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Polygenic risk scores (PRS) are relative measures of an individual’s genetic propensity to a particular trait or6

disease. Most PRS methods assume that mutation effects scale linearly with the number of alleles and are7

constant across individuals. While these assumptions simplify computation, they increase error, particularly8

for less-represented racial groups. We developed and provide Delphi (deep learning for phenotype inference),9

a deep-learning method that relaxes these assumptions to produce more predictive PRS. In contrast to other10

methods, Delphi can integrate up to hundreds of thousands of SNPs as input. We compare our results to a11

standard, linear PRS model, lasso regression, and a gradient-boosted trees-based method. We show that12

deep learning can be an effective approach to genetic risk prediction. We report a relative increase in the13

percentage variance explained compared to the state-of-the-art by 11.4% for body mass index, 18.9% for14

systolic blood pressure, 7.5% for LDL, 35% for C-reactive protein, 16.2% for height, 29.6 % for pulse rate;15

in addition, Delphi provides 2% absolute explained variance for blood glucose while other tested methods16

were non-predictive. Furthermore, we show that Delphi tends to increase the weight of high-effect mutations.17

This work demonstrates an effective deep learning method for modeling genetic risk that also showed to18

generalize well when evaluated on individuals from non-European ancestries.19
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Introduction21

The total genetic component of common traits and diseases is attributable, at least in part, to a combination of small22

effects from a large number of mutations on the entire genome (1). Genome-wide association studies (GWAS) can23

identify univariate relationships between common single nucleotide polymorphisms (SNPs) and a given trait. A GWAS24

output comprises an estimated effect size coupled with a P-value of association for each tested SNP. A single scalar25

indicating relative genetic risk can be obtained by summing up the number of alleles weighted by the estimated26

effect size of SNPs, with or without non-genetic risk factors (2). These so-called polygenic risk scores (PRS) are27

commonly used to quantify an individual’s genetic propensity for a particular trait or disease and have potential clinical28

applications in prevention, diagnosis, and treatment (3; 4; 5).29

Methods for PRS estimation have evolved considerably over the past decade. It was first found that including mutations30

below GWAS statistical significance would increase predictive power (6; 7). Taking linkage disequilibrium (LD) into31

account by either clumping and thresholding (C+T) or by using a shrinkage method also improved performance (8; 9).32

More recent work has included advancements in statistical learning and an improved understanding of biology to33

increase the predictive performance of PRS. For instance, Bayesian approaches can also consider minor allele34

frequency (MAF) (10) or incorporate functional priors (11) to modify the effect size estimates. These different methods35

generally offer marginal improvements over one another and suffer from similar limitations: effects are constant and36

scale linearly with the number of alleles.37

PRS typically become significantly less predictive when applied to other less represented ancestries (12). This38

performance drop can be partly attributed to allele frequency differences between cohorts and other genetic and39

environmental factors. These limitations hinder the application of PRS in medical settings (13), and this performance40

gap can only be bridged with additional data collection from under-represented ancestries. Multiple approaches have41

been proposed to increase the generalizability of PRS, for instance, by aggregating results from multiple GWAS42

studies (14; 15) or prioritizing functional variants (16). Recently, increased prediction performance was observed43

through the use of a gradient-boosted model taking a standard PRS and a selection of high-impact SNPs as inputs (17).44

Very recently, GenoBoost (18), another gradient-boosted approach, showed improved performance by modeling45

non-additive mutation effects.46

Deep learning (DL) offers the ability to learn complex patterns directly from large labeled datasets with minimal47

assumptions. In genetics, DL has been applied for many problems such as variant calling (19), motif discovery (20),48

and image-derived phenotyping for GWAS (21; 22). Explainable DL approaches (23) could provide additional insight49

into the genetic factors influencing the disease. Abe et al. recently constructed a knowledge graph (24) to generate50

text-based explanations for individual variants. Using deep learning for genetic risk prediction could provide unique51

advantages, as overparametrization has recently been shown to improve generalization (25), which is important for52

