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Abstract 33 

Background: Mycotoxin exposure during pregnancy has been associated with adverse birth 34 

outcomes and poor infant growth. We assessed multiple biomarkers and metabolites of 35 

exposure to mycotoxins at birth and their associations with birth outcomes and infant growth 36 

in 274 newborns in rural Burkina Faso. 37 

Methods and findings: Whole blood microsamples were analyzed for mycotoxin 38 

concentrations in newborns in the Biospecimen sub-study nested in MISAME-III trial using 39 

ultra performance liquid chromatography coupled to tandem mass spectrometry. Unadjusted 40 

and adjusted associations between mycotoxin exposure, and birth outcomes and infant growth 41 

at 6 months were estimated using linear regression models for continuous outcomes and linear 42 

probability models with robust variance estimation for binary outcomes. Infant growth 43 

trajectories from birth to 6 months were compared by exposure status using mixed-effects 44 

models with random intercept for the individual infant and random slope for the infant’s age. 45 

Ochratoxin A (OTA) exposure was detected in 38.3% of newborns, with other mycotoxins 46 

being detected in the range of 0.36% and 4.01%. OTA exposure was significantly associated 47 

with adverse birth outcomes, such as lower birthweight (β (95% CI): -0.11 kg (-0.21, 0.00); p 48 

= 0.042) and ponderal index (β (95% CI): -0.62 gm/cm3 (-1.19, -0.05); p = 0.034), and a 49 

marginally significant lower height growth trajectories during the first 6 months (β (95% CI): 50 

-0.08 cm/mo (-0.15, 0.0); p = 0.057) . 51 

Conclusions: OTA exposure was prevalent among newborns and also associated with lower 52 

growth at birth and during the first 6 months. The results emphasize the importance of 53 

nutrition-sensitive strategies to mitigate dietary OTA, as well as adopting food safety 54 

measures in Burkina Faso during the fetal period of development.  55 
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Background 58 

Mycotoxins are toxic fungal secondary metabolites that contaminate a wide spectrum of 59 

essential foods worldwide, including staple crops consumed by the most vulnerable populations 60 

(1). Foodstuffs in West Africa are commonly affected by mycotoxins (2,3) since the climate, 61 

where there is high temperature and humidity, is favorable for their production (4,5). Maternal 62 

nutrition affects both the pregnancy’s process and the newborn’s well-being (6). In low-and 63 

middle-income countries (LMICs), adverse pregnancy outcomes are common including low 64 

birth weight (LBW), preterm birth (PTB) and/or small-for-gestational age (SGA) (7). Several 65 

epidemiological studies have indicated that mycotoxin exposure is extensive in newborns (8–66 

11).  67 

The International Agency for Research on Cancer (IARC) categorizes aflatoxin B1 (AFB1) as 68 

carcinogenic to humans (Group1), and fumonisin B1 (FB1) and ochratoxin A (OTA) as possible 69 

human carcinogens (Group 2B) (12). The human fetus is vulnerable to health effects resulting 70 

from in utero exposure to environmental chemicals (13). Formerly, higher AF exposure, in 71 

utero and in early life, has been linked with stunting and/or underweight, while children with 72 

high fumonisins exposure were also shorter and lighter (14). In addition, research has also 73 

shown that OTA can cross the placental barrier in humans (15), and is reported to also have 74 

other toxic effects in humans including immunotoxicity and nephrotoxicity (16–18). 75 

A literature review by Arce-López et al. (2020) concluded that OTA is often detected in whole 76 

blood, plasma and serum samples (19). Authors reported frequency levels of 64.9% (20–23), 77 

and concluded that the global population is generally exposed to OTA due to its long half-life 78 

in these matrices (19). This exposure during the critical first 1,000 days of life (10) might 79 

contribute to adverse fetal and infant outcomes (24). Generally, birthweight is an indicator of 80 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.19.24306069doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306069
http://creativecommons.org/licenses/by/4.0/


 

 

6 

both maternal health and nutrition status, and also the infant’s well-being. Infants born with 81 

LBW are at increased risk of several short- and long-term consequences, including neonatal 82 

mortality, childhood stunting and impaired immune function (25–27). Nevertheless, research 83 

investigating the association between mycotoxins exposure and birth and infant growth 84 

outcomes have reported inconsistent results (28–31).  85 

In Burkina Faso, limited biological and toxicological food contamination data are available 86 

(32), and legislation and regulations regarding mycotoxins are often not implemented (33,34). 87 

Using data from the Biospecimen (BioSpé) sub-study of the MISAME-III (MIcronutriments 88 

pour la SAnté de la Mère et de l’Enfant) trial in rural Burkina Faso, we previously reported a 89 

prenatal exposure to multiple mycotoxins among pregnant women from a rural Burkinabé 90 

setting, and found no evidence of associations with adverse birth outcomes and infant growth 91 

(in publication (35)). In the present study, we aimed to quantify newborn mycotoxin exposure 92 

at birth and investigated the association with birth outcomes and infant growth in the same 93 

mother-newborn dyads. 94 

Methods 95 

Study setting, participants, and design  96 

Study protocols for the main MISAME-III trial (36) and the BioSpé sub-study nested under 97 

the MISAME-III trial (37) were published previously. The main MISAME-III study is a 2 x 2 98 

factorial randomized controlled trial evaluating the effect of balanced energy-protein (BEP) 99 

supplementation to mothers during pregnancy (prenatal intervention) and lactation (postnatal 100 

intervention) on maternal and child outcomes. In a subsample from the main MISAME-III 101 

trial (Figure 1), a BioSpé sub-study was conducted aiming to understand the physiologic 102 

mechanisms through which the BEP supplement affects the maternal and child outcomes by 103 
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way of multi-omics analyses, human biomonitoring of contaminants (mycotoxins, black 104 

carbon, gut enteropathogens and pesticides), and analysis of relative telomere length and 105 

mitochondrial DNA content (37). 106 

The study was conducted in 6 rural health center catchment areas in the district of Houndé in 107 

the Hauts-Bassins region of Burkina Faso. The study area is characterized by a Sudano-108 

