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Abstract 

In genome-wide association studies (GWAS), combining independent case-control cohorts has 

been successful in increasing power for meta and joint analyses. This success sparked interest in 

extending this strategy to GWAS of rare and common diseases using existing cases and external 

controls. However, heterogeneous genotyping data can cause spurious results. To harmonize 

data, we propose a new method, two-stage imputation (TSIM), where cohorts are imputed 

separately, merged on intersecting high-quality variants, and imputed again. We show that TSIM 

minimizes cohort-specific bias while controlling imputation-derived errors. Merging arthritis 

cases and UK Biobank controls using TSIM, we replicated known associations without 

introducing false positives. Furthermore, GWAS using TSIM performed comparably to the meta-

analysis of nephrotic syndrome cohorts genotyped on five different platforms, demonstrating 

TSIM’s ability to harmonize heterogeneous genotyping data. With the plethora of publicly 

available genotypes, TSIM provides a GWAS framework that harmonizes heterogeneous data, 

enabling analysis of small and case-only cohorts. 
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Introduction 

Genome-wide association studies (GWAS) are common for studying the genetic determinants of 

traits and diseases, especially when large sample sizes are available. Smaller studies or case-only 

cohorts are often combined with external controls to enable GWAS and increase statistical 

power1–3. When combining cohorts, batch effects can arise due to differences in genotyping 

platform. To reduce these effects, the current practice for combining cohorts prior to imputation 

is to use genotyped single nucleotide polymorphisms (SNPs) that are shared between cohorts1,4–7. 

This approach not only reduces the number of SNPs available for analysis but may also 

adversely affect genotype imputation by decreasing accuracy.  

 

Genotype imputation approximates whole genome sequencing (WGS) by leveraging linkage 

disequilibrium (LD)8,9. It is an essential step in GWAS to increase the genome-wide coverage of 

the analysis and enable post-GWAS analyses such as fine mapping and meta-analysis1,9. By 

restricting the SNPs used for imputation to the intersection, haplotype-informative SNPs may be 

lost, thus reducing the accuracy of imputation and downstream analyses. Given this, it is 

currently recommended to only combine cohorts genotyped on the same platform prior to 

imputation4,5. Finding external cohorts that meet these criteria is often difficult, especially for 

underrepresented populations. While it is becoming easier to find large external control cohorts 

with the advent of diverse biobanks, they are often genotyped on custom platforms designed for 

their population of interest10,11 making it difficult to combine them with other cohorts. 

 

Previously, several approaches have been proposed to overcome the challenges in combining 

heterogeneous genotyping data. Some studies argued that cohorts can be imputed separately, and 
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then combined by restricting analysis to the shared SNPs with high imputation quality2,12. This 

approach reduced type I error in GWAS at the expense of reduced power and fewer SNPs for 

testing. GAWMerge presented another solution to this problem: merge the array-based genotypes 

of a study cohort with the WGS of publicly available controls13. However, this method requires 

the external cohort to have WGS available which may not be feasible for many underrepresented 

populations, particularly in regions with limited funding and resources. Another study sought to 

harmonize multiple control cohorts by removing low-quality genotyped SNPs, then merging 

genotypes after a single imputation7. These SNPs were identified through an iterative process of 

GWAS using genotyping platform as the outcome, to identify spurious genome-wide significant 

loci, and re-imputation on array genotypes, to identify low-quality SNPs. This approach showed 

promise in reducing batch effects when merging multiple cohorts. However, it requires internal 

controls genotyped on the same platform as cases. It may also result in substantial loss of 

imputed SNPs after filtering out low-quality variants from re-imputation. 

 

Here, we introduce two-stage imputation (TSIM), a method to address these issues, which 

includes a second imputation on high-quality SNPs after merging separately imputed cohorts. In 

brief, cohorts are imputed separately (Stage 1) and then merged on high-quality genotyped and 

imputed SNPs (hq-SNPs) present in both imputations. Finally, a second imputation (Stage 2) is 

performed on the merged data. Essentially, TSIM utilizes a first stage of high-quality imputation 

to improve a second stage of imputation which covers a larger proportion of the genome. Similar 

strategies have been used to improve genotype imputation of ancient DNA14 and rare variants15, 

but no studies have applied this concept to GWAS of common variants. We illustrate the validity 

and utility of TSIM using data from the 1000 Genomes Project (1KGP)16, UK Biobank (UKB)10, 
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a psoriatic arthritis case-control cohort17, and two cohorts from a published pediatric steroid 

sensitive nephrotic syndrome (pSSNS) meta-analysis18. Along with this research, we provide a 

command line tool, tsim, for others to easily implement this method in their analyses. 