PRS to be applicable in under-represented populations.53

Using DL for PRS estimation has been attempted before, although the proposed approaches consisted in using shallow54

networks (max. 4 fully connected or convolutional layers) on a small set of SNPs (max. 5K) (26; 27; 28; 29; 30; 31). In55

those examples, DL was shown only marginally to improve results, if at all. For instance, Badré et al. (29) found that56

including 5273 high-impact SNPs in a deep neural network slightly improved the predictive performance of PRS for57

breast cancer over logistic regression, and including more SNPs did not improve performance. Zhou et al.(31) showed58

that a small neural network with three fully connected layers improved Alzheimer’s disease genetic risk prediction in a59

small (N≈10K) cohort.60

In this work, we propose Delphi (deep learning for phenotype inference), a deep learning method that alleviates61

some of the issues of PRS mentioned above by tuning risk score estimates in a data-driven and hypothesis-free62

manner. In contrast to previous methods, we use a transformer architecture to capture non-linear interactions. Unlike63

other approaches, we modify effect sizes before the summation, allowing allele effects to depend on sex, , and other64

mutations. Our method can fine-tune effects from any classical PRS method such as LDpred (8) and Lassosum (9).65

We report state-of-the-art results for 5 phenotypes from the UK Biobank dataset (UKBB) (32), and show that Delphi66

tends to increase the estimated effect of high-impact mutations. We also validate our predictions on individuals from67

under-represented ancestries and show that Delphi generalizes better than other tested approaches.68
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Results69

The Delphi Method70

At a high level, Delphi (Figure 1) uses genotyping and covariate information to learn perturbations of mutation effect71

estimates. Our approach contained two main steps. (1) the dataset was split into training, validation, and test sets72

before pre-processing. Mutation effect sizes were estimated with standard PRS techniques, and genotyping data73

was converted into a format enabling fast loading during training. (2) In the training step, a covariate model based74

on gradient-boosted trees (33) estimated the phenotype from age, sex, and genetic principal components, and a75

deep neural network learned to perturb individual effect sizes for all mutations included in the PRS summation. The76

modified effect sizes were then summed up to form a personalized PRS. The covariate model outputs and the PRS77

summation were finally linearly combined to form the final prediction.78

Figure 1. Overview of the Delphi method. The data is split into training, validation, and test sets before pre-processing. A GWAS is
conducted for the phenotype in question on the training set, followed by a PRS method. A transformer neural network learns to
modify the effect size estimates during training depending on other SNP dosages and covariates on the training data set. Model
selection for the neural network and the PRS methods is done using the validation set. Modified effect sizes are summed up and
aggregated with the predictions of a boosted trees covariate model to form a new PRS. Prediction results are all evaluated on the
held-out test set.

GWAS and PRS79

485’231 UKBB subjects were randomly split into different sets. The training set was used for principal component80

analysis (PCA), GWAS, PRS computation, and deep neural network training. The validation set was used for PRS81

validation and model selection after training. The held-out test set remained unseen until the final evaluation. We only82

considered 1.3M SNPs from the HapMap3 set (34) with an INFO score > 0.8 and MAF > 0.01. PCA on the genotype83

matrix was used to capture population structure.84

GWAS for all phenotypes only included subjects within the training set from British-white ancestry (UKBB field 22006)85

to reduce spurious associations, and any subjects further than three standard deviations away from the first six principal86

components were removed. Sex, age, and the first 20 principal components were used as covariates. Classical87

PRS methods use LD, MAF, and other measures to reweight the effect estimates. We found some performance88

improvement by using these re-weighted effect estimates as a baseline instead of the GWAS summary statistics.89