Sahelian climate with a dry season running between September/October and April, and 109 

agricultural activities being the main livelihood of the community. Results from a previously 110 

conducted dietary survey in a sub-sample of the MISAME-III pregnant women showed the 111 

habitual diet during pregnancy is nondiverse, predominantly based on maize with a 112 

complement of leafy vegetables (38). Grains, roots, tubers and plantains together contributed 113 

68% of the total calorie intake during pregnancy. Almost all participants (95%) consumed the 114 

main staple dish tô, which contributed 42% of the total energy intake. Tô is a stiff maize 115 

dough often served with a watery sauce containing green-leafy vegetables (okra, hibiscus, and 116 

baobab leaves) or other vegetables such as eggplant, with or without meat, fish, or 117 

caterpillars. Other food groups such as fruits, dairy, eggs, fish, and meat contributed very 118 

small amounts to the total energy intake (39).   119 

Exposure and outcomes 120 

The present study considered exposure to a range of mycotoxins listed in Table 2. However, 121 

aflatoxin B1 (AFB1)-lysine exposure was not assessed due to the current unavailability of the 122 

commercial analytical standard for this specific mycotoxin. Mycotoxin exposure was defined 123 

as the detection of a concentration ≥ the limit of detection (LOD) in whole blood 124 

microsamples.  125 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.19.24306069doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306069
http://creativecommons.org/licenses/by/4.0/


 

 

8 

The outcomes of interest were birth outcomes, such as birth weight, SGA, LBW, gestational 126 

age (GA), PTB, length, mid-upper arm circumference (MUAC), head circumference, ponderal 127 

index, chest circumference, and infant growth and nutritional status at the age of 6 months, 128 

such as length-for-age z-score (LAZ), weight-for-age z-score (WAZ), weight-for-length z-129 

score (WLZ), MUAC, head circumference, hemoglobin, stunting, underweight, wasting and 130 

anemia. We additionally assessed the associations between mycotoxin exposure and infant 131 

growth trajectories (height, weight, upper-arm and head circumferences) during the first 6 132 

months postpartum.  133 

PTB was defined as the birth of a newborn before 37 completed weeks of gestation. SGA was 134 

defined as a newborn weight less than the 10th percentile of weight for the same GA and sex 135 

according to the International Fetal and Newborn Growth Consortium for the 21st Century 136 

(INTERGROWTH-21st)  (40). Anthropometric z-scores of LAZ, WAZ and WLZ were 137 

calculated based on the WHO Child Growth Standards with stunting, underweight and 138 

wasting defined as LAZ, WAZ and WLZ values below 2 SD from the median value for same 139 

age and sex from the reference population (41). Newborn Rohrer’s ponderal index was 140 

calculated as weight in g divided for length in cm cubed (i.e., weight/length3 (g/cm3) × 1,000). 141 

Data collection  142 

The MISAME-III trial data were collected through computer-assisted personal interviewing 143 

using SurveySolutions (version 21.5) on tablets and then transferred to a central server at 144 

Ghent University. Sociodemographic and other relevant characteristics of participants and 145 

study households were collected at baseline during the first and early second trimester of 146 

pregnancy. All newborn anthropometry measurements were taken within 12 hours of birth, 147 

whereas mothers were invited for follow-up growth assessment every month until 6 months of 148 
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age. Measurements were taken in duplicates and a third measurement was taken in case of a 149 

large discrepancy between the duplicate measurements. Length was measured to the nearest 1 150 

mm with a Seca 416 Infantometer, weight was measured to the nearest 10 g with a Seca 384 151 

scale, and head circumference, thoracic circumference and MUAC were measured to the 152 

nearest 1 mm with a Seca 212 measuring tape. GA was determined using a portable 153 

ultrasound (SonoSite M-Turbo, FUJIFILM SonoSite, Bothell, Washington, USA) during the 154 

first and early second trimester of pregnancy.  155 

Blood sample collection and laboratory analysis  156 

Samples collection and lab analysis procedures were described in detail previously (37). 157 

Newborn samples were collected between May and October 2021 within 12 hours of birth in 158 

all newborns. An amount of 40 of capillary whole blood was collected by capillary sampling 159 

onto VAMS tips (2 × 20 µL VAMS tips), namely MitraTM, via direct heel incision for 160 

mycotoxins analysis (37). Then, VAMS tips were stored in 20 µL Mitra Clamshells and 161 

transported from the health centers to the Institut de Recherche en Sciences de la Santé in 162 

Bobo-Dioulasso, Burkina Faso for shipment at room temperature to the Centre of Excellence 163 

in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 164 

Belgium. For storage at −80°C until analysis, VAMS were placed in Mitra Autoracks (96-165 

Sampler, item number: 108) inside a storage bag containing desiccant bags (item number: 166 

AC-SS02). Items used for VAMS collection were purchased from Neoteryx (Torrance, 167 

California, USA). 168 

A VAMS multi-mycotoxin extraction (42) began by transferring the VAMS tips from the 169 

plastic handles into 2 mL Eppendorf tubes, and pipetting 250 μL extraction solvent 170 

(acetonitrile/water/acetic acid, 59/40/1, v/v/v) , containing the internal standards 13C17–AFB1 171 
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(0.125 µg/L) and 13C15 – deoxynivalenol (DON) (0.25 µg/L), 13C34–FB1 (0.25 µg/L) and 172 

13C18–zearalenone (ZEN) (0.125 µg/L), to the sample tubes. Subsequently, samples were 173 

ultrasonicated for 30 minutes and shaken for 60 minutes at 25°C with rotation at 1,400 rpm in 174 

a Biosan TS-100 Thermo-Shaker followed by centrifugation (10 minutes at 10,000g, room 175 

temperature). The tips were discarded, and the supernatant was pipetted to an 8 mL glass tube 176 

and evaporated under nitrogen on a Turbovap LV Evaporator (Biotage, Charlotte, USA). 177 