  

Results 

Overview of two-stage imputation method (TSIM) 

TSIM implements two primary steps bookended by two rounds of imputation (Fig 1). In the first 

round of imputation (Stage 1), we impute cohorts separately using the same reference panel, 

following current GWAS practices for quality control (QC) of a single cohort. This Stage 1 

imputation serves to increase the number of intersecting SNPs for merging and reduce cohort-

specific bias by identifying high-quality genotyped and imputed SNPs (hq-SNPs) present in all 

imputed cohorts. We define hq-SNPs as common SNPs (minor allele frequency (MAF) ≥ 0.01) 

with high imputation quality (R2 ≥ 0.99; ER2 ≥ 0.9 if genotyped). We discuss the determination 

of these thresholds in detail below (also see Methods). This step can be considered as “in silico 

genotyping” simulating the “same platform” for all cohorts to be merged. After Stage 1, cohorts 

are merged on the intersection of hq-SNPs. Then, we perform the second round of imputation 

(Stage 2) on the merged cohort to achieve greater genome-wide coverage for GWAS and 

downstream analyses.  

 

Determination of high-quality SNPs 

We evaluated the quality of Stage 1 imputation results to determine what criteria were needed to 

define our hq-SNPs. We used unrelated individuals from 1KGP across four ancestry groups 

(European (EUR), African (AFR), East Asian (EAS), and South Asian (SAS)) that were 
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genotyped on two different array platforms, Affymetrix SNP 6.0 (AFFY) and HumanOmni2.5 

(OMNI), and had WGS. We imputed AFFY and OMNI genotypes using the TOPMed 

Imputation Server and its associated reference panel (TOPMed)19–21. Within each ancestry group 

and for each platform, we identified imputation-derived errors based on the absolute difference 

in allele frequency (AFdiff) between Stage 1 imputed dosages and the corresponding WGS 

genotypes, which we considered the ground truth. We also calculated AFdiff between WGS and 

“good-quality” genotyped SNPs (ER2 ≥ 0.9) for comparison. We found that SNPs with R2 ≥ 0.99 

generally had the lowest AFdiff from WGS and were better correlated with the unimputed vs. 

WGS line across all ancestry groups for both platforms. The other R2 bins followed in 

descending order indicating that SNPs with higher R2 had lower discordance with WGS (Fig 

2A,B; Supp Table 1).  

 

Using a similar framework, we also evaluated cohort-specific bias using samples genotyped on 

both AFFY and OMNI. Here, we define “cohort-specific bias” as differences resulting from 

mismatched genotyping platforms, but the term encompasses all technical differences between 

the cohorts being merged. Within each ancestry group, we calculated the AFdiff between the 

AFFY- and OMNI-imputed results. As expected, we observed a strong correlation between 

imputation quality and cohort-specific bias, with minimal bias achieved when R2 
≥ 0.99 (Fig 

2C). Despite this high threshold, we were able to retain over 3,000,000 SNPs for both EUR and 

AFR, and around 1,000,000 for EAS and SAS (Supp Table 1). The fewer number of SNPs for 

EAS and SAS can be partially attributed to the limitations of the TOPMed reference panel, 

where only 8% of samples have Asian ancestry (both East and South)19, and demonstrates the 

importance of a complementary reference for imputation. These results suggest that an R2 ≥ 0.99 
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cutoff is sufficient for AFR and EUR cohorts imputed on TOPMed, but that an alternate 

reference panel with more Asian representation may be beneficial for EAS and SAS cohorts. 

 

TSIM is robust against imputation-derived errors  

We assessed the effect of TSIM on imputation-derived error by extending the previous analysis 

to Stage 2 imputations. With the 1KGP samples used previously, we compared AFFY- and 

OMNI-based imputations to WGS genotypes using AFdiff. Here, we use “S1” and “S2” to 

represent imputation results following Stage 1 and Stage 2, respectively. S1 is more similar to 

current practices of imputing once whereas S2 implements TSIM and imputes data twice. 

Generally, for both platforms across ancestries, the AFdiff is similar in S1 and S2 for SNPs with 

higher imputation quality (R2 ≥ 0.8) and worse (i.e., higher) in S2 for SNPs with lower 

imputation quality (R2 < 0.6). For R2 bins in between, AFdiff progressively increases as 

imputation quality decreases (Supp Fig 1). For example, the 514 EURAFFY samples with WGS 

had 2.10% of SNPs (7,064,852) with AFdiff ≥ 1% in S1, decreasing to 1.98% in S2. Looking at a 

more relaxed threshold of AFdiff ≥ 2%, S1 had 0.39% of SNPs meeting this criterion whereas S2 

slightly increased to 0.56% (Supp Table 2). Similar marginal differences were observed in 

AFRAFFY, AFROMNI, and EUROMNI samples (Supp Table 2,3). However, for EAS and SAS, S2 

had higher AFdiff indicating S2 was more discordant from WGS than S1 (Supp Fig 1). Stratifying 

these calculations by imputation quality, the higher AFdiff in S2 was primarily driven by SNPs 

with low imputation quality (Supp Fig 1; Supp Table 2,3). These low-quality SNPs (R2 < 0.6) 

account for a small percentage of total SNPs (EURAFFY=2%, EUROMNI=2%, AFRAFFY=2%, 

AFROMNI=2%, EASAFFY=11%, EASOMNI=12%, SASAFFY=12%, SASOMNI=11%) and can be 

removed (Supp Table 2,3). The increase for EAS and SAS is likely due to the limitations of the 
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TOPMed reference panel mentioned before. Thus, despite using a second stage of imputation 

where new errors might be introduced, TSIM produces comparable imputation-derived error to 

using a single stage of imputation when poor imputation quality is accounted for and the 

reference panel is well-matched. 