PRS were obtained with three different methods: C+T, Lassosum (9), and LDpred (8). The pre-processing step was90

implemented in R, using the bigsnpr (35) library.91

Learning perturbations of mutation effects92

The second step consists of learning individualized effect perturbations. As in GWAS, covariates were age, sex, and93

the first 20 PC loading. Before training, an XGBoost model was fitted on covariate data and is referred to as the94
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covariate model. Separately, the genotype data was converted from .bgen files to a hierarchical format that allows for95

fast data retrieval of all HapMap3 SNPs of a small number of subjects. We trained the neural network on the residuals96

of this model, which made convergence easier when some covariates had a high impact on the phenotype. The neural97

network’s architecture was a standard 8-layer transformer with variable sequence length depending on the number of98

input SNPs. SNPs were aggregated into fixed-size groups and linearly mapped to form a sequence of embeddings of99

size 512. In addition, covariates were included as the first embedding in the sequence, and zero padding was used100

when necessary. The transformer’s output was then mapped back into a vector the size of the number of input SNPs.101

This vector represents individualized variations in the SNP effect. As in traditional PRS methods, these modified102

effects were then summed up and linearly mapped in combination with the output of the covariate model to form a103

final prediction. A graphical overview of the method is presented in figure 1.104

Baseline PRS results105

Three PRS methods (C+T, Lassosum2, and LDpred2) were compared to provide baselines. We compared the106

proportion of explained variance (EVR) for all phenotypes. Predictions were made with a linear or logistic model, using107

age, sex, and the first 20 genetic PCs as covariates and the estimated score. Our results are displayed in Figure 2.108

LDpred2 outperformed the other two tested methods on all tested phenotypes. Thus, we chose the effect estimates109

from LDpred2 as the baseline for our method in all further analyses. We also compared the performance of three110

variants of LDpred2: LDpred2-grid and LDpred2-auto. We found that LDpred2-auto was superior to LDpred2-grid for111

all tested phenotypes and used this variant.112

Figure 2. C+T, Lassosum2 and LDpred2 linear PRS results on the validation set. We show the best-performing model of three
independent data splits. Validation sets were used to determine the optimal parameters for each method. Error bars indicate the
standard deviation between splits. EVR: explained variance, BMI: Body mass index, CRP: C-Reactive protein, GL: glucose, LDL:
low-density lipoproteins, SBP: systolic blood pressure.

Trait Prediction113

We evaluated the performance of Delphi on ten continuous phenotypes, using three different train/test splits, and114

used explained variance as performance metrics. We also compared Delphi with linear and Lasso regressions and an115

approach using XGBoost to modify effect sizes (17) with the base weights from LDpred. Hyperparameters for all three116

methods were tuned with three-way cross-validation on the same validation set. Results showed that Delphi resulted117

in lower error than other approaches on all phenotypes Figure 3 provides detailed results. It should be noted that the118

explained variance from benchmarked PRS methods is lower than the ones shown on the validation set in Figure2, as119

the validation set was used for parameter tuning on this set for all 3 methods.120

We then compared Delphi prediction to the next best method, XGboost, in terms of the distribution of errors for ten121

phenotypes. Delphi generally tended to have fewer large prediction errors, as shown by the ratio of quartile difference122

between the two methods (Figure 4). This is especially visible for height, for which ratios had to be bounded between123

0.9 and 1.1 for visibility. We suppose the sharp gain in performance for height is due to the fact that this phenotype is124

known to be highly polygenic and to exhibit SNP-sex and SNP-PC interactions (36), which makes this phenotype125

particularly suitable for our approach. This difference in prediction distribution is also visible from histograms of126

distances between predicted and ground truth decile values, as shown in figure 5.127

Predictions for Delphi showed, in general, lower absolute error than XGboost prediction (supplementary section 1).128

The relative increase in the percentage variance explained compared to the state-of-the-art was 11% for body mass129

index, 19% for systolic blood pressure, and 35% for C-reactive protein; in addition, Delphi provided 2% absolute130

explained variance for blood glucose while other tested methods were non-predictive.131
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Figure 3. Accuracy of polygenic predictions for ten phenotypes in the UK Biobank. We report results for a linear PRS model, lasso
regression, and XGBoost models, including the dosage of multiple high-impact SNPs as input, and our method. See Figure 2 for
acronyms.