Afterwards, the extracts were reconstituted in 50 μL of injection solvent (methanol/water, 178 

60/40, v/v), vortexed, centrifuged (for 10 min at 5000 g) and filtered (22 μm, PVDF, 179 

Durapore®,Cork, Ireland). Lastly, samples were transferred into vials before 10 μL were 180 

injected into an Acquity ultrahigh performance liquid chromatography (UPLC) system 181 

(Waters®, Manchester, UK) equipped with an Acquity HSS T3 100 × 2.1 mm UPLC column 182 

(1.8 μm particle size) and Acquity Vanguard HSS T3 10 × 2.1 mm UPLC pre-column (1.8 μm 183 

particle size), both from Waters® (Manchester, UK). Detailed instrument parameters can be 184 

found in a previous study (42).  185 

Statistical analysis 186 

Data management and statistical analyses were performed using Stata (Stata Statistical 187 

Software: release 17.0; StataCorp), and a 2-sided statistical significance was considered at p 188 

<0.05. Descriptive statistics are presented using means ± SD or medians (range) for the 189 

continuous variables, depending on the nature of the data distribution, and frequencies 190 

(percentages) for nominal variables.  191 

In the study sample, only exposure to OTA was found in an adequate number of newborns to 192 

assess the association with birth outcomes and infant  growth. The association between OTA 193 

exposure and the study outcomes at birth and 6 months of age was evaluated using linear 194 
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regression models for the continuous outcomes and linear probability models with robust 195 

variance estimation for the binary outcomes. All models were adjusted for clustering by the 196 

health center catchment areas and allocation for the prenatal and postnatal BEP interventions. 197 

Furthermore, adjusted models additionally included the covariates maternal age, primiparity, 198 

baseline BMI and hemoglobin concentration, household size, wealth index score, access to 199 

improved water and sanitation, and food security status. 200 

We also compared OTA exposed and non-exposed groups by growth trajectories from birth to 201 

6 months. For this purpose, we fitted mixed-effects regression models with random intercept 202 

for the individual infant and random slope for the infant’s age (months). We explored the best 203 

growth trajectory fitting the data by visual inspection of graphs and comparing model fit 204 

indices including AIC (Akaike Information Criterion) and BIC (Bayesian Information 205 

Criterion) values. Accordingly, we applied quadratic models (for the outcomes height, weight 206 

and MUAC) and restricted cubic spline model with 4 knots (for the outcome head 207 

circumference). We considered an unstructured covariance matrix for the correlation among 208 

repeated measurements within an individual. Fixed effects in the model included the main 209 

effect of OTA exposure, the main effect of age, and exposure by age interaction, which the 210 

later estimates the difference in monthly changes in the outcome between exposure and 211 

unexposed groups. Models were further adjusted for the aforementioned covariates.  212 

In a further exploratory analysis, we evaluated potential interactions between OTA exposure 213 

and the allocation to the maternal BEP interventions on the study outcomes. For this purpose, 214 

interaction terms between OTA exposure and the prenatal and postnatal BEP interventions 215 

were specified in the models with the presence of interaction was considered at p <0.10. 216 

Lastly, Cohen’s weighted kappa test was used to assess the level of agreement between 217 

mother-newborn OTA exposure status. Results were reported as percentage agreement and 218 
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Cohen’s weighted kappa values. The following cut-offs were used: Kappa values ≤ 0 no 219 

agreement, 0.01–0.20 none to slight, 0.21–0.40 fair, 0.41– 0.60 moderate, 0.61–0.80 220 

substantial, and 0.81–1.00 almost perfect agreement (43). 221 

Results 222 

Mother-newborn dyads characteristics 223 

Birth outcomes and infant growth at 6 months were assessed on 274 and 255 newborns, 224 

respectively (Figure 1). Mean ± SD age of the mothers was 24.3 ± 5.63 years and 45.3% of 225 

mothers had at least a primary education (Table 1). The mean ± SD maternal BMI at study 226 

inclusion was 22.1 ± 3.22 kg/m2 with 6.93% underweight (BMI<18.5 kg/m2). More than two-227 

thirds (70.3%) of the newborns were from food insecure households and 29.9% of their 228 

mothers were anemic at study enrollment during the first/early second trimester of pregnancy. 229 

Mycotoxins exposure and newborn and infant growth and nutritional status 230 

The laboratory analysis indicated that, aside from OTA, almost all newborns were found to be 231 

not exposed to most mycotoxins (Table 2). OTA exposure was detected in 38.3% of the 232 

newborns with a median (range) concentration of <LOD (<LOD, 3.61) µg/L. The LOD for 233 

OTA as 0.09 µg/L. The UPLC-MS/MS chromatograms of OTA are shown in Figure 3. 234 

Other mycotoxins such as AFB1, aflatoxin G1 (AFG1), aflatoxin M1 (AFM1), DON, citrinin 235 

(CIT), zearalanone (ZAN) and ZEN were detected in the range of 0.36% and 4.01% of 236 

newborns. For the remaining 26 mycotoxins analyzed, no exposure was detected through 237 

whole blood analysis. 238 

In the unadjusted models, newborn OTA exposure was found to be negatively associated (p < 239 

0.05) with birth outcomes, such as birthweight, MUAC, ponderal index and chest 240 
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circumference, as well as with LAZ at the age of 6 months (Table 3 & 4). These associations 241 

remained significant after adjustment for relevant covariates only for birth weight (adjusted β 242 

(95% CI): -0.11 kg (-0.21, 0.00); p = 0.042) and ponderal index (adjusted β (95% CI): -0.62 243 

gm/cm3 (-1.19, -0.05); p = 0.034).  Likewise, newborns who were exposed to OTA had 244 

marginally significantly lower height growth trajectories than their counterparts without OTA 245 

exposure (adjusted β (95% CI): -0.08 (-0.15, 0.00) cm/month; p = 0.057) (Figure 2).   246 