 

TSIM shows substantially reduced cohort-specific bias 

We next evaluated the effect of TSIM on cohort-specific bias. In these analyses, we refer to a 

method of separately imputing cohorts once (Stage 1), followed by simple merging on 

intersecting SNPs, as “separately-imputed” and our new method implementing TSIM as “two-

stage”. Thus, we have four imputed dosage datasets for this analysis: Stage 1 and Stage 2 

imputed dosages for each of AFFY and OMNI. We then calculated the AFdiff for each variant 

between the AFFY- and OMNI-imputed dosages. We further stratified these per variant 

calculations based on the average imputation quality for each stage across datasets (see 

Methods). For EUR samples, 1.49% of SNPs (8,693,470) had AFdiff ≥ 1% in separately-imputed. 

This bias was ameliorated in two-stage with only 0.03% of SNPs with AFdiff ≥ 1% (Fig 3; Supp 

Table 4). The substantially smaller AFdiff between cohorts in two-stage illustrates that cohort-

specific bias is greatly reduced after the second stage of imputation. This pattern is most 

pronounced for SNPs with lower imputation quality (Supp Table 4; Supp Fig 2). We saw 

similar results when analyzing other 1KGP ancestries (AFR: samples=328, SNPs=14,383,283, 

separately-imputed=1.46%, two-stage=0.07%; EAS: samples=464, SNPs=6,899,281, separately-

imputed=5.85%, two-stage=0.63%; SAS: samples=100, SNPs=7,325,035, separately-

imputed=7.13%, two-stage=3.02%) (Fig 3; Supp Fig 2; Supp Table 4). This demonstrates that 

TSIM successfully reduces cohort-specific biases between cohorts that were genotyped on 
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different genotyping platforms, an issue that has long been a challenge in robust GWAS 

analysis3–6.  

 

TSIM robustly controls for type I error 

To evaluate type I error we performed 1KGP vs. UKB GWAS for each ancestry group (AFR, 

EAS, EUR, and SAS). For each ancestry, we randomly selected up to 5,000 ancestry-matched 

individuals from UKB, genotyped on UKB Axiom, to be merged with unrelated samples in 

1KGP (Supp Table 5). Notably, only 90,530 of UKB Axiom SNPs (total= 784,256) are shared 

with AFFY (total= 905,788) and only 273,045 are shared with OMNI (total= 2,458,861) before 

QC. We performed GWAS using SAIGE22 with two different methods of merging data: (1) a 

simple merging of separately imputed data on intersecting SNPs (“separately-imputed”), and (2) 

a full implementation of TSIM (“TSIM”) (see Methods). Since 1KGP samples were genotyped 

on two different platforms (AFFY and OMNI), we assessed both data separately. Principal 

component analysis (PCA) showed that the genetic backgrounds of the two different cohorts 

were well matched for all ancestry groups (Supp Fig 3). Because no specific phenotypes are 

enriched in either 1KGP or UKB (i.e., control cohorts), we would expect no genome-wide 

significant loci (GWAS loci) from this analysis. Thus, any GWAS loci we found would be false 

positives, indicating a cohort-specific bias in the analysis. In all GWAS, the separately-imputed 

method had many GWAS loci whereas TSIM had little to none (Fig 4; Supp Fig 4; Supp Table 

5). Specifically, for the EUR GWAS using 1KGP-AFFY and the matched UKB subset, 170 

independent GWAS loci in separately-imputed were reduced to none in TSIM; using OMNI, 99 

in separately-imputed were reduced to one barely passing genome-wide significance in TSIM 

(p=3.85×10-8, R2=0.54). Similarly, for AFR, over 500 GWAS loci in separately-imputed were 
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reduced to one for AFFY (p=2.56×10-8, R2=0.59) and 403 became two for OMNI (p=1.61×10-8, 

6.58×10-9; R2=0.66, 0.33). We saw similar patterns for EAS and SAS. Of note, the total number 

of SNPs in the TSIM GWAS was reduced for EAS and SAS (EASAFFY-UKB=3,033,659; EASOMNI-

UKB =5,646,177; SASAFFY-UKB=3,380,760; SASOMNI-UKB =6,340,030). This is likely due to the 

lack of sufficient genome-wide coverage of hq-SNPs in Stage 1 imputation which negatively 

impacted Stage 2 imputation results. 

 

We also evaluated the GWAS of UKB samples vs. the control group (n=1,406) from a GWAS of 

psoriatic arthritis (“ART”), genotyped on the HumanOmni1-Quad BeadChip17. We used a 

random subset of 5,000 UKB individuals (“UKB5K”) of EUR descent and UKB individuals with 

psoriatic arthritis were removed (see Methods). ART controls were merged with UKB5K after 

separate imputations and using TSIM. In the TSIM GWAS, no variants reached genome-wide 

significance (Supp Fig 5, top), while the separately-imputed GWAS yielded over 500 GWAS 

loci (Supp Fig 5, bottom). This drastic decrease in GWAS loci between the separately-imputed 

and TSIM GWAS, and the noticeable lack of associations in TSIM demonstrates that our method 

effectively controls for type I error and batch effects across different genotyping platforms, 

provided there is sufficient genome-wide coverage of hq-SNPs. 