Performance comparison on non-white British for multiple phenotypes132

We also compared performance on the subset of the test set with non-British white ancestries (N≈13K, depending on133

split and phenotype). Ancestry was determined according to Field 22006, which indicates subjects who self-identified134

as ’White British’ according to Field 21000 and have very similar genetic ancestry based on a principal components135

analysis of the genotypes. Results are shown in Figure 6. The relative increase in the percentage variance explained136

compared to the state-of-the-art on the set with non-British white ancestries was 18% for body mass index, 25%137

for systolic blood pressure, 2% for LDL, and 15% for C-reactive protein; in addition, Delphi provided 2% absolute138

explained variance for blood glucose while other tested methods were non-predictive. Notably, the EVR is higher for139

non-British white individuals for some phenotypes (BMI and LDL). This predictive gain is due to the reduction of the140

total variance and is not reflected in the mean absolute error (see supplementary section 1). Results on the British141

white set were otherwise very similar to the total set shown in figure 3 as these individuals from approximately 95% of142

the held-out test set.143

We also compared performance on subsets of the test set that self-reported as either African (N≈560), Chinese144

(N≈290), or Indian (N≈920). Results are shown in figure 7. Despite the low number of subjects in each group, Delphi145

outperforms other tested approaches on most phenotypes.146

Observed Trends in Effect modulation147

We observed interesting patterns when inspecting the average effect modulations before the summation. As shown in148

Figure 8, Delphi tends to down-weight the absolute effect of SNPs with low absolute effect. Interestingly, we do not149

observe the same trend when grouping SNPs by minor allele frequency decile. Other SNP-heritability estimation150

methods such as LDAK (37) include MAF, LD estimates and functional anotations to refine predictions. As LDPred151

modifies the effect estimates before any modification by the deep neural network, we expect the LD structure to152

be included in the effect estimates. This observation might indicate that the absolute effect may be an additional153

parameter of interest for future Bayesian methods.154
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Figure 4. Ratio of quartile distributions of predictions between Delphi and XGBoost, on the test set for five phenotypes. Although
the proportion of correctly binned subjects (same predicted and ground-truth quartiles) is similar for both methods, Delphi tends to
avoid extreme differences between prediction and ground-truth. Values for height were bounded between 0.9 and 1.1 for visibility;
original values are in the range of 0.2 and 1.3.

Figure 5. Histogram of the absolute difference between predicted and true deciles on the test set for five phenotypes. Delphi
consistently bins subjects more adequately than XGBoost for most phenotypes.
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Figure 6. Accuracy of polygenic predictions for ten phenotypes in the UK Biobank. Top: predictions for ten phenotypes in the UK
Biobank on individuals with non-British white ancestry. Bottom: Prediction results for individuals with British white ancestry. We
report results for a linear PRS model, lasso regression, and XGBoost, including the dosage of multiple high-impact SNPs as input,
and our method.
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Figure 7. Accuracy of polygenic predictions for ten continuous phenotypes in the UK Biobank for three self-reported ethnic
background. Top: African, middle: Indian, bottom: Chinese

Georgantas et al. | | 7

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2024.04.19.24306079doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306079
http://creativecommons.org/licenses/by-nc/4.0/


0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Absolute Effect Decile

U
pw

ei
gh

te
d 

S
N

P
 R

at
io

a

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
MAF Decile

b

Phenotype BMI
CR

CRP
GL

HDL
Height

LDL
PR

SBP
TG

Figure 8. a) The ratio of up-weighted SNPs in Delphi by absolute effect size decile was estimated with LDpred2 for ten phenotypes.
This ratio was computed by dividing the number of of SNPs with higher estimated effect on average on the test set with the total
number of SNPs for search decile. b) Ratio of up-weighted SNPs in Delphi by minor allele frequency.