There was also a significant interaction between newborn OTA exposure status and the 247 

maternal prenatal BEP intervention on the outcome child anemia status at 6 months of age 248 

(pinteraction = 0.074) (Supplemental Table 1). OTA exposure was significantly associated with 249 

higher anemia prevalence among newborns of mothers who did not receive prenatal BEP 250 

supplementation (adjusted β (95% CI): 18.7% (2.00, 35.3); p = 0.029), while no significant 251 

association was detected among newborns whose mothers received the prenatal BEP 252 

supplementation (adjusted β (95% CI): 0.08% (-19.1, 19.3); p = 0.993). In the present study, 253 

there was a 63.0% agreement between mother-newborn OTA exposure status and the kappa 254 

value was classified as fair (Kappa = 0.27). 255 

Discussion 256 

There is a growing concern about the potential adverse health and developmental 257 

consequences of fetal mycotoxins exposure. The present study found a high prevalence of 258 

OTA exposure (38.32%) amongst newborns at birth. Exposures to mycotoxins, such as 259 

AFG1, AFB1, AFM1, CIT, DON, ZAN and ZEN were detected in relatively fewer subjects, 260 

whereas other mycotoxins were not detected. Moreover, we found that OTA exposed 261 

newborns had significantly lower birthweight and ponderal index than their non-exposed 262 

counterparts. OTA exposed newborns also had marginally significantly lower height growth 263 
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trajectories. Finally, an exploratory analysis indicated that maternal prenatal BEP 264 

supplementation may offset the effect of OTA exposure on increased anemia prevalence at 6 265 

months of age.  266 

This is the first study to report the level of mycotoxins exposure in newborns using whole 267 

blood microsamples. OTA is produced predominantly by some Aspergillus, Monascus, and 268 

Penicillium species, which frequently contaminates cereals and derived products, dried fruit, 269 

coffee, cocoa, spices, wine and cured pork products. Considering that in Burkina Faso maize 270 

is the second most cereal produced, the Burkinabé population is often exposed to OTA (44–271 

46). A study in Sierra Leone reported OTA exposure in 25% of cord blood samples in 272 

newborns (range: 0.2-3.5 μg/L). However, the study detected a high prevalence of overall 273 

exposure to AFB1, AFM1, aflatoxicol, AFB2, AFM2, AFG1 and AFG2 (90.6%), while the 274 

present study showed limited exposure to AF except AFB1-lys which was not analyzed (11). 275 

The occurrence of OTA detected in the present study is also comparable to previous literature 276 

using adult samples. Fan et al. (2019) analyzed plasma samples of 260 adults in China and 277 

detected OTA in 27.7% of samples (range: 0.31-9.18 µg/L) (21), likewise in another study the 278 

OTA prevalence was 28% in serum samples from Tunisia (range: 0.12 and 11.67 µg/L) (22). 279 

On the other hand, exposure to mycotoxins other than OTA was found to be low in our study 280 

population as compared to what has been reported previously in LMICs (8,23,48,49). The 281 

variations in physicochemical properties of mycotoxins can lead to differences in their 282 

toxicokinetic profiles, which results in different excretion amounts and times. Therefore, it is 283 

conceivable that the used UPLC-MS/MS system may not detect the lowest concentrations of 284 

mycotoxin metabolites. Further research is required on mycotoxins’ stability during the 285 

processing of foodstuffs, their fate in the digestive system as well as toxicodynamic and 286 

toxicokinetic studies (50). Additionally, the knowledge of the formation process of these 287 
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metabolites and the understanding of their structure and molecular mass can solve the 288 

analytical and technological challenges associated with these metabolites. Therefore, given 289 

these facts, there may be underreporting of exposure to certain mycotoxins due to their short-290 

half lives.  291 

The teratogenic effects of OTA have been well reported in animal studies. Reduced birth 292 

weight and craniofacial abnormalities are the most frequent reported outcomes (51). Oral 293 

administration of OTA at 5 mg/kg body weight to pregnant rats was reported to cause a 294 

reduced weight of the fetus as well as frequent hemorrhages (52–54). In addition, a single oral 295 

dose of OTA at 4 mg/kg body weight caused abortions, maternal deaths and reduction in 296 

maternal and fetal body weights (51). In the present study, results indicated a reduction of 297 

0.11 kg in birthweight in newborns exposed to OTA compared to unexposed newborns, 298 

though previous findings that OTA exposure is associated with poor birth outcomes and infant 299 

growth have been reported inconsistently. In Uganda, AF exposure measured in mid-300 

pregnancy was associated with LBW and smaller head circumference (55). Formerly, Jonsyn 301 

et al. (1995) also reported that when OTA is present in combination with AFs and their 302 

metabolites in cord blood samples, the birth weight is likely to be reduced (47). A study from 303 

Ethiopia found an association between chronic maternal AF exposure and lower fetal growth 304 

trajectories using fetal biometry from ultrasound estimates. However, the same study did not 305 

find an association of AF exposure with birth anthropometry (56). A systematic review of 306 

studies that evaluated mycotoxin exposure and infant growth also found inconsistent results 307 

(28). With the wide variation in detected mycotoxin concentrations and possible confounding 308 

factors adjusted for in these studies, it is not surprising that some found associations and 309 

others did not.  310 
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In contrast, in our previous analysis of OTA exposure during the third trimester of pregnancy 311 

in the same cohort, we did not find associations between maternal exposure and growth at 312 

birth and at 6 months of age (35). Besides this, we only found a fair level of agreement 313 

between maternal OTA exposure during the third trimester of pregnancy (50.8%) and 314 

neonatal exposure (38.3%) status (Kappa = 0.27). There was also no constant pattern in the 315 

type or quantity of AFs or OTA detected in maternal and cord blood samples in other studies. 316 

A study in Sierra Leone detected 12.5% OTA exposure in maternal serum samples versus 317 

25.5% in cord blood samples (11); while a study in Bolivia detected OTA in 87% in the cord 318 

plasma samples versus 12.5% in the maternal plasma samples (57). A potential reason for the 319 

higher detection of OTA in the previous prenatal maternal OTA exposure analysis conducted 320 