 

TSIM replicates psoriatic arthritis GWAS results and enables the use of case-only cohorts  

Using the ART cohort, which contained 1,410 psoriatic arthritis cases in addition to the 1,406 

controls, and UKB5K, we also evaluated TSIM’s ability to accurately identify GWAS loci in a 

case-control study. We compared GWAS results from TSIM and separately-imputed for two 

different scenarios: (1) both-controls: ART cases and controls merged with UKB5K to represent 
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a common situation where external controls may be used to increase the power of GWAS and (2) 

external-controls: only cases from ART merged with UKB5K to represent a situation where only 

cases were available and merging with external cohorts would enable GWAS to be performed. 

We also ran GWAS using only the ART cases and controls, referred to as internal-controls, to 

generate reference results to better compare GWAS loci (see Methods). Of note, one case and 

four controls were removed from the internal-controls GWAS due to lack of matching controls 

and cases, respectively, and were recovered when ART was merged with UKB5K using TSIM 

(Supp Table 6). PCA and QQ plots for these GWAS are available in Supp Fig 6,7. We found 

that for both both-controls and external-controls scenarios, the TSIM GWAS was better able to 

replicate the internal-controls GWAS than the separately-imputed GWAS (Fig 5A; Supp Fig 

8,9). Specifically, in the both-controls GWAS, three out of four genome-wide significant loci 

from the internal-controls GWAS had similar λGC-adjusted p-values, odds ratios, and directions 

of effect (HLA-B – rs36058333, rs4418214; TRAF3IP2 – rs33980500; IL12B – rs918520, 

rs1582515) with the fourth reaching suggestive significance (TYK2 – rs11085727 (pλGC-

adj.=8.84×10-8), rs35251378 (pλGC-adj.=1.10×10-7)) (Supp Table 7). The both-controls GWAS also 

replicated and improved results for some suggestive loci by bringing them over the genome-wide 

significance threshold (HLA-G – rs3115628 (pλGC-adj.=5.80×10-9); TNIP1 – rs75851973 (pλGC-

adj.=4.66×10-14), rs76956521 (pλGC-adj.=4.62×10-14), rs17728338 (pλGC-adj.=1.08×10-13)) (Fig 5B; 

Supp Fig 9; Supp Table 7). These suggestive loci were implicated in previously published 

psoriatic arthritis GWAS and many had follow-up analyses further connecting the loci to the 

disease risk17,23–26. Similarly, the external-controls GWAS replicated three out of four signals 

from the internal-controls GWAS (HLA-B – rs36058333, rs4418214; TRAF3IP2 – rs33980500; 

IL12B – rs1582515) and the other reached suggestive significance (IL12B – rs918520 (pλGC-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2024. ; https://doi.org/10.1101/2024.04.19.24306081doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306081
http://creativecommons.org/licenses/by-nc-nd/4.0/


adj.=5.34×10-7); TYK2 – rs11085727 (pλGC-adj.=3.92×10-6), rs35251378 (pλGC-adj.=4.84×10-6)). We 

also found improved results for one suggestive loci (TNIP1 – rs75851973 (pλGC-adj.=4.66×10-14), 

rs76956521 (pλGC-adj.=4.62×10-14), rs17728338 (pλGC-adj.=1.08×10-13)) (Fig 5B; Supp Fig 9; Supp 

Table 7). On the other hand, separately-imputed resulted in many false positives, similar to the 

previous 1KGP vs. UKB control GWAS (Fig 4,5A; Supp Fig 4,5). These GWAS demonstrate 

that our TSIM method can accurately replicate and improve GWAS results by enabling the 

inclusion of external controls to increase the power of detection. It is especially effective for 

case-only cohorts for which GWAS analysis was previously impossible due to a lack of controls 

matching both genetic population structure and genotyping platform. 

 

TSIM facilitates standard GWAS of multi-platform cohorts at the genotype level 

Next, we evaluated whether a single joint GWAS of two European pSSNS cohorts using TSIM 

could accurately replicate results from a meta-analysis on the same data conducted by Barry et 

al.18. In the published analysis, these two cohorts (designated “EU” and “US” based on the 

geographical origin of each dataset) were meta-analyzed because they were genotyped on two 

distinct array platforms across five different sub-cohorts (Supp Table 8). When merged on hq-

SNPs after the first stage of imputation, we found that the two cohorts clustered together in the 

PCA space (Supp Fig 10), indicating that the samples had similar genetic population structure 

and might benefit from being analyzed together in a single TSIM Joint GWAS (“TSIM Joint”). 