Georgantas et al. | | 8

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2024.04.19.24306079doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306079
http://creativecommons.org/licenses/by-nc/4.0/


Discussion155

We introduced Delphi, a deep-learning-based method for trait prediction from genetic data. We demonstrated that deep156

learning enhances the predictive power of polygenic risk scores. Treating genetic risk estimation as a deep prediction157

problem allowed us to relax the usual assumptions of traditional PRS methods, yielding significant performance158

improvements on multiple phenotypes over previous PRS computation methods.159

Several studies have tested deep learning approaches for phenotype inference from genetic data. These approaches160

all have a similar structure: use GWAS summary statistics to select a subset of SNPs, then use these as input for the161

neural network. Uppu et al. (26) used a 3-layer feed-forward network applied to breast cancer data. To our knowledge,162

this study contains the first use of a neural network for genetic risk prediction. In contrast, Bellot et al. (27) did not163

find any performance gain when comparing convolutional and fully connected neural networks to traditional methods.164

Recently, Huang et al. proposed DL-PRS (28), a method that also uses a shallow network to predict COPD, achieving165

marginal performance gains over traditional methods on UKBiobank data. A similar approach has been used by Badre166

et al. (29) with a 4-layer FC neural network on breast cancer data. Very recently, Zhou et al. (31) used a graph neural167

network for Alzeihmer’s prediction by constructing a graph from a few correlated locis. Elgart et al. (17) showed the168

strongest evidence for the superiority of non-linear methods for PRS by using gradient-boosted trees. This publication169

obtained robust results across multiple traits, which motivated our study.170

All previously mentioned approaches only consider a small subset of SNPs (typically less than 1000) as input and171

become less predictive when including more small-effect SNPs. Training becomes difficult as smaller effects add172

noise to the input due to their minimal individual impact on the phenotype and a lack of clearly exploitable patterns.173

This is particularly a problem for PRS, which can include tens of thousands of SNPs. To guide the neural network174

towards meaningful predictions, we chose to perturb the estimated effect sizes rather than predicting the phenotype175

directly. As a result, we can effectively integrate up to a hundred thousand SNPs as input, which would not be feasible176

with other methods.177

We have also shown that our method generalizes well when evaluated on individuals from non-European ancestries,178

although our training set is composed of 95 % European. This is an essential point for the success of PRS in any179

clinical setting, or their application can potentially reinforce racial bias (38). Our approach could be combined with180

other methods for the standardization of PRS, for instance, by combining summary statistics from multiple GWAS181

studies (39) or through some debiasing measure (40). The performance and fairness of PRS is an ongoing problem182

and requires more data acquisition from non-European cohorts. To reduce these disparities, it is necessary to assess183

and maintain prediction performance for all populations thoroughly.184

Our study presents several limitations. The high dimensionality of the data, combined with the sizeable but still limited185

number of samples, means some trade-offs had to be taken to maintain consistent prediction performance across all186

traits. Similarly to other PRS methods, the most crucial hyperparameter to tune is the minimum threshold probability187

for SNP inclusion. This threshold also affects the number of SNPs we batch in a single embedding vector, and188

training can diverge when including too many non-significant SNPs. A threshold of > 1% in MAF also limits our ability189

to generalize to other ancestries but is required for estimating effect sizes. Similarly, we removed individuals from190

non-European ancestry for GWAS to avoid spurious associations but kept them during training. Our approach also191

takes significantly more computational power and time than the other compared methods.192

Delphi tends to increase the effect of SNPs with high effect estimates and down-weights low effect SNPs. Similar193

heuristics have been shown to improve heritability estimates by tuning effects based on minor allele frequency (MAF)194

(10). Although MAF is correlated with effect size, we found no such association by inspecting variations modulation195

and MAF quantiles. Unfortunately, we also found that the effect estimates of individual SNPs would vary drastically196

between different data splits, making the interpretation of SNP effect modulation challenging, as the variations of the197

neural network were much smaller than the differences from data randomization. This limitation might be alleviated by198

including summary statistics from another cohort.199
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Methods200

