFB/COP/NA/Other - 37/6/16/4 18/6/1/1 18/4/6/1  X2=7.666 0.264 
Clinical Variables        
  EDSS ¥ - 3 (2)CI 3 (1.5)CI 4 (2.75)CP,MCI  F=25.360 <0.001* 
  Cognitive function 0.01 ± 0.48a -0.19 ± 0.46a -1.00 ± 0.34a -1.90 ± 0.92a  F=221.480 <0.001* 
Brain Volume        
  Cortical GM, BPF (%) 32.28 ± 1.52CI 31.99 ± 1.77CI 31.69 ± 1.99CI 30.59 ± 1.71a  F=16.823 <0.001* 

  Deep GM, BPF (%) 3.72 ± 0.21a 3.49 ± 0.28HC,CI 3.39 ± 0.32HC,CI 3.15 ± 0.35a  F=60.572 <0.001* 
  Lesion volume, mL - 10.28 (8.63)a 14.05 (11.02)a 22.09 (17.00)a  F=21.126 <0.001* 
Note. All values represent means and standard deviations for the continuous variables, but signify medians and the interquartile range (¥) or frequencies for 
categorical variables. Sample characteristics were compared between all groups. The level of education was based on the highest level of education attained. Brain 
lesion volume was transformed to milliliters (mL) for readability. Post-hoc pairwise comparisons were Bonferroni corrected (a=significantly different from all other 
groups, HC=significantly different from HC, CP=significantly different from CP, MCI=significantly different from MCI, CI=significantly different from CI). 
HC=healthy control, CP=cognitively preserved, MCI=mild cognitive impairment, CI=cognitive impairment, RRMS=relapsing-remitting MS, SPMS=secondary 
progressive MS, PPMS=primary progressive MS, IFB=interferon-beta, cop=copaxone, NA=natalizumab, EDSS=expanded disability status scale, GM=gray matter, 
BPF=brain parenchymal fraction, *p<0.05. 

 
  



Table 2. State dynamics and control energy across cognitive groups 
 Mean (±SD)  Main: Group  CI vs CP 
 HC (N=59) CP (N=134) MCI (N=42) CI (N=54)  F p-value  β [95% CI] p-value 
State dynamics           
Total Transitions 54.9 (18.7)MCI,CI 48.0 (22.3) 43.3 (21.6)HC 42.1 (23.4)HC,CP  4.92 0.002*  -5.78 [-11.23, -0.32] 0.038* 
Fractional occupancy           
  State 1 0.11 (0.07)MCI,CI 0.08 (0.06)HC 0.07 (0.06)HC 0.06 (0.06)HC,CP  9.38 <0.001*  -0.02 [-0.04, -0.01] 0.004* 
  State 2 0.03 (0.03) 0.02 (0.03) 0.02 (0.03) 0.02 (0.03)  2.53 0.226    
  State 3 0.09 (0.05) 0.08 (0.05) 0.08 (0.05) 0.08 (0.06)  0.25 1.000    
  State 4 0.77 (0.10)a 0.81 (0.10)HC 0.83 (0.11)HC 0.83 (0.10)HC  5.55 0.004*  0.03 [0.00, 0.05] 0.053 
Transition Probability           
  State 1 persist (NA=14) 0.29 (0.18)MCI,CI 0.27 (0.18)CI 0.22 (0.18)HC 0.20 (0.20)HC,CP  4.34 0.020*  -0.06 [-0.11, -0.02] 0.007* 
  State 1  State 4 (NA=14) 0.57 (0.20) 0.62 (0.21) 0.63 (0.25) 0.70 (0.24) HC,CP  4.05 0.030*  0.08 [0.02, 0.14] 0.005* 
  State 4 persist 0.84 (0.07)a 0.86 (0.07)HC 0.88 (0.07)HC 0.88 (0.08)HC  4.62 0.014*  0.02 [0.00, 0.04] 0.062 
  State 4  State 1 0.08 (0.05)CI 0.07 (0.05)CI 0.05 (0.04) 0.05 (0.04) HC,CP  7.99 <0.001*  -0.02 [-0.03, -0.01] 0.004* 
 HC (N=59) CP (N=131) MCI (N=40) CI (N=54)  F p-value  β [95% CI] p-value 
Control Energy           
Total Control Energy 0.09 (0.57)MCI,CI 0.38 (0.73)MCI,CI 0.66 (1.23)HC,CP 0.57 (0.88)HC,CP  6.56 <0.001*  0.25 [0.04, 0.46] 0.018* 
  Persistence Energy 0.10 (0.73) 0.35 (0.92) 0.64 (1.03) 0.53 (0.94)  2.99 0.061    
  Transition Energy (NA=2) 0.08 (0.58)MCI,CI 0.24 (0.76)MCI,CI 0.62 (1.35)HC,CP 0.58 (1.00)HC,CP  6.19 <0.001*  0.32 [0.09, 0.54] 0.007* 
Transition Probability           
  State 1 persist (NA=93) 0.00 (1.00) 0.05 (1.07) 0.28 (1.84) 0.01 (1.21)  0.53 1.000    
  State 1  State 4 (NA=17) 0.00 (1.00) 0.12 (1.06) 0.40 (1.53) 0.47 (1.38)  2.24 0.332    
  State 4 persist 0.00 (1.00) 0.38 (1.07) 0.66 (1.18) 0.47 (1.03)  3.30 0.084    
  State 4  State 1 (NA=15) 0.00 (1.00)MCI,CI 0.11 (0.93)MCI,CI 0.64 (1.75)HC,CP 0.51 (1.64)HC,CP  3.87 0.038*  0.34 [0.00, 0.67] 0.049* 
Note. The total frequency of transitions was lower in cognitively impaired (CI) patients compared to preserved (CP) patients and healthy controls (HCs). CI patients 
spent relatively less time in State 1 and more in State 4, with transition probabilities highlighting a general pattern of more transitions towards State 4 and away from 
State 1. The total control energy and particularly the control energy associated with transitions was elevated in CI and mildly cognitively impaired (MCI) patients 
compared to CP patients and HCs. This was most notable for the transition from State 4 to State 1. If a participant did not access a particular state this occasionally 
resulted in missing values (NA; i.e. not available). The reported p-values for the main group effects were corrected for multiple comparisons using Bonferroni and 
pairwise comparisons are reported if the corrected p<0.05 (a=different from all other groups, HC=different from HC, CP=different from CP, MCI=different from MCI, 
CI=different from CI), *p<0.05. 