We also ran a TSIM meta-analysis (“TSIM Meta”), using TSIM to merge the four sub-studies 

comprising the EU cohort, to assess the impact of using TSIM to merge smaller cohorts. In total, 

there were 674 cases (EU=313, US=361) and 6,817 controls (EU=2,508, US=4,309). The TSIM 

GWAS included more SNPs (Joint=8,531,980, Meta=8,209,112) compared to the 8,014,298 
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included in the published GWAS and had similar results (Fig 6A; Supp Fig 11; Supp Table 

9,10). In both TSIM Joint and TSIM Meta, we replicated three out of four GWAS loci from the 

published meta-analysis (HLA-DQB1 – rs17211699; NFKBIL1 – rs2857607; CALHM6 – 

rs2637678) (Supp Table 10). Using TSIM, we were able to identify eight additional SNPs in 

high LD with rs2637678 in the CALHM6 locus (Fig 6B) compared to 32 SNPs in the published 

analysis. The fourth published GWAS loci (MORF4L1 – rs12911841) failed to achieve genome-

wide significance after correcting for genomic control (Supp Table 10). This SNP had low 

imputation quality (R2 < 0.6) and the effect allele (T) frequency is 0.007 in Europeans27. 

Considering that the SNP is rare and has low imputation quality in our study population, we 

cannot conclude if TSIM shows an improvement by removing a false positive or if we simply 

lack the power to detect this association with this dataset. Nevertheless, TSIM provides a robust 

analysis of this multi-cohort pSSNS study. Furthermore, the low inflation and high concordance 

of TSIM Joint and TSIM Meta results compared to the published GWAS demonstrate that TSIM 

is an effective strategy for combining multiple cohorts and may be used as an alternative to meta-

analysis for smaller cohorts, provided cohorts have similar genetic population structure. 

 

Discussion 

In summary, we present TSIM, a method to extend the applicability of GWAS to previously 

understudied or underpowered cohorts. TSIM consists of two primary steps for efficiently 

harmonizing separately imputed cohorts bookended by two stages of imputation: (1) identify hq-

SNPs and (2) merge cohorts based on hq-SNPs present in all cohorts. The identification of hq-

SNPs corrects cohort-specific bias and the second stage of imputation increases the number of 

SNPs available for GWAS and downstream analyses. The development and evaluation of TSIM 
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was done with data from 1KGP, UKB, a psoriatic arthritis case-control GWAS, and a pSSNS 

case-control GWAS meta-analysis. We evaluated cohort-specific bias, imputation-derived error, 

and GWAS results when implementing TSIM for two cohorts in our psoriatic arthritis analysis 

(ART and UKB) and for multiple cohorts in our pSSNS analysis (four in TSIM EU, five in 

TSIM Joint). In our validation, we showed that TSIM is an effective method to reduce cohort-

specific bias without increasing imputation-derived error. Thus, TSIM can effectively harmonize 

heterogeneous genotyping data. However, it cannot account for sample heterogeneity arising 

from differences in genetic population structure and other relevant phenotypic characteristics 

such as sex, age, and potential covariates for the phenotype of interest1,3. Similarly, in order to 

use TSIM for continuous phenotypes, robust harmonization of phenotype measurements must be 

performed separately. 

 

TSIM addresses many issues with current practices for harmonizing genotype data which are 

insufficient and impractical for many datasets. In current practices, many SNPs are often 

removed when merging on the intersection and many samples may be dropped due to lack of 

matched controls. By merging separately imputed cohorts, TSIM enables the aggregation of 

case-only cohorts with external controls. TSIM can even recover cases for inclusion in GWAS 

that may not have had well-matched controls in a case-control study cohort, as we saw when 

analyzing the ART cohort with UKB. TSIM also shows potential for combining datasets, at the 

genotype level, from different study centers to conduct a single joint GWAS analysis which 

performs just as well as a meta-analysis, as demonstrated with our pSSNS analysis. With the 

growing availability of public databases and biobanks, such as dbGaP, UKB, All of US, 

FinnGen, and others, TSIM offers the opportunity for researchers to apply GWAS to existing 
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case-only cohorts using external controls. With the growing access and coverage of large 

biobanks and publicly available cohorts, our method provides an avenue through which cohorts 

for previously understudied phenotypes may be investigated in the GWAS framework. 

 

TSIM also has some limitations, primarily the computational costs of imputing large genetic 

datasets twice and all the known limitations of imputation itself9. All cohorts should be imputed 

using the same reference panel and imputation algorithm. This may require researchers to run 

imputation on a large amount of data to ensure that all cohorts are processed appropriately. 

However, some biobanks, such as UKB, are imputing their data using publicly available 

reference panels and imputation methods, such as TOPMed, which may alleviate this burden for 

researchers in the future10. Additionally, because TSIM is largely reliant on high-quality 

imputation, the accuracy of the first stage of imputation and effectiveness of merging are 

dependent on key factors impacting imputation results, such as demographics and size of the 

reference panel and how well ancestry is matched to the study cohort. We found that the 

TOPMed reference panel performed better for the African and European populations than East 

and South Asian. The size of the study sample may also impact imputation as smaller sample 

sizes are more likely to have less accurate imputation quality calculations resulting in inaccurate 

classification of hq-SNPs9,28,29. Many of these issues with imputation have been addressed in 

recent research. For instance, Sun et al. have developed MagicalRsq28, a machine-learning-based 

genotype imputation quality calibration, which takes a sample size agnostic approach to 

calculating imputation quality. Additionally, meta-imputation, which combines imputation 

results from multiple imputations with different reference panels, has been shown to improve 

imputation accuracy and results, especially for admixed individuals30. Both these methods may 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2024. ; https://doi.org/10.1101/2024.04.19.24306081doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306081
http://creativecommons.org/licenses/by-nc-nd/4.0/


be implemented in TSIM after or during the first stage of imputation, respectively, and before 

identifying hq-SNPs. 