UK Biobank201

The UK Biobank (UKBB) (32) is a large-scale ongoing prospective study including over half a million individuals202

from across the United Kingdom. Participants were first recruited between 2006 and 2010 and underwent extensive203

testing, including blood biomarkers, health and lifestyle questionnaires, and genotyping. Longitudinal hospitalization204

data for any disease represented by an ICD-10 code is also provided between the recruitment date and the present205

time. UKBB contains genotypes for 488,377 individuals at the time of download (March 2023), 409,519 of which are206

from ’white British’ ancestry. Ancestry was inferred using the data field 22006, which uses self-reports and principal207

component analysis of the genotypes. Variant quality control included the removal of SNPs with imputation info208

score < 0.8 and retaining SNPs with hard-call genotypes of > 0.9 probability and MAF > 0.01. To reduce the initial209

dimensionality of the data, we only considered 1,054,330 HapMap3 (HM3) (41) SNPs as they have shown to be a210

sufficient set for traditional PRS methods (42) and are the standard set for polygenic risk score evaluation.211

Data Splits and Phenotypes212

We evaluated the performance on all ten traits of our method using three independent train/validation/test splits. For213

the quality control of our samples, we only considered 407,008 subjects used in the principal components analysis of214

the UKB dataset (field 22020). These subjects are unrelated, did not withdraw consent from the study, and passed215

some genotyping quality control tests. Subjects were not selected based on ancestry at this stage. We used 80%216

(325,606) of the dataset for training, 5000 subjects for validation, and the rest (76,402 subjects) for testing. Some217

individuals were further removed depending on missing data for each phenotype. We kept this exact split for the218

preprocessing and the training of the neural network. The same training set was used to compute the GWAS and219

train the neural network. The validation set was used to select the best hyperparameters for polygenic risk scores and220

benchmark algorithms and to stop the deep neural network training. We assessed the performance of our method on221

ten continuous phenotypes. BMI, height, SBP, LDL, and C reactive protein values were taken directly from the UK222

Biobank first time point measurements.223

The LD reference panel used for LDpred was previously computed (42) with some individuals from the test set. The224

choice of LD reference panel was shown to have a limited impact on performance (42), and the same weights from225

LDpred were used for all benchmarked methods. Finally, this panel did not contain individuals from non-British white226

ancestry, ensuring that performance results on non-British white (see section Performance comparison on non-white227

British for multiple phenotypes) are unbiased.228

PCA and GWAS229

PCA eigenvectors were obtained from HM3 SNPs using only genotype information from the training set for each230

data split. As recommended (43), we used a truncated PCA method with initial pruning that iteratively removes231

long-range LD regions. For GWAS computation, the training set was pruned by removing individuals with no British232

white ancestry (field 22006) and who were beyond two standard deviations of the Mahalanobis distance of the first 6233

PCs. This additional subject selection was only applied for the GWAS to prevent spurious relationships that can arise234

with heterogeneous cohorts. Covariates for the regression included age, sex, the first 20 principal components, age2,235

age·sex and age2·sex. PCA and GWAS were computed using the bigsnpr (35) R package (version 1.9.10).236

PRS Computation237

Polygenic risk scores were computed for each phenotype and data split using clumping and thresholding (C+T),238

lassosum2, and LDpred2. In C+T, correlated variants are first clumped together, leaving only the ones with the lowest239

P-values while others are removed. We used 50 P-value thresholds combined with stacking to learn an optimal linear240

combination of C+T scores in a 10-fold cross-validation on the train set. The remaining variants are then pruned by241

discarding the ones with a P-value larger than a chosen significance level. Lassosum uses L1 and L2 regularization on242

the effect sizes and a linkage disequilibrium (LD) correlation matrix to penalize correlated and low-effect variants. The243

regularization coefficients were chosen by measuring model performance on the validation set. LDpred is a Bayesian244

method that uses a prior on effect sizes and an LD correlation matrix to re-weight effect estimates. LDpred2-auto245

(44) is a variant of LDpred in which two key model parameters, the SNP heritability and polygenicity, are estimated246

from the data. The LD correlation matrix was obtained from a reference panel (42). We used the validation set to247

identify optimal hyper-parameters such as P-value cutoffs and regularization coefficients for each method. We used248

the C+T, Lassosum2, and LDpred2 implementations of the bigsnpr (35) R package (version 1.9.10), using the default249

hyperparameters ranges for each PRS method.250
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Network Architecture251