 
 
  



Table 3. Correlational analyses. 
 Total 

transitions 
(N=330) 

 Transition 
Control Energy 

(N=323) 

 State 1 persist  State 1  4  State 4 persist  State 4  1 
   Probability 

(N=316) 
Control Energy 

(N=243)  
Probability 

(N=316) 
Control Energy 

(N=308)  
Probability 

(N=330) 
Control Energy 

(N=325)  
Probability 

(N=330) 
Control Energy 

(N=310) 
 r p  r p  r p r p  r p r p  r p r p  r p r p 
Structural damage                          
  Cortical GM volume 0.13 0.085  -0.08 0.689  0.04 1.000 -0.12 0.268  -0.03 1.000 -0.08 0.646  -0.14 0.057 -0.05 1.000  0.02 1.000 -0.08 0.660 
  Deep GM volume 0.10 0.256  -0.02 1.000  0.06 1.000 -0.03 1.000  -0.10 0.328 -0.03 1.000  -0.10 0.324 0.03 1.000  0.03 1.000 -0.01 1.000 
  Lesion volume -0.07 0.925  0.00 1.000  -0.03 1.000 0.03 1.000  0.01 1.000 0.03 1.000  0.07 0.967 -0.04 1.000  -0.06 0.993 0.04 1.000 
  WM integrity 0.16 0.013*  -0.15 0.023*  0.05 0.188 0.05 1.000  -0.08 0.381 -0.16 0.005*  -0.15 0.007* -0.07 0.666  0.09 0.312 -0.09 0.245 
Clinical outcomes                          
  Average cognition 0.15 0.023*  -0.17 0.007*  0.18 0.001* -0.05 1.000  -0.17 0.002* -0.12 0.062  -0.18 0.001* -0.10 0.134  0.20 <0.001* -0.17 0.001* 
  EDSS -0.16 0.015*  0.09 0.277  -0.12 0.081 -0.01 1.000  0.15 0.019* 0.17 0.012*  0.15 0.019* 0.08 0.452  -0.13 0.069 0.13 0.077 
  Fatigue -0.10 0.618  0.08 0.988  -0.16 0.062 0.01 1.000  0.18 0.026* 0.16 0.078  0.10 0.456 0.04 1.000  -0.15 0.103 0.08 0.836 
Cognitive domains                          
  Executive functioning 0.08 1.000  -0.12 0.302  0.09 0.457 0.06 1.000  -0.11 0.256 -0.12 0.120  -0.10 0.280 0.00 1.000  0.12 0.105 -0.16 0.018* 
  Verbal memory 0.07 1.000  -0.03 1.000  0.08 0.933 -0.12 0.265  -0.11 0.194 -0.01 1.000  -0.09 0.524 -0.07 1.000  0.10 0.284 -0.01 1.000 
  Processing speed 0.10 0.568  -0.18 0.013*  0.14 0.035* -0.04 1.000  -0.12 0.114 -0.12 0.111  -0.13 0.074 -0.08 0.804  0.13 0.055 -0.13 0.069 
  Verbal fluency 0.07 1.000  -0.18 0.015*  0.12 0.169 -0.12 0.271  -0.09 0.628 -0.10 0.440  -0.10 0.318 -0.02 1.000  0.12 0.097 -0.14 0.050* 
  Visuospatial memory 0.03 1.000  -0.05 1.000  0.17 0.007* 0.02 1.000  -0.10 0.286 -0.03 1.000  -0.07 1.000 -0.10 0.374  0.12 0.150 -0.14 0.047* 
  Working memory 0.02 1.000  -0.08 1.000  0.11 0.259 0.11 0.349  -0.05 1.000 -0.02 1.000  -0.07 1.000 -0.04 1.000  0.12 0.143 -0.09 0.604 
  Attention 0.08 1.000  -0.05 1.000  0.16 0.013* -0.10 0.500  -0.17 0.007* -0.04 1.000  -0.11 0.217 -0.07 0.983  0.13 0.051 -0.09 0.626 
Note. These correlational analyses were performed on data from MS patients (N=330), with missing values for WM integrity (5), fatigue (163), executive functioning (12) verbal memory 
(2), IPS (2), verbal fluency (1), working memory (12), and attention (12). All correlations were adjusted for age, sex and level of education. The p-values were corrected for performing 
multiple comparisons using Bonferroni. GM=gray matter, WM=white matter, BPF=brain parenchymal fraction, EDSS=expanded disability status scale, *p<0.05. 
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