 

There are two data processing steps which will have major impacts on results. First is the pre-

imputation QC. With two stages of imputation, there is the potential for genotype errors made in 

the raw data to propagate if insufficient QC is done. We’ve found that running “Imputation 

preparation and checking” from the McCarthy Group Tools 

(https://www.chg.ox.ac.uk/~wrayner/tools/) as well as filtering out poorly genotyped SNPs is 

crucial to ensure homogeneity among all cohorts-to-be-merged. Second is to keep in mind any 

pre-processing that was done on the data, particularly when the cohorts are received in different 

formats. For example: PLINK31, a tool often used for QC in GWAS, codes minor and major 

alleles based on allele frequency while VCF files code reference and alternative alleles based on 

a reference. As the reference allele isn’t always the major allele, some SNPs could have flipped 

allele codes when attempting to merge cohorts. Fortunately, these biases may also be mitigated 

by McCarthy Group Tools. Additional research applying TSIM to other datasets involving 

different genotyping platforms, genetic population structures, and phenotypes will be beneficial 

to further understand TSIM’s limitations and applications.  
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Methods 

Two-stage imputation method (TSIM) 

In TSIM, after cohorts are separately processed and imputed using the same reference panel and 

imputation algorithm, high-quality genotyped and imputed SNPs (hq-SNPs) are identified in 

each cohort. Then, the cohorts are merged based on SNPs present in both hq-SNPs sets. Lastly, 

this merged dataset undergoes a second stage of imputation, after which post-imputation analysis 

proceeds as normal. Hq-SNPs are defined as SNPs with imputation quality (R2) ≥ 0.99, minor 

allele frequency (MAF) ≥ 0.01, Hardy-Weinberg equilibrium (HWE) p-value ≥ 1×10-6 for 

controls, and, if genotyped, empirical imputation quality (ER2) ≥ 0.9. Ideally, there should be at 

least 300,000 hq-SNPs for the second stage of imputation6. If there are fewer hq-SNPs, the 

second stage of imputation will result in lower imputation quality and potentially more false 

positives in downstream analyses. Our command line tool, tsim, implements these two steps (i.e., 

hq-SNPs identification and merging) and outputs per chromosome VCFs ready for imputation. 

Additional sample QC to remove outliers or unmatched cases or controls may be done on 

merged unimputed genotypes if there is sufficient SNP overlap or following cohort merging on 

hq-SNPs after the first stage of imputation. The TOPMed Imputation Server v1.6.6 (Minimac4 

for imputation, Eagle v2.4 for phasing, r2 for reference panel) was used for all our analyses. 

  

Quality control 

Before imputation, all cohorts underwent similar quality control using PLINK 1.931. SNPs with 

missingness ≥ 0.02, MAF < 0.01, and/or HWE p-value ≤ 1×10-6 for controls were removed. 

Samples with heterozygosity greater than four standard deviations from mean, missingness ≥ 

0.02, closer than second-degree relation to other samples, and/or outlying in the principal 
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component analysis (PCA) space (by visual inspection) were also removed. Following 

imputation, we filtered out low-quality and rare imputed variants from all datasets. This included 

variants with R2 < 0.3, MAF < 0.01, HWE p-value ≤ 1×10-6 for controls, and if genotyped, ER2 < 

0.9. Further quality control was done according to the analysis conducted (see following methods 

for specific details on each analysis). 

 

Determination of high-quality SNPs 

We evaluated the cohort-specific bias and imputation-derived error for SNPs with high 

imputation quality (R2 ≥ 0.95) stratified by R2 bins. Only SNPs with R2 ≥ 0.95 and MAF ≥ 0.01 

in both AFFY- and OMNI-imputed datasets were analyzed. R2 bins were defined based on 

whether the SNP’s imputation quality met thresholds in both AFFY-imputed and OMNI-imputed 

results. See Supp Table 1 for the total number of SNPs evaluated in each ancestry group for 

each R2 bin. 

 

Evaluating imputation-derived error 

Unrelated samples from 1KGP with both array-based genotyping on AFFY and WGS were used 

to evaluate imputation-derived error (see Supp Table 2 for number of samples). Here, we used 

the WGS genotypes to represent “ground truth.” Each of the four ancestry groups (defined by 

1KGP’s superpopulation labels) European (EUR), African (AFR), East Asian (EAS), and South 

Asian (SAS), were evaluated separately. For each ancestry group, we filtered WGS for good 

quality biallelic SNPs with MAF ≥ 0.01, PASS in the FILTER column of the VCF, sample 

missingness < 0.01, and alternative allele frequency differences (determined from INFO column) 

between Phase 3 and 30X WGS < 0.01. We use S1 to refer to results from the first imputation 
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and S2 to refer to results from the second imputation. For both S1 and S2, the imputed dosages 

for those genotyped on AFFY were compared to their WGS genotypes using alternative allele 

frequency difference (AFdff), defined as follows: 

������  �  �∑ �� � 	�
�
���2� � 

 

where: 

m is the number of samples 

aj is the dosage of sample j in the AFFY imputation 

wj is the genotype of sample j in the WGS 

 

Additionally, we stratified per SNP calculations into R2 bins based on the imputation quality. 