We designed a deep learning neural network (DNN) to predict phenotypes from genetic data, illustrated in Figure 9.252

During training, SNPs are loaded in memory as a matrix of size B ×S, where B represents the batch size and S is the253

number of SNPs. To reduce the dimensionality of the data, SNPs were filtered by a tunable p-value threshold T . The254

neural network’s architecture is an 8-layer pre-norm transformer (45) with two attention heads and GELU activation255

function (46). Similarly to vision transformers (45), we batched SNPs into arbitrary patches of length L to form a256

sequence of embeddings, using zero-padding to complete the last embedding. Inputs were then linearly mapped to257

match the input size of the transformer (512 in all experiments), and a vector containing covariate information was258

added as the first embedding of the sequence.259

Figure 9. Overview of the architecture of the neural network.

We found that training directly on the phenotype would result in divergent training due to the large dimensionality260

of the data, the low impact of individual SNPs, and the fact that phenotypes are not fully described by their inputs.261

To remedy this problem, we used the effect sizes βi from a classical PRS method to guide the neural network’s262

predictions. We decoded the output of the transformer using a linear layer to match the original input size and predict263

variations of each effect using a tanh activation function:264

β′
i = (1+ 1

2 tanh(f i
θ(x)))βi, (1)

where βi is the effect size from the PRS, β′
i is the effect modified by the neural network f i

θ, and x is the input to the265

neural network (covariates + 100K SNPs).266

Each output β′
i represents an individual modification of the estimated effect that depends on covariates and the267

presence of other SNPs. Modified effect estimates were then summed up to form the modified PRS prediction of the268

DNN, yDNN =
∑

β′
i. We designed the DNN such that, were it to output only zeros, we would recover the unmodified269

PRS score. We found that using the effect estimates as a guide during training to be the only way for the neural270

network to output predictive results.271

We used the effect sizes from LDpred2 to train the neural network in all our experiments. We used a batch size272

of B = 512, transformer input size of 512, feed-forward dimension of 512, and 0.3 dropout during training. The273

covariate vector included the same covariates from the GWAS for each trait. The patch size (L ∈ {128,2048}), P-value274

thresholds (range 0.01-10−6), and learning rate (range 0.05-5 ·10−4) were individually tuned for each trait and were275

the only parameters that varied between traits. For a specific trait, we used the same patch size and p-value threshold276

for each data split. We used a linear decay for the learning rate with 300 warmup steps. Models were trained on a277

single NVIDIA GeForce RTX 3090 (24 GB) and were composed of approximately 14M parameters. We used the278

AdamW optimizer (47) with ϵ = 10 ·10−8, β = (0.9,0.999). Training averaged between 8 to 12 hours for each trait.279

For binary traits, we used the ROC AUC as the evaluation metric.280

For all phenotypes, we used explained variance (Equation 2) as the evaluation metric:281

EVR = 1− var(y − ŷ)
var(y) , (2)

where y is the ground truth and ŷ is the prediction.282

We used these metrics to select the best-performing model on the validation set and for the final evaluation of the283

held-out test set. We used smooth L1 loss (48) during training.284

Interestingly, we observed different convergence patterns for each phenotype. Some, like BMI and SBP, tended to285

converge after one epoch despite a very low learning rate and even overfit after this point. On the other hand, height286

required a much larger learning rate and converged after around 20 epochs. Binary traits included fewer SNPs due to287

differences in the distribution of GWAS p-values. Consequently, binary traits required a smaller patch size. We tuned288

the patch size such that the sequence length lay between 20 and 70, keeping patch sizes multiples of 2 between 256289

and 2048.290
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Covariate Model291