(35) is that it was conducted at 30-34 weeks of gestation, and previous literature have reported 321 

that the level of OTA from the mother to the fetus has a higher transfer rate in the earlier 322 

stages of pregnancy compared to later (15). Furthermore, OTA distribution in the human body 323 

could also be affected by the development of placenta and physiological differences 324 

throughout pregnancy (58). Lastly, there could be seasonal variations in mycotoxin exposure 325 

status depending on food availability, and storage conditions with the maternal samples were 326 

collected between July and March (35) while the newborn samples were collected between 327 

May and October. 328 

In the previous analysis by de Kok et al. (2022) maternal BEP supplementation during 329 

pregnancy and lactation were beneficial in reducing the prevalence of LBW, and improving 330 

GA, birth weight, birth length and chest circumference (59). However, iron and folic acid 331 

supplementation in the form of BEP or IFA tablets formulations did not improve anemia 332 

prevalence during pregnancy (60). Similarly, there was a high prevalence of infant anemia at 333 

6 months of age in both intervention and control groups (61) suggesting the limited effect of 334 
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maternal iron and folic acid supplementations in the form of BEP and IFA tablets 335 

formulations. On the other hand, the exploratory analysis here indicated a beneficial role of 336 

BEP in mitigating the negative effect of OTA exposure on increased infant anemia at the age 337 

of 6 months. To our knowledge, there is no other study addressing the role of nutritional 338 

supplementation on the effects of mycotoxins exposure. 339 

The high prevalence of OTA exposure in the present study can have severe adverse 340 

consequences. After its absorption from the gastrointestinal tract, OTA binds mainly to 341 

albumin with high affinity, resulting in its long half-life (62). The OTA mechanism of action 342 

is very complex, since it is understood to be carcinogenic, hepatotoxic, immunotoxic, 343 

neurotoxic and teratogenic, based on in vitro and on animal studies (63,64). In humans, OTA 344 

exposure has been associated with the development of Tunisian Nephropathy (65), gastric and 345 

esophageal tumors (66,67), as well as testicular cancer (68). Considering the risks posed by 346 

mycotoxins in LMICs, Matumba and colleagues (2021) proposed a framework for prevention 347 

and control of mycotoxins in grains. The guideline has five pointers including: i) Sustaining 348 

plant’s strength and health; ii) Reducing toxigenic fungal population in growing plants and in 349 

storage; iii) Rapidly reducing moisture content of grains and avoid rehydration; iv) 350 

Safeguarding outer structure of seeds/grains and v) Cleaning and removing mycotoxin high 351 

risk components. The guideline also provides recommendation on how grains should be 352 

handled from production, harvesting and storage practices all the way to processing 353 

considering the factors that promote or prevent fungal contamination and subsequent 354 

production of mycotoxins in grains (69). 355 

Some of the strengths of the present study include determination of GA using ultrasonography 356 

and the assessment of birth outcomes within 12 hours of birth, allowing the timely and robust 357 

assessment of study outcomes. The determination of mycotoxin exposure using biomarkers is 358 
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also superior to the assessment in foodstuffs used in some studies (70). This is also the first 359 

application of VAMS for mycotoxin analysis in the whole blood of newborns in an LMIC 360 

setting. Considering the benefits of VAMS and the robust method developed, VAMS 361 

sampling can be considered as an alternative technique to perform a quantitative screening of 362 

mycotoxin exposure (42). The findings also provide support for future studies, using larger 363 

cohorts, with sampling using VAMS. In addition, considering the toxicokinetic profiles of the 364 

detected mycotoxins, this microsampling technique will further highlight the effect of 365 

exposure to mycotoxins on human health, enabling further associations to be made with 366 

adverse health outcomes. Lastly, as a limitation, mycotoxin exposure data from only a single 367 

time point postnatally was considered. Future studies, using repeated mycotoxins 368 

measurements, will provide an insight into the effects of mycotoxins and their 369 

physicochemical properties in relation to the timing of exposure. Moreover, further studies 370 

assessing mycotoxin exposure during the complementary feeding period in infants and young 371 

children will also provide a full picture of the burden of the problem and its effects during the 372 

critical window period in this and similar populations.  373 

In conclusion, this study reports a high occurrence of newborn OTA exposure and an 374 

associated risk of lower birthweight, ponderal index and height growth trajectories in rural 375 

Burkina Faso. The findings emphasize the importance of nutrition-sensitive strategies to 376 

mitigate dietary OTA in the food supply, as well as adopting food safety measures in LMICs 377 

during the fetal period of development.  378 

Data availability request 379 

Given the personal nature of the data, data will be made available through a data-sharing 380 

agreement. Please contact carl.lachat@ugent.be and marthe.deboevre@ugent.be for any 381 
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queries. Supporting study documents, including the study protocol and questionnaires, are 382 

publicly available on the study’s website: https://misame3.ugent.be (accessed on 07 383 

December 2023). 384 
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Table 1. Characteristics of study participants 

Characteristics All subjects (n=274) OTA unexposed (n = 169) OTA exposed (n = 105) 

Study health center catchment area     

   Boni 43 (15.7) 29 (17.2) 14 (13.3) 

   Dohoun 35 (12.8) 20 (11.8) 15 (14.3) 

   Dougoumato II 46 (16.8) 22 (13.0) 24 (22.9) 

   Karaba 37 (13.5) 18 (10.7) 19 (18.1) 

   Kari 58 (21.2) 41 (24.3) 17 (16.2) 

   Koumbia 55 (20.1) 39 (23.1) 16 (15.2) 

Household level    

Wealth index, 0 to 10 points 4.70 ± 1.78 4.80 ± 1.75 4.54 ± 1.83 

Household food insecuritya 192 (70.3) 111(65.7) 81 (77.9) 

Improved primary water sourceb 162 (59.1) 102 (60.4) 60 (57.1) 

Improved sanitation facilityc 174 (63.5) 105 (62.1) 69 (65.7) 