This analysis was restricted to variants that were present in either S1 or S2 imputations for AFFY 

with MAF ≥ 0.01 and in our “good quality” WGS SNP set. The same analysis was repeated for 

samples genotyped on the OMNI platform (see Supp Table 3 for number of samples).  

 

Evaluating cohort-specific bias 

Unrelated samples from the 1000 Genomes Project (1KGP) with array-based genotyping 

conducted with both Affymetrix SNP 6.0 (AFFY) and HumanOmni2.5 (OMNI) were used to 

evaluate cohort-specific bias (see Supp Table 4 for number of samples) with two different 

merging methods: (1) separately imputing cohorts once, followed by simple merging on 

intersecting SNPs (“separately-imputed”) and (2) implementing TSIM (“two-stage”). For both 

separately-imputed and two-stage, the imputed dosages for those genotyped on AFFY were 

compared to the imputed dosages for those genotyped on OMNI using similar AFdiff calculations 
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described previously. Only variants present in both separately-imputed and two-stage for AFFY 

and OMNI with MAF ≥ 0.01 were analyzed. Because the same samples were genotyped on both 

platforms, we recalculated R2 in two-stage to accurately measure imputation quality for each 

platform, separately. The average R2 across each stage was used to classify variants into R2 bins. 

Thus, the average R2 of a SNP in separately-imputed may be slightly different from the one in 

two-stage. 

  

Investigating impact of TSIM on type I Error 

We used 1KGP, subsets of UK Biobank (UKB), and controls from a psoriatic arthritis study 

cohort (see below) to conduct control vs. control GWAS. See Supp Table 5 for the number of 

samples in each GWAS. ART and UKB samples were projected to the 1KGP PCA space using 

KING32 to harmonize ancestry group annotations. All datasets underwent the standard quality 

control process as described above. SAIGE22 v0.29.5 was used to conduct GWAS analysis on 

dosages and to account for case-control imbalances. For SAIGE Step 1, --LOCO=FALSE was 

used. See Supp Table 5 for the number of principal components included. For Step 2, the 

following parameters were used: --minMAF=0.01, --minMAC=1, --LOCO=FALSE. 

LocusZoom33 was used to identify independent genome-wide significant loci. 

 

Investigating impact of TSIM on published psoriatic arthritis GWAS results 

Our psoriatic arthritis study cohort (ART), containing both cases and controls, came from a 

published GWAS meta-analysis on psoriatic arthritis genotyped on the HumanOmni1-Quad 

BeadChip17. All study cohort samples were annotated as Caucasian. We randomly selected 5,000 

individuals from 427,234 Europeans in UKB. Individuals with psoriatic arthritis or failing QC 
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were removed prior to random selection. This subset of UKB individuals comprised our external 

control cohort genotyped on UKB Axiom (UKB5K). There were 1,410 cases and 6,406 controls 

(1,406 from the study cohort; 5,000 from UKB5K) passing QC.  

 

ART data was used in two separate analyses, the 1KGP vs. UKB control GWAS (see above) and 

in evaluating TSIM. We evaluated GWAS results from two different scenarios using different 

combinations of our cohorts: 

1) both-controls: ART cases and controls merged with UKB5K 

2) external-controls: ART cases merged with UKB5K 

For separately-imputed GWAS, cohorts were merged after single, separate imputations (Stage 

1). For TSIM GWAS, cohorts were merged using TSIM. We also conducted a GWAS of only 

ART cases and controls to generate reference results for comparison (internal-controls). All 

datasets underwent the standard quality control process as described above. SAIGE22 v0.29.5 

was used to conduct GWAS analysis on dosages and account for case-control imbalances, using 

the parameters described above. All reported p-values were adjusted for genomic control to 

accurately compare results. LocusZoom33 was used to create locus plots in Supp Fig 9. 

 

Of note, it was not feasible to perform a GWAS using a common practice, which combines 

separate cohorts before imputation, since ART and UKB were genotyped separately on two 

different genotyping platforms intersecting by only 100,000 SNPs after QC. This is insufficient 

coverage for accurate genotype imputation6. 
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Replicating results from pSSNS GWAS meta-analysis 

We applied TSIM and replicated results from a pediatric steroid-sensitive nephrotic syndrome 

(pSSNS) GWAS meta-analysis our lab previously published18. Specific details on the published 

pSSNS GWAS methods and cohort composition can be found in Barry et al.18. Briefly, our 

pSSNS GWAS consisted of a meta-analysis of two European cohorts consisting of five separate 

substudies. Samples were projected to 1KGP PCA space to infer ancestry using PEDDY34. The 

European Union (EU) cohort consists of four sub-cohorts: case and control data from Sorbonne 

Université in Paris and the NEPHROVIR study35, as well as healthy controls from the Three 

Cités Study36 and 1KGP. The United States (US) cohort contained cases and controls obtained 

from Columbia University in New York18. For EU, all individual studies were imputed 

separately in the first stage and then combined before the second stage of imputation with the US 

cohort. See Supp Table 8 for more details on each study. 