As some covariates can greatly impact the phenotype (e.g., sex and height), we found that directly using the phenotype292

as a ground truth would make the neural network diverge during training for some phenotypes. To solve this problem,293

we used another model that only used the covariates as input to predict the phenotype and trained the deep neural294

network on the residuals. We chose XGBoost, a gradient-boosted trees method similar to the method we used to295

benchmark, without the additional high-impact SNPs. To be consistent, we used the same hyperparameters across296

data splits and phenotypes with 3-fold cross-validation for optimal model selection. For the XGBoost hyperparameters,297

we used a maximum depth of 5, α = 0,γ = 0,η = 0.01, a subsample of 80%, and a minimum chid weight of 10 in all298

our experiments. The weighted sum of effect estimates with P-values lower than 0.05 but higher than the P-value299

threshold of the deep neural network was then added back to the output of the covariate model. Finally, The DNN300

predictions yDNN were linearly combined with the covariate model to form the final prediction.301

Data Loading During Training302

Gene sequence variations formats such as bgen and pgen are compressed and optimized to query a single variant at303

a time to enable fast GWAS analysis. For our purposes, we needed a format that could allow us to efficiently load304

in memory all HM3 variants for a small number of subjects. We chose to convert the HM3 SNPs in bgen format to305

a Hierarchical Data Format (HDF5) with a Python script using the h5py (49) and bgen_reader (50) libraries. When306

loading the data, we implemented an efficient dataloader that merges genotype and phenotype information. This data307

format allowed us to load a batch of 512 samples containing 1.1M SNPs in memory in less than 10 ms, which was308

acceptable for training. Bgens were converted to a single HDF file with a Python script, which only needed to be done309

once. We encoded allele dosage as 0, 1, and 2 for homozygous reference, heterozygous, and homozygous allele.310

The samples were ordered as in the sample file from the .bgen of the first chromosome.311

Adding in low effects as constants312

To keep the inputs’ dimensionality relatively low and avoid including extremely small effects, we summed up the effects313

that were lower than 0.05% of the maximum and only included the others in the input of the neural network. The sum314

of the smaller effects was then added to the yDNN output. Assuming that the deep neural network output only zeros,315

the network’s architecture is such that output would be the same as the LDpred weighted sum.316

Model performance evaluation and comparison to existing methods317

We compared the performance of our approach to three other state-of-the-art methods. We used the polygenic risk318

score predictions from LDpred2 for each method and included the same covariates as our approach. It was recently319

found (17) that including high-impact SNPs in a non-linear model can increase the quality of genetic prediction. We320

modified this existing method to be computationally feasible while enabling fair comparison. To be precise, instead321

of filtering SNPs with LASSO regression before XGboost, which we found to be computationally expensive due to322

the size of UKB, we filtered them by P-value thresholding. We considered for inclusion in the model all SNPs with323

a p value < 10−4 using our GWAS summary statistics for the corresponding trait, keeping the same data splits as324

previously described. We then used eight relative thresholds α values between 0 and 1 and kept SNPs with a P-value325

in the top T percentile.326

We fitted XGBoost and LASSO models by including covariates (sex, age, first 20 PCs), selected SNPs, and the327

LDPred2 risk score prediction. We selected the model that minimized the MSE for each phenotype. For XGBoost, we328

always used a learning rate of 0.01, maximum depth of 5, minimum child weight of 10, and subsample of 80%. Each329

model was fit using 3-fold cross-validation on the training set, allowing up to 2000 boosted trees with early stopping330

after 20 rounds. We repeated this process for all 10 traits and 3 data splits. Analysis was conducted using Python 3331

and the scikit-learn and xgboost packages.332

Data Analysis with R333

Data analysis was performed with publicly available packages: tidyverse v1.3.1 (51), and dplyr v1.0.8 (52).334

Data Analysis with Python335

The covariate model was implemented using the xgboost python library (53). The deep learning model was336

implemented in Pytorch (54).337
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Code Availability338

Code used for processing genetic data, GWAS analyses, and training of the neural network for this manuscript is339

provided on a dedicated GitLab repository https://gitlab.com/cgeo/delphi.340
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