Household size 6.47 ± 4.64 6.64 ± 4.75 6.18 ± 4.47 

Maternal factors    

Age, years 24.26 ± 5.63   

Ethnic group  
  

   Bwaba 156 (56.9) 99 (58.6) 57 (54.3) 

   Mossi 88 (32.1) 54 (32.0) 34 (32.4) 

   Others 30 (11.0) 16 (9.4) 14 (13.3) 

Religion pregnant women  
  

   Muslim 119 (43.4) 71 (42.0) 48 (45.7) 

   Protestant  64 (23.4) 35 (20.7) 29 (27.6) 

   Animist 62 (22.6) 48 (28.4) 14 (13.3) 

   Catholic 22 (8.0) 11 (6.5) 11 (10.5) 

   No religion, no animist 5 (1.8) 3 (1.8) 2 (1.9) 

Primary education and above 124 (45.3) 80 (48.2) 44 (41.9) 

Trimester of pregnancy at enrollment  
  

   First  219 (79.9) 139 (82.2) 80 (76.2) 

   Second  55 (20.1) 30 (17.8) 25 (23.8) 

Parity   
  

   0 69 (25.2) 38 (22.5) 31 (29.5) 

   1 to 2 105 (38.3) 76 (45.0) 29 (27.6) 

   ≥3 100 (36.5) 55 (32.5) 45 (42.9) 

Weight, kg 58.40 ± 9.67 59.24 ± 9.81 57.03 ± 9.32 

Height, cm 162.47 ± 5.73 163.01 ± 5.35 161.61 ± 6.23 

BMI, kg/m2 22.09 ± 3.22 22.27 ± 3.34 21.79 ± 3.01 

MUAC, mm 261.6 ± 27.9 262.6 ± 28.8 260.0 ± 26.3 

Hemoglobin, g/dL 11.69 ± 1.45 11.76 ± 1.42 11.58 ± 1.49 

Anemia (Hb < 11 g/dL) 82 (29.9) 47 (27.8) 35 (33.3) 

Maternal prenatal supplementation     

    BEP + IFA 142 (46.0) 81 (47.9) 44 (41.9) 

    IFA 167 (54.1) 88 (52.1) 61 (58.1) 

Maternal postnatal supplementation     

    BEP + IFA 156 (50.5) 94 (55.6) 50 (47.6) 

    IFA 153 (49.5) 75 (44.4) 55 (52.4) 
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Data are frequencies (%) or means ± SD.  
aAssessed using FANTA/USAID’s Household Food Insecurity Access Scale. 
bProtected well, borehole, pipe, or bottled water were considered improved water sources. 
cFlush toilet connected to local sewage or septic tank or pit latrine with slab and/or ventilation were considered improved sanitation facilities. 
dHeight of one woman with a physical disability could not be measured.  
e An average food group diversity score was computed from the list-based recalls collected on different days throughout the entire pregnancy. 

BEP, balanced energy-protein; IFA, iron-folic acid; BMI, body mass index; HB, hemoglobin; MUAC, mid-upper arm circumference; OTA, 

ochratoxin A. 
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Table 2. Newborn mycotoxin exposure at birth 

 

           Mycotoxins                                     Positive samples: n (%) Median (range) µg/L 

15-acetyldeoxynivalenol 0.00 <LOD (<LOD, <LOD) 

3-acetyldeoxynivalenol 0.00 <LOD (<LOD, <LOD) 

aflatoxin B1 1 (0.36) <LOD (<LOD, 0.34) 

aflatoxin B2 0.00 <LOD (<LOD, <LOD) 

aflatoxin G1 6 (2.19) <LOD (<LOD, 0.31) 

aflatoxin G2 0.00 <LOD (<LOD, <LOD) 

aflatoxin M1 2 (0.73) <LOD (<LOD, 0.7) 

alpha-zearalenol 0.00 <LOD (<LOD, <LOD) 

alternariol 0.00 <LOD (<LOD, <LOD) 

alternariol monomethyl ether 0.00 <LOD (<LOD, <LOD) 

beauvericin 0.00 <LOD (<LOD, <LOD) 

beta- zearalenol 0.00 <LOD (<LOD, <LOD) 

citrinin 3 (1.1) <LOD (<LOD, 18.73) 

cyclopiazonic acid 0.00 <LOD (<LOD, <LOD) 

deepoxy- deoxynivalenol 0.00 <LOD (<LOD, <LOD) 

deoxynivalenol -3- glucoside 0.00 <LOD (<LOD, <LOD) 

deoxynivalenol 2 (0.73) <LOD (<LOD, 0.74) 

diacetoxyscirpenol 0.00 <LOD (<LOD, <LOD) 

enniatin A 0.00 <LOD (<LOD, <LOD) 

enniatin A1 0.00 <LOD (<LOD, <LOD) 

enniatin B 0.00 <LOD (<LOD, <LOD) 

enniatin B1 0.00 <LOD (<LOD, <LOD) 

fumonisin B1 0.00 <LOD (<LOD, <LOD) 

fumonisin B2 0.00 <LOD (<LOD, <LOD) 

fumonisin B3 0.00 <LOD (<LOD, <LOD) 

fusarenone-X 0.00 <LOD (<LOD, <LOD) 

neosolaniol 0.00 <LOD (<LOD, <LOD) 

nivalenol 0.00 <LOD (<LOD, <LOD) 

ochratoxin A 105 (38.32) <LOD (<LOD, 3.61) 

ochratoxin alpha 0.00 <LOD (<LOD, <LOD) 

roquefortine-C 0.00 <LOD (<LOD, <LOD) 

sterigmatocystine 0.00 <LOD (<LOD, <LOD) 

T-2-toxin 0.00 <LOD (<LOD, <LOD) 

zearalanone 1 (0.36) <LOD (<LOD, 4.54) 

zearalenone 11 (4.01) <LOD (<LOD, 4.94) 

LOD, limit of detection
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Table 3: Newborn ochratoxin A exposure and birth outcomes1 

 

 

 
1Values are mean ± SD or frequencies (percentages). Unadjusted and adjusted beta coefficients are estimated using linear regression models for the continuous outcomes and linear 

probability models with robust variance estimation for the binary outcomes. All models are adjusted for the health center catchment areas and the prenatal and postnatal interventions 

arms, while adjusted models additionally contained maternal age, primiparity, baseline BMI and heamoglobin concentration, and household size, wealth index score, access to 

improved water and sanitation, and food security status. MUAC, mid-upper arm circumference; OTA, ochratoxin A 

 

Outcomes OTA unexposed (n = 169) 

OTA exposed (n = 

105) Unadjusted beta (95% CI) p Adjusted beta (95% CI) p 

Birthweight, kg 3.10 ± 0.44 2.95 ± 0.41 -0.15 (-0.26, -0.04) 0.006 -0.11 (-0.21, 0.00) 0.042 

Low birthweight (<2.5 kg) 14 (8.28) 17 (16.19) 6.19 (-1.69, 14.1) 0.123 4.79 (3.28, 12.9) 0.243 

Small-for-gestational age 35 (20.71) 34 (32.38) 10.8 (-0.41, 22.0) 0.059 7.80 (-3.33, 18.9) 0.169 

Gestational age, week 40.09 ± 1.20 39.84 ± 1.27 -0.23 (-0.54, 0.07) 0.141 -0.18 (-0.49, 0.12) 0.236 

Preterm delivery (<37 week) 3 (1.78) 2 (1.90) 0.09 (-3.26, 3.43) 0.959 -0.17 (-3.85, 3.51) 0.926 

Birth length, cm 48.73 ± 2.06 48.49 ± 1.94 -0.38 (-0.86, 0.11) 0.125 -0.18 (-0.67, 0.30) 0.453 

MUAC, mm 101.40 ± 8.24 99.59 ± 8.83 -2.27 (-4.26, -032) 0.023 -1.71 (-3.6, 0.18) 0.077 

Head circumference, cm 33.43 ± 1.51 33.39 ± 1.38 -0.15 (-0.49, 0.20) 0.403 -0.07 (-0.41, 0.27) 0.705 

Ponderal index, gm/cm3 26.68 ± 2.38 25.80 ± 2.48 -0.66 (-1.24, -0.09) 0.023 -0.62 (-1.19, -0.05) 0.034 

Chest circumference, cm 32.13 ± 1.62 31.76 ± 1.63 -0.41 (-0.82, -0.01) 0.046 -0.28 (-0.67, 0.11) 0.158 
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Table 4. Newborn ochratoxin A exposure and infant growth and nutritional status at 6 months of age1 

Outcomes 
 OTA unexposed (n = 

169) 
OTA exposed (n = 

105) 
Unadjusted beta (95% 

CI) p 
Adjusted beta (95% 

CI) p 

 Length-for-age Z-score -0.40 ± 1.12 -0.70 ± 1.17 -0.33 (-0.63, -0.03) 0.031 -0.25 (-0.55, 0.05) 0.105 

 Weight-for-age Z-score -0.34 ± 1.07 -0.62 ± 0.99 -0.22 (-0.50, 0.53) 0.113 -0.17 (-045, 0.10) 0.218 

 Weight-for-length Z-score -0.03 ± 1.03 -0.20 ± 1.02 -0.08 (-0.34, 0.19) 0.569 -0.07 (-033, 0.20) 0.607 

 MUAC, mm 141.11 ± 11.29 139.08 ± 12.50 -2.42 (-5.17, 0.33) 0.085 -2.18 (-4.97, 0.61) 0.125 

 Head circumference, cm 421.14 ± 15.75 417.84 ± 13.65 -3.37 (-7.18, 0.44) 0.083 -2.90 (-6.76, 0.96) 0.14 

 Hemoglobin, g/dL 10.32 ± 1.31 10.31 ± 1.14 -0.21 (-0.52, 0.10) 0.187 -0.20 (-0.52, 0.11) 0.204 

 Stunting 13 (8.23) 10 (10.20) 0.68 (-6.81, 8.16) 0.859 -0.11 (-8.23, 8.00) 0.978 

 Underweight 7 (4.43) 7 (7.22) 2.00 (-4.53, 8.54) 0.546 2.19 (-4.82, 9.20) 0.539 

 Wasting 3 (1.90) 3 (3.09) 1.28 (-2.74, 5.30) 0.531 1.53 (-2.57, 5.63) 0.464 

 Anemia 108 (69.23) 67 (70.53) 6.74 (-4.93, 18.4) 0.257 6.79 (-4.87, 18.4) 0.252 
 

1Values are mean ± SD or frequencies (percentages). Unadjusted and adjusted betas are estimated using linear regression models for the continuous outcomes and linear probability 

models with robust variance estimation for the binary outcomes. All models are adjusted for the health center catchment areas and the prenatal and postnatal interventions arms, 

while adjusted models additionally contained maternal age, primiparity, baseline BMI and heamoglobin concentration, and household size, wealth index score, access to improved 

water and sanitation, and food security status. MUAC, mid-upper arm circumference; OTA, ochratoxin A.
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Figure 1.  Study flow diagram of the Biospecimen sub-study (BioSpé) of the MISAME-III project. 

 

Biospecimen study subsample (n = 309) 

Participants recruited from August 2020 to December 2020 

Growth at 6 months assessed (n = 255) 

Lost-to-follow up, n = 44 

Sample not taken                              n = 35 

Rehousing                                         n = 4 

Child death                                       n = 4 

Lost to follow-up                              n = 1 

Not measured                                   n = 10 

Main MISAME-III study (n = 1897) 

Participants recruited from August 2019 to May 2021 
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Figure 2: Infant growth trajectories from birth to 6 months in OTA unexposed (solid lines; n = 169) and 

exposed (dashed lines; n = 105) groups. Mixed-effects models with random intercept for the individual infant 

and random slope for the child age were fitted to compare OTA exposed and unexposed groups by growth 

trajectories during first 6 months postpartum. Quadratic models were used for the outcomes height, weight and 

MUAC and restricted cubic spline model with 4 knots for the outcome head circumference. Fixed effects in the 

models contained main effect of time, OTA exposure status and time by exposure interaction, which the later 

evaluates the difference in monthly growth trajectories between exposed and unexposed groups. Additional 

covariates in the models included the health center catchment areas, the prenatal and postnatal interventions 

allocation, maternal age, primiparity, baseline BMI and heamoglobin concentration, and household size, wealth 

index score, access to improved water and sanitation, and food security status. MUAC, mid-upper arm 

circumference; OTA, ochratoxin A. 
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Figure 3. UPLC-MS/MS chromatograms of (A) OTA standard solution 2 μg/L; (B) OTA-naturally 

contaminated whole blood microsample (concentration 0.89 μg/L); (C) OTA-free whole blood microsample. 
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Supplemental Table 1: Infant anemia status at 6 months of age by OTA exposure status for the whole study sample and by maternal prenatal supplementation groups1 

 

1Linear probability models with robust variance estimation were used to determine the adjusted and unadjusted differences in anemia status in percentage points and their 

associated p-values. In the model analyzing the overall sample, the interaction between OTA exposure and the maternal prenatal nutritional supplementation was evaluated by 

introducing interaction terms with p-values2 <0.10 considered as significant interactions. All models are adjusted for the health center catchment areas and the prenatal and 

postnatal interventions arms, while adjusted models additionally contained maternal age, primiparity, baseline BMI and hemoglobin concentration, and household size, wealth 

index score, access to improved water and sanitation, and food security status. BEP, balanced energy-protein; IFA, iron-folic acid; OTA, ochratoxin A

Outcomes OTA unexposed OTA exposed Unadj beta (95% CI) p Adj beta (95% CI) p 

Overall sample (n = 251) 

   

0.0702 

 

0.0742 

Anemia 108 (69.2) 67 (70.5) 6.74 (-4.93, 18.4) 0.257 6.79 (-4.87, 18.4) 0.252 

IFA group (n = 135) 

      
Anemia 57 (69.5) 42 (79.3) 16.3 (0.95, 31.6) 0.038 18.7 (2.00, 35.3) 0.029 

BEP + IFA group (n = 116) 

      
Anemia 51 (68.9) 25 (59.5) -4.01 (-21.8, 13.8) 0.657 0.08 (-19.1, 19.3) 0.993 
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STROBE Statement—Checklist of items that should be included in reports of cohort studies 

 

 
Item 

No Recommendation 

Page No 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the 

abstract 

1 
(Lines 1-2) 

 

(b) Provide in the abstract an informative and balanced summary of what was done 

and what was found 

 

3 
(Lines 33-55) 

Introduction 

Background/rationale 2 Explain the scientific background and rationale for the investigation being 

reported 

5-6 
(Lines 59-87) 

Objectives 3 State specific objectives, including any prespecified hypotheses 6 
(Lines 88-94) 

Methods 

Study design 4 Present key elements of study design early in the paper 6-10 

Setting 5 Describe the setting, locations, and relevant dates, including periods of 

recruitment, exposure, follow-up, and data collection 

 

6-9 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of 

participants. Describe methods of follow-up 

6-9 

(b) For matched studies, give matching criteria and number of exposed and 

unexposed 

N/A 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and 

effect modifiers. Give diagnostic criteria, if applicable 

7-9 
(Lines 121-155) 

Data sources/ 

measurement 

8*  For each variable of interest, give sources of data and details of methods of 

assessment (measurement). Describe comparability of assessment methods if there 

is more than one group 

6-11 

Bias 9 Describe any efforts to address potential sources of bias N/A 

Study size 10 Explain how the study size was arrived at N/A 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, 

describe which groupings were chosen and why 

N/A 
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Statistical methods 12 (a) Describe all statistical methods, including those used to control for 

confounding 

10-12 
(Lines 187-221) 

(b) Describe any methods used to examine subgroups and interactions 10-12 
(Lines 187-221) 

(c) Explain how missing data were addressed N/A 

 

(d) If applicable, explain how loss to follow-up was addressed N/A 

(e) Describe any sensitivity analyses N/A 

Results 
 

Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially 

eligible, examined for eligibility, confirmed eligible, included in the study, 

completing follow-up, and analysed 

12 

(Lines 224-229) 

(b) Give reasons for non-participation at each stage N/A  

 

(c) Consider use of a flow diagram 12  
(Lines 224-225) 

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and 

information on exposures and potential confounders 

12 
(Lines 224-229) 

(b) Indicate number of participants with missing data for each variable of interest N/A 

(c) Summarise follow-up time (eg, average and total amount) N/A 

Outcome data 15* Report numbers of outcome events or summary measures over time 12-13 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their 

precision (eg, 95% confidence interval). Make clear which confounders were adjusted for 

and why they were included 

12-13 
(Lines 239-255) 

(b) Report category boundaries when continuous variables were categorized N/A 

 

(c) If relevant, consider translating estimates of relative risk into absolute risk for a 

meaningful time period 

N/A 

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity 

analyses 

13 
(Lines 247-255) 

 

Discussion 

Key results 18 Summarise key results with reference to study objectives 13-14 
(Lines 257-266) 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. 

Discuss both direction and magnitude of any potential bias 

18 
(Lines 367-373) 
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Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 

multiplicity of analyses, results from similar studies, and other relevant evidence 

13-18 

Generalisability 21 Discuss the generalisability (external validity) of the study results 13-18 

Other information 

Funding 22 Give the source of funding and the role of the funders for the present study and, if 

applicable, for the original study on which the present article is based 

19 
(Lines 287-393) 

 

*Give information separately for exposed and unexposed groups. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological 

background and published examples of transparent reporting. The STROBE checklist is best used in conjunction 

with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of 

Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the 

STROBE Initiative is available at http://www.strobe-statement.org. 
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