 

We evaluated TSIM in two different analyses: (1) GWAS was run separately in EU ( using 

TSIM to merge studies) and US cohorts, then combined in a meta-analysis using the STDERR 

scheme in METAL37, and (2) all studies in both EU and US cohorts were merged using TSIM 

and analyzed in one joint GWAS. For both analyses, PLINK 1.931 was used to conduct GWAS 

on genotypes in order to better compare to the published results which also used PLINK. All 

reported p-values were adjusted for genomic control to better compare results. LocusZoom33 was 

used to create locus plots in Supp Fig 11. 
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Data Availability 

Data used included genotype data from the 1000 Genomes Project, UK Biobank, dbGaP study 

phs000982.v1.p1, and data used in our previous pSSNS GWAS.  

 

Code availability 

The tsim command line tool is available at https://github.com/dongwonlee-lab/tsim.  
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Figure Legends 

Figure 1: An overview of the two-stage imputation method and its applications 

(A) A detailed workflow for the two-stage imputation method applied to X number of cohorts. 

Dark shaded regions represent SNPs included in input to imputation. Light shaded regions 

represent imputed SNPs. Non-overlapping SNPs are colored in grey. (B) Illustrations of potential 

applications of TSIM. 

 

Figure 2: Determination of high-quality SNPs 

Line plots show AF difference (AFdiff) between (A) AFFY and WGS, (B) OMNI and WGS, and 

(C) AFFY and OMNI after the first round of imputation for Europeans (EUR), Africans (AFR), 

East Asians (EAS), and South Asians (SAS). SNPs with imputation quality (R2) ≥ 0.95 were 

included, which were then stratified into R2 bins. Dosage information from imputation were used 

for this calculation. Unimputed (with empirical R2 ≥ 0.9) vs. WGS (dotted line) shows AFdiff 

between SNPs genotyped on (A) AFFY or (B) OMNI compared to WGS for comparison. The 

total number of samples is shown in parentheses for each ancestry group. The y-axis shows the 

proportion of SNPs with AFdiff > threshold (shown in the x-axis). The y-axis is in the log10 scale. 

See Supp Table 1 for the number of SNPs in each R2 bin.  

 

Figure 3: TSIM shows substantially reduced cohort-specific bias 

Line plots show AF difference (AFdiff) between platforms in separately-imputed (red) and two-

stage datasets (blue) for Europeans (EUR), Africans (AFR), East Asians (EAS), and South 

Asians (SAS). Dosage information from imputation were used for this calculation. AFdiff 
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threshold of zero represents no cohort-specific bias. The total number of samples (in parentheses) 

and SNPs (m) are shown for each ancestry group. The y-axis is in the log10 scale. 

 

Figure 4: Manhattan plots for 1KGP vs. UKB GWAS using cohort as outcome 

Manhattan plots show GWAS results of (A) 1KGP-AFFY vs. UKB samples and (B) 1KGP-

OMNI vs. UKB samples. A simple merging method after separate imputations (separately-

imputed, left) is compared to the TSIM method (TSIM) for each ancestry group. Red lines 

indicate the threshold for genome-wide significance (5×10-8). 

 

Figure 5: TSIM replicates psoriatic arthritis GWAS results and enables the use of case-

only cohorts 

(A) Manhattan plots show GWAS results of the arthritis cohort following common practices 

(cases vs. internal controls, top), after merging cases from arthritis cohort with UKB5K using 

TSIM (TSIM cases vs. external controls, middle), and after single, separate imputations 

(separately-imputed cases vs. external controls, bottom). Total number of SNPs are shown in 

upper right. Numbers of cases and controls are in the upper left of each plot. Red lines indicate 

the genome-wide significance threshold (5×10-8). Genome-wide significant loci are labelled by 

nearest gene. See Supp Fig 8 for Manhattan plots after merging cases and controls from arthritis 

cohort with UKB5K (cases vs. both controls). (B) Locus plots for TNIP1 showing TSIM GWAS 

of cases vs. external controls (middle) and cases vs. both controls (bottom). GWAS results of 

cases vs. internal controls (top) is also shown. 
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Figure 6: TSIM facilitates standard GWAS of multi-platform cohorts at the genotype level  

(A) Manhattan plots show results of pSSNS European GWAS after merging data from five 

genotyping platforms using TSIM (TSIM Joint, bottom), meta-analysis of EU and US cohorts 

using TSIM to merge EU studies (TSIM Meta, middle), and the published meta-analysis 

(Published, top). Total number of SNPs are shown in upper right. 684 cases and 6,817 controls 

were used for all GWAS. Black dashed lines indicate the genome-wide significance threshold 

(5×10-8). Genome-wide significant loci are labelled by nearest gene. (B) Locus plot for CALHM6 

showing results of TSIM Joint, TSIM Meta, and Published GWAS.